0
|
1 |
/*
|
|
2 |
* Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
3 |
* All rights reserved.
|
|
4 |
* This component and the accompanying materials are made available
|
|
5 |
* under the terms of "Eclipse Public License v1.0"
|
|
6 |
* which accompanies this distribution, and is available
|
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
8 |
*
|
|
9 |
* Initial Contributors:
|
|
10 |
* Nokia Corporation - initial contribution.
|
|
11 |
*
|
|
12 |
* Contributors:
|
|
13 |
*
|
|
14 |
* Description:
|
|
15 |
*
|
|
16 |
*/
|
|
17 |
|
|
18 |
|
|
19 |
// NOTE: Assumes OMX_SKIP64BIT is not set when building OMX CORE
|
|
20 |
|
|
21 |
#include <hal.h>
|
|
22 |
#include <openmax/il/khronos/v1_x/OMX_Other.h> // OMX port
|
|
23 |
#include <openmax/il/common/omxilspecversion.h> // OMX version number
|
|
24 |
#include "clocksupervisor.h"
|
|
25 |
#include "comxilclockprocessingfunction.h"
|
|
26 |
#include "clockpanics.h"
|
|
27 |
#include "omxilclock.hrh"
|
|
28 |
|
|
29 |
#include "log.h"
|
|
30 |
|
|
31 |
//////////////
|
|
32 |
// File scoped constants
|
|
33 |
//
|
|
34 |
|
|
35 |
/** The maximum number of simultaneous outstanding requests (across all ports) */
|
|
36 |
static const TUint KMaxRequests = 20;
|
|
37 |
static const TUint KThreadStackSize = 1024;
|
|
38 |
|
|
39 |
/**
|
|
40 |
* Assumption that timer will always take at least this long to complete.
|
|
41 |
* How soon an outstanding delay must be before we complete immediately instead of setting a timer.
|
|
42 |
*/
|
|
43 |
static const TInt KMinTimerOverhead = 1000; // 1000usecs = 1ms
|
|
44 |
|
|
45 |
// assumption that timers go off at some time rounded to this many microseconds
|
|
46 |
static const TInt KTimerQuantization =
|
|
47 |
#ifdef __WINSCW__
|
|
48 |
15000;
|
|
49 |
#else
|
|
50 |
1;
|
|
51 |
#endif
|
|
52 |
|
|
53 |
// aim to select a counter accurate to ~1ms
|
|
54 |
#ifdef __WINSCW__
|
|
55 |
#define USE_FASTCOUNTER // typically faster than 1ms on emulator, 1ms on hardware
|
|
56 |
#else
|
|
57 |
#define USE_NTICKCOUNT // typically 5ms on emulator, 1ms on hardware
|
|
58 |
#endif
|
|
59 |
|
|
60 |
#if !defined(USE_FASTCOUNTER) && !defined(USE_NTICKCOUNT)
|
|
61 |
#error Either USE_FASTCOUNTER or USE_NTICKCOUNT must be defined
|
|
62 |
#endif
|
|
63 |
|
|
64 |
/**
|
|
65 |
* Structure to map OMX_INDEXTYPE to behaviour required by the Clock component.
|
|
66 |
*/
|
|
67 |
|
|
68 |
// Indexes for time configs start after OMX_IndexTimeStartUnused = 0x09000000
|
|
69 |
// Simply deduct this to index this table
|
|
70 |
|
|
71 |
static const OMX_INDEXTYPE KMinJumpTableIndex = OMX_IndexConfigTimeScale;
|
|
72 |
static const OMX_INDEXTYPE KMaxJumpTableIndex = OMX_IndexConfigTimeClientStartTime;
|
|
73 |
|
|
74 |
const CClockSupervisor::FunctionPtr CClockSupervisor::iJumpTable[] =
|
|
75 |
{
|
|
76 |
/*OMX_IndexConfigTimeScale*/ &CClockSupervisor::HandleGetSetTimeScale ,// requires buffers
|
|
77 |
/*OMX_IndexConfigTimeClockState*/ &CClockSupervisor::HandleGetSetClockState ,// requires buffers
|
|
78 |
/*OMX_IndexConfigTimeActiveRefClock*/ &CClockSupervisor::HandleGetSetActiveRefClock ,
|
|
79 |
/*OMX_IndexConfigTimeCurrentMediaTime*/ &CClockSupervisor::HandleQueryCurrentMediaTime ,
|
|
80 |
/*OMX_IndexConfigTimeCurrentWallTime*/ &CClockSupervisor::HandleQueryCurrentWallTime ,
|
|
81 |
/*OMX_IndexConfigTimeCurrentAudioReference*/ &CClockSupervisor::HandleUpdateAudioReference ,
|
|
82 |
/*OMX_IndexConfigTimeCurrentVideoReference*/ &CClockSupervisor::HandleUpdateVideoReference ,
|
|
83 |
/*OMX_IndexConfigTimeMediaTimeRequest*/ &CClockSupervisor::HandleSubmitMediaTimeRequest,// requires buffers
|
|
84 |
/*OMX_IndexConfigTimeClientStartTime*/ &CClockSupervisor::HandleSetPortClientStartTime,
|
|
85 |
};
|
|
86 |
|
|
87 |
#ifdef _DEBUG
|
|
88 |
#define CHECK_DEBUG() DbgCheck()
|
|
89 |
#else
|
|
90 |
#define CHECK_DEBUG()
|
|
91 |
#endif
|
|
92 |
|
|
93 |
|
|
94 |
//////////////
|
|
95 |
|
|
96 |
|
|
97 |
/**
|
|
98 |
* Euclid's algorithm.
|
|
99 |
* Returns the largest common factor of aX and aY.
|
|
100 |
*/
|
|
101 |
static TInt LargestCommonFactor(TInt aX, TInt aY)
|
|
102 |
{
|
|
103 |
// based on knowledge that lcf(x,0)=x, lcf(x,y)=lcf(y,x) and lcf(x,y)=lcf(y,x%y)
|
|
104 |
while(aX != 0)
|
|
105 |
{
|
|
106 |
aY %= aX;
|
|
107 |
if(aY == 0)
|
|
108 |
{
|
|
109 |
return aX;
|
|
110 |
}
|
|
111 |
aX %= aY;
|
|
112 |
}
|
|
113 |
return aY;
|
|
114 |
}
|
|
115 |
|
|
116 |
|
|
117 |
/**
|
|
118 |
*
|
|
119 |
*
|
|
120 |
*/
|
|
121 |
CClockSupervisor* CClockSupervisor::NewL(COmxILClockProcessingFunction& aProcessingFunction)
|
|
122 |
{
|
|
123 |
CClockSupervisor* self = new (ELeave) CClockSupervisor(aProcessingFunction);
|
|
124 |
CleanupStack::PushL(self);
|
|
125 |
self->ConstructL();
|
|
126 |
CleanupStack::Pop(self);
|
|
127 |
return self;
|
|
128 |
}
|
|
129 |
|
|
130 |
|
|
131 |
/**
|
|
132 |
*
|
|
133 |
*
|
|
134 |
*/
|
|
135 |
void CClockSupervisor::ConstructL()
|
|
136 |
{
|
|
137 |
// calculate tick frequency
|
|
138 |
//
|
|
139 |
#ifdef USE_FASTCOUNTER
|
|
140 |
TInt frequency; // tick frequency in Hz
|
|
141 |
User::LeaveIfError(HAL::Get(HAL::EFastCounterFrequency, frequency));
|
|
142 |
// conversion factor from ticks into microseconds
|
|
143 |
// using a fraction in integer arithmetic
|
|
144 |
iMicroConvNum = 1000000;
|
|
145 |
iMicroConvDen = frequency;
|
|
146 |
TInt countsUp;
|
|
147 |
User::LeaveIfError(HAL::Get(HAL::EFastCounterCountsUp, countsUp));
|
|
148 |
iSystemClockReversed = !countsUp;
|
|
149 |
#elif defined(USE_NTICKCOUNT)
|
|
150 |
User::LeaveIfError(HAL::Get(HAL::ENanoTickPeriod, iMicroConvNum)); // tick period in microseconds
|
|
151 |
iMicroConvDen = 1;
|
|
152 |
#else
|
|
153 |
#error
|
|
154 |
#endif
|
|
155 |
|
|
156 |
// divide out any common factor to reduce chance of overflow
|
|
157 |
TInt factor = LargestCommonFactor(iMicroConvNum, iMicroConvDen);
|
|
158 |
iMicroConvNum /= factor;
|
|
159 |
iMicroConvDen /= factor;
|
|
160 |
|
|
161 |
// wraparound time in microseconds is 2^32 * iMicroConv
|
|
162 |
// take the heartbeat interval as half of this (i.e shift left by 31 places) to ensure we wake up often enough to implement the carry properly
|
|
163 |
TUint64 interval = (static_cast<TUint64>(iMicroConvNum) << 31) / iMicroConvDen;
|
|
164 |
if (interval > KMaxTInt32)
|
|
165 |
{
|
|
166 |
iHeartbeatTimerInterval = KMaxTInt32;
|
|
167 |
}
|
|
168 |
else
|
|
169 |
{
|
|
170 |
iHeartbeatTimerInterval = interval;
|
|
171 |
}
|
|
172 |
|
|
173 |
// if denominator is a power of 2, use shift instead
|
|
174 |
// (shifting is faster than division)
|
|
175 |
if(iMicroConvDen & (iMicroConvDen - 1) == 0)
|
|
176 |
{
|
|
177 |
// PRECONDITION: iMicroConvDen = 2^n, iMicroConvShift = 0
|
|
178 |
// POSTCONDITION: iMicroConvDen = 1, iMicroConvShift = n
|
|
179 |
while(iMicroConvDen >= 2)
|
|
180 |
{
|
|
181 |
iMicroConvDen >>= 1;
|
|
182 |
iMicroConvShift++;
|
|
183 |
}
|
|
184 |
}
|
|
185 |
|
|
186 |
// Create the locks
|
|
187 |
User::LeaveIfError(iQueMutex.CreateLocal());
|
|
188 |
|
|
189 |
// Create the memory block of empty Time requests that make up the free list.
|
|
190 |
iRequestBlock = new(ELeave) TMediaRequest [iMaxRequests];
|
|
191 |
|
|
192 |
// zero the fields for peace of mind
|
|
193 |
Mem::FillZ(iRequestBlock, (sizeof(TMediaRequest)*iMaxRequests));
|
|
194 |
|
|
195 |
// Initialise the free list
|
|
196 |
for(TInt requestIndex = 0; requestIndex < iMaxRequests; requestIndex++)
|
|
197 |
{
|
|
198 |
// Add all free items with delta 0
|
|
199 |
iFreeRequestQue.Add(iRequestBlock+requestIndex, static_cast<TInt64>(0));
|
|
200 |
}
|
|
201 |
|
|
202 |
iStartTimes.ReserveL(KNumPorts);
|
|
203 |
for(TInt portIndex = 0; portIndex < KNumPorts; portIndex++)
|
|
204 |
{
|
|
205 |
iStartTimes.Append(0);
|
|
206 |
}
|
|
207 |
|
|
208 |
__ASSERT_DEBUG(iMaxRequests == iFreeRequestQue.Count(), Panic(ERequestQueueCorrupt));
|
|
209 |
|
|
210 |
// Create the timer consumer thread
|
|
211 |
TBuf<19> threadName;
|
|
212 |
threadName.Format(_L("OmxILClock@%08X"), this);
|
|
213 |
|
|
214 |
// Timer created on creation of the thread as it is thread relative
|
|
215 |
User::LeaveIfError(iThread.Create(threadName, ThreadEntryPoint, KThreadStackSize, NULL, this));
|
|
216 |
|
|
217 |
// High priority thread
|
|
218 |
iThread.SetPriority(EPriorityRealTime);
|
|
219 |
// start the thread and wait for it to create the timer
|
|
220 |
TRequestStatus status;
|
|
221 |
iThread.Rendezvous(status);
|
|
222 |
iThread.Resume();
|
|
223 |
iThreadStarted = ETrue;
|
|
224 |
User::WaitForRequest(status);
|
|
225 |
User::LeaveIfError(status.Int());
|
|
226 |
}
|
|
227 |
|
|
228 |
|
|
229 |
/**
|
|
230 |
*
|
|
231 |
*
|
|
232 |
*/
|
|
233 |
CClockSupervisor::CClockSupervisor(COmxILClockProcessingFunction& aProcessingFunction)
|
|
234 |
: iActiveRefClock(OMX_TIME_RefClockAudio),
|
|
235 |
iMaxRequests(KMaxRequests),
|
|
236 |
iProcessingFunction(aProcessingFunction)
|
|
237 |
{
|
|
238 |
// compile time assertion that fields requiring atomic access are
|
|
239 |
// 4-byte aligned
|
|
240 |
__ASSERT_COMPILE((_FOFF(CClockSupervisor, iWallTicks) & 3) == 0);
|
|
241 |
|
|
242 |
// run time assertion that class itself is allocated on a 4-byte boundary
|
|
243 |
__ASSERT_ALWAYS((reinterpret_cast<TInt>(this) & 3) == 0, Panic(EBadAlignment));
|
|
244 |
|
|
245 |
iMediaClockState.nSize = sizeof(iMediaClockState);
|
|
246 |
iMediaClockState.nVersion = TOmxILSpecVersion();
|
|
247 |
iMediaClockState.eState = OMX_TIME_ClockStateStopped;
|
|
248 |
|
|
249 |
iCancelStatus = KRequestPending;
|
|
250 |
}
|
|
251 |
|
|
252 |
/**
|
|
253 |
*
|
|
254 |
*
|
|
255 |
*/
|
|
256 |
CClockSupervisor::~CClockSupervisor()
|
|
257 |
{
|
|
258 |
// signal the timing thread and wait for it to terminate
|
|
259 |
if(iThreadStarted)
|
|
260 |
{
|
|
261 |
iThreadRunning = EFalse;
|
|
262 |
TRequestStatus logonStatus;
|
|
263 |
iThread.Logon(logonStatus);
|
|
264 |
// Want the thread to terminate ASAP instead of waiting for a media
|
|
265 |
// time request completion or a wall time heartbeat. Can't cancel the
|
|
266 |
// timer without duplicating the handle, and that gives
|
|
267 |
// KErrPermissionDenied. So we use a second TRequestStatus to wake the
|
|
268 |
// timing thread before the timer completes.
|
|
269 |
TRequestStatus* cancelStatus = &iCancelStatus;
|
|
270 |
iThread.RequestComplete(cancelStatus, KErrCancel);
|
|
271 |
User::WaitForRequest(logonStatus);
|
|
272 |
}
|
|
273 |
|
|
274 |
if (iRequestBlock)
|
|
275 |
{
|
|
276 |
delete[] iRequestBlock;
|
|
277 |
iRequestBlock = NULL;
|
|
278 |
}
|
|
279 |
|
|
280 |
iStartTimes.Close();
|
|
281 |
iThread.Close();
|
|
282 |
iQueMutex.Close();
|
|
283 |
}
|
|
284 |
|
|
285 |
|
|
286 |
/**
|
|
287 |
* Timing thread entry point.
|
|
288 |
*/
|
|
289 |
TInt CClockSupervisor::ThreadEntryPoint(TAny* aPtr)
|
|
290 |
{
|
|
291 |
CClockSupervisor& supervisor = *static_cast<CClockSupervisor*>(aPtr);
|
|
292 |
supervisor.iThreadRunning = ETrue;
|
|
293 |
CTrapCleanup* cleanup = CTrapCleanup::New();
|
|
294 |
if(cleanup == NULL)
|
|
295 |
{
|
|
296 |
return KErrNoMemory;
|
|
297 |
}
|
|
298 |
|
|
299 |
// Delegate to object's clock timing routine
|
|
300 |
TRAPD(err, supervisor.RunTimingThreadL());
|
|
301 |
delete cleanup;
|
|
302 |
return err;
|
|
303 |
}
|
|
304 |
|
|
305 |
|
|
306 |
/**
|
|
307 |
*
|
|
308 |
*
|
|
309 |
*/
|
|
310 |
void CClockSupervisor::RunTimingThreadL()
|
|
311 |
{
|
|
312 |
// Create the timer (thread relative)
|
|
313 |
User::LeaveIfError(iTimer.CreateLocal());
|
|
314 |
// rendezvous with the creating thread as it must be blocked until the timer is created
|
|
315 |
iThread.Rendezvous(KErrNone);
|
|
316 |
|
|
317 |
// Start the timer loop to enable us to wake up on heart beat or requests
|
|
318 |
TimerLoop();
|
|
319 |
|
|
320 |
iTimer.Close();
|
|
321 |
}
|
|
322 |
|
|
323 |
/**
|
|
324 |
* Services media time requests.
|
|
325 |
*/
|
|
326 |
void CClockSupervisor::TimerLoop()
|
|
327 |
{
|
|
328 |
// Here we are only interested in setting the timer for a request timeout
|
|
329 |
// or the heart beat. States are taken care of in ConsumeRequests().
|
|
330 |
// On shutdown the flag iThreadRunning is set to EFalse and the timer
|
|
331 |
// completed with KErrCancel or something other than KRequestPending
|
|
332 |
// Therefore we no longer try to get another request.
|
|
333 |
|
|
334 |
TInt measuredTimerOverhead = KTimerQuantization;
|
|
335 |
TRequestStatus timerStatus;
|
|
336 |
|
|
337 |
while(iThreadRunning)
|
|
338 |
{
|
|
339 |
// Call our consumer function
|
|
340 |
TInt timeout = ConsumeRequests();
|
|
341 |
|
|
342 |
// round down sleep based on overhead and quantization of timers
|
|
343 |
timeout -= timeout % KTimerQuantization;
|
|
344 |
timeout -= measuredTimerOverhead;
|
|
345 |
timeout -= KMinTimerOverhead;
|
|
346 |
|
|
347 |
// limit sleep by the heartbeat interval
|
|
348 |
if(timeout > iHeartbeatTimerInterval)
|
|
349 |
{
|
|
350 |
timeout = iHeartbeatTimerInterval;
|
|
351 |
}
|
|
352 |
|
|
353 |
// Perhaps timeout not positive from ConsumeRequests(), or due to
|
|
354 |
// rounding down it is no longer positive. In this case we may spin, so
|
|
355 |
// be careful when setting KTimerQuantization, KMinTimerOverhead and
|
|
356 |
// KRequestDeltaLimit
|
|
357 |
if(timeout <= 0)
|
|
358 |
{
|
|
359 |
continue;
|
|
360 |
}
|
|
361 |
|
|
362 |
iQueMutex.Wait();
|
|
363 |
TInt64 actualSleepTime = WallTime();
|
|
364 |
iQueMutex.Signal();
|
|
365 |
iTimer.HighRes(timerStatus, timeout);
|
|
366 |
// can't cancel iTimer from another thread, instead we use a second
|
|
367 |
// TRequestStatus to wake up early, then we can cancel the timer in
|
|
368 |
// this thread.
|
|
369 |
User::WaitForRequest(timerStatus, iCancelStatus);
|
|
370 |
|
|
371 |
if(iCancelStatus.Int() != KRequestPending)
|
|
372 |
{
|
|
373 |
iTimer.Cancel();
|
|
374 |
iCancelStatus = KRequestPending;
|
|
375 |
}
|
|
376 |
else
|
|
377 |
{
|
|
378 |
// update measuredTimerOverhead
|
|
379 |
iQueMutex.Wait();
|
|
380 |
actualSleepTime = WallTime() - actualSleepTime;
|
|
381 |
iQueMutex.Signal();
|
|
382 |
TInt sleepOverhead = (TInt) (actualSleepTime - timeout);
|
|
383 |
|
|
384 |
/* Dampen adjustments to measuredTimerOverhead
|
|
385 |
*
|
|
386 |
* measuredTimerOverhead = max(sleepOverhead,
|
|
387 |
* avg(measuredTimerOverhead, sleepOverhead))
|
|
388 |
*
|
|
389 |
* i.e. immediate increase, gradual decrease
|
|
390 |
*/
|
|
391 |
measuredTimerOverhead = (measuredTimerOverhead + sleepOverhead) >> 1;
|
|
392 |
if(measuredTimerOverhead < sleepOverhead)
|
|
393 |
{
|
|
394 |
measuredTimerOverhead = sleepOverhead;
|
|
395 |
}
|
|
396 |
}
|
|
397 |
}
|
|
398 |
DEBUG_PRINTF(_L("Clock thread shutting down..."));
|
|
399 |
}
|
|
400 |
|
|
401 |
|
|
402 |
/**
|
|
403 |
* Update the wall clock with the system ticks
|
|
404 |
*
|
|
405 |
*/
|
|
406 |
void CClockSupervisor::UpdateWallTicks()
|
|
407 |
{
|
|
408 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
409 |
|
|
410 |
TUint32 oldLowPart(I64LOW(iWallTicks)); // save lower 32-bits
|
|
411 |
#ifdef USE_FASTCOUNTER
|
|
412 |
// Gets the fast iCounter.
|
|
413 |
// This is the current value of the machine's high resolution timer.
|
|
414 |
// If a high resolution timer is not available, it uses the millisecond timer instead.
|
|
415 |
// The freqency of this iCounter can be determined by reading the HAL attribute EFastCounterFrequency.
|
|
416 |
TUint32 newLowPart(User::FastCounter()); // set lower 32-bits
|
|
417 |
if(iSystemClockReversed)
|
|
418 |
{
|
|
419 |
newLowPart = -newLowPart;
|
|
420 |
}
|
|
421 |
#elif defined(USE_NTICKCOUNT)
|
|
422 |
TUint32 newLowPart(User::NTickCount()); // set lower 32-bits
|
|
423 |
#else
|
|
424 |
#error
|
|
425 |
#endif
|
|
426 |
TUint32 newHighPart(I64HIGH(iWallTicks)); // save upper 32-bits
|
|
427 |
|
|
428 |
// note: did not use LockedInc() here because:
|
|
429 |
// We need a critical section to capture the system time and update the wall clock
|
|
430 |
// at the same time.
|
|
431 |
// The wall clock is unsigned.
|
|
432 |
// LockedInc doesn't stop a preemption directly after the test, only during the inc
|
|
433 |
if (newLowPart < oldLowPart)
|
|
434 |
{
|
|
435 |
newHighPart++;
|
|
436 |
}
|
|
437 |
|
|
438 |
iWallTicks = MAKE_TUINT64(newHighPart,newLowPart);
|
|
439 |
}
|
|
440 |
|
|
441 |
|
|
442 |
/**
|
|
443 |
* Returns the current wall time in microseconds.
|
|
444 |
*/
|
|
445 |
TInt64 CClockSupervisor::WallTime()
|
|
446 |
{
|
|
447 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
448 |
|
|
449 |
UpdateWallTicks();
|
|
450 |
|
|
451 |
// if power of two use shift (faster than division)
|
|
452 |
if (iMicroConvDen == 1)
|
|
453 |
{
|
|
454 |
return iWallTicks * iMicroConvNum >> iMicroConvShift;
|
|
455 |
}
|
|
456 |
return iWallTicks * iMicroConvNum / iMicroConvDen;
|
|
457 |
}
|
|
458 |
|
|
459 |
/**
|
|
460 |
*
|
|
461 |
*
|
|
462 |
*/
|
|
463 |
TBool CClockSupervisor::AllStartTimesReported ()
|
|
464 |
{
|
|
465 |
return !(static_cast<TBool>(iMediaClockState.nWaitMask));
|
|
466 |
}
|
|
467 |
|
|
468 |
/**
|
|
469 |
* Called when timer expires or is cancelled.
|
|
470 |
*
|
|
471 |
*/
|
|
472 |
TInt CClockSupervisor::ConsumeRequests()
|
|
473 |
{
|
|
474 |
// Events are consumed here only in the Running state.
|
|
475 |
// Waiting events, State change events, etc. are handled elsewhere.
|
|
476 |
// These are called broadcast events and have a higher priority
|
|
477 |
// than the request events requested by the clients.
|
|
478 |
// This function is called by the TimerLoop only.
|
|
479 |
|
|
480 |
// IMPORTANT: every code path through here must result in a call to UpdateWallTicks to ensure
|
|
481 |
// that 64-bit time is updated correctly (heartbeat interval makes sure ConsumeRequests is called
|
|
482 |
// often enough).
|
|
483 |
|
|
484 |
// Our event loop - return if stopped but not for pause (keep heart beat going)
|
|
485 |
if(OMX_TIME_ClockStateStopped != iMediaClockState.eState)
|
|
486 |
{
|
|
487 |
// Acquire the mutex
|
|
488 |
iQueMutex.Wait();
|
|
489 |
|
|
490 |
// this can be entered from the timer on heartbeat or on a call to a state change.
|
|
491 |
// Don't want this to happen on a state change!
|
|
492 |
if (OMX_TIME_ClockStateWaitingForStartTime == iMediaClockState.eState)
|
|
493 |
{
|
|
494 |
// We need to check if all clients have reported their start times
|
|
495 |
if (!AllStartTimesReported())
|
|
496 |
{
|
|
497 |
// Not all reported as yet...
|
|
498 |
UpdateWallTicks();
|
|
499 |
|
|
500 |
// Release the mutex
|
|
501 |
iQueMutex.Signal();
|
|
502 |
|
|
503 |
// wait until they have! keep heat beat going in case it takes looooong!
|
|
504 |
return iHeartbeatTimerInterval;
|
|
505 |
}
|
|
506 |
else
|
|
507 |
{
|
|
508 |
// depending on scale decide which start time to use
|
|
509 |
CalculateStartTime();
|
|
510 |
|
|
511 |
// no need to check error, we are in the waiting state
|
|
512 |
DoTransitionToRunningState();
|
|
513 |
|
|
514 |
// Now just go and send the iNext request!
|
|
515 |
}
|
|
516 |
}
|
|
517 |
|
|
518 |
///////////////////////////////
|
|
519 |
// There is a request pending !!!
|
|
520 |
//
|
|
521 |
|
|
522 |
// check the timeout period against the wall clock to determine if this is a heart beat
|
|
523 |
|
|
524 |
if(iMtc.iScaleQ16 == 0)
|
|
525 |
{
|
|
526 |
// do not pop front of the queue because we are effectively paused
|
|
527 |
UpdateWallTicks();
|
|
528 |
|
|
529 |
// Release the mutex
|
|
530 |
iQueMutex.Signal();
|
|
531 |
|
|
532 |
return iHeartbeatTimerInterval;
|
|
533 |
}
|
|
534 |
|
|
535 |
// try to pop the next pending request
|
|
536 |
TInt64 delta;
|
|
537 |
TBool present = iPendingRequestQue.FirstDelta(delta);
|
|
538 |
|
|
539 |
// Is there nothing there?
|
|
540 |
if (!present)
|
|
541 |
{
|
|
542 |
// Nothing on the queue
|
|
543 |
// Here because of heart beat
|
|
544 |
UpdateWallTicks();
|
|
545 |
|
|
546 |
// Release the mutex
|
|
547 |
iQueMutex.Signal();
|
|
548 |
|
|
549 |
return iHeartbeatTimerInterval;
|
|
550 |
}
|
|
551 |
|
|
552 |
// update the delta against clock
|
|
553 |
delta -= WallTime();
|
|
554 |
|
|
555 |
// Some time to go before head of queue should be serviced?
|
|
556 |
if (delta > KMinTimerOverhead)
|
|
557 |
{
|
|
558 |
// Release the mutex
|
|
559 |
iQueMutex.Signal();
|
|
560 |
|
|
561 |
return delta;
|
|
562 |
}
|
|
563 |
|
|
564 |
// Request timed out, delta expired!
|
|
565 |
// Fulfill the request
|
|
566 |
TMediaRequest* request = iPendingRequestQue.RemoveFirst();
|
|
567 |
|
|
568 |
// Acquire fulfillment buffer for a specific port
|
|
569 |
OMX_BUFFERHEADERTYPE* buffer = iProcessingFunction.AcquireBuffer(request->iPortIndex);
|
|
570 |
if(buffer == NULL)
|
|
571 |
{
|
|
572 |
// starved of buffers!
|
|
573 |
DEBUG_PRINTF(_L("ConsumeRequests starved of buffers, transitioning to OMX_StateInvalid"));
|
|
574 |
iThreadRunning = EFalse;
|
|
575 |
iQueMutex.Signal();
|
|
576 |
iProcessingFunction.InvalidateComponent();
|
|
577 |
return 0;
|
|
578 |
}
|
|
579 |
OMX_TIME_MEDIATIMETYPE* mT = reinterpret_cast<OMX_TIME_MEDIATIMETYPE*>(buffer->pBuffer);
|
|
580 |
buffer->nOffset = 0;
|
|
581 |
buffer->nFilledLen = sizeof(OMX_TIME_MEDIATIMETYPE);
|
|
582 |
|
|
583 |
mT->nSize = sizeof(OMX_TIME_MEDIATIMETYPE);
|
|
584 |
mT->nVersion = TOmxILSpecVersion();
|
|
585 |
mT->eUpdateType = OMX_TIME_UpdateRequestFulfillment;
|
|
586 |
mT->nClientPrivate = reinterpret_cast<OMX_U32>(request->iClientPrivate);
|
|
587 |
mT->xScale = iMtc.iScaleQ16;
|
|
588 |
mT->eState = OMX_TIME_ClockStateRunning;
|
|
589 |
mT->nMediaTimestamp = request->iMediaTime;
|
|
590 |
mT->nWallTimeAtMediaTime = request->iTriggerWallTime + request->iOffset;
|
|
591 |
mT->nOffset = mT->nWallTimeAtMediaTime - WallTime(); // could be waiting on buffer b4 this!
|
|
592 |
|
|
593 |
#ifdef _OMXIL_COMMON_DEBUG_TRACING_ON
|
|
594 |
DEBUG_PRINTF(_L8("CLOCK::ConsumeRequest*******************************OMX_TIME_UpdateRequestFulfillment***VS2"));
|
|
595 |
TTime t;
|
|
596 |
t.HomeTime();
|
|
597 |
DEBUG_PRINTF2(_L8("CLOCK::ConsumeRequest : t.HomeTime() = %ld"), t.Int64());
|
|
598 |
DEBUG_PRINTF2(_L8("CLOCK::ConsumeRequest : Buffer = 0x%X"), mT->nClientPrivate);
|
|
599 |
DEBUG_PRINTF2(_L8("CLOCK::ConsumeRequest : mT->nMediaTimestamp = %ld"), mT->nMediaTimestamp);
|
|
600 |
#endif
|
|
601 |
|
|
602 |
iProcessingFunction.SendBuffer(buffer);
|
|
603 |
|
|
604 |
// clear the delta on this now free request
|
|
605 |
request->iTriggerWallTime = 0;
|
|
606 |
|
|
607 |
// Add element back to the free pool
|
|
608 |
iFreeRequestQue.Add(request, 0);
|
|
609 |
|
|
610 |
// Release the mutex
|
|
611 |
iQueMutex.Signal();
|
|
612 |
|
|
613 |
// Update delta for next request.
|
|
614 |
// NOTE: we do not know if scale change or not so when we re-enter here
|
|
615 |
// we should recalculate the delta above and perform the appropriate action.
|
|
616 |
return 0;
|
|
617 |
}
|
|
618 |
else
|
|
619 |
{
|
|
620 |
// clock is stopped - sleep for the heartbeat interval
|
|
621 |
return iHeartbeatTimerInterval;
|
|
622 |
}
|
|
623 |
}
|
|
624 |
|
|
625 |
/**
|
|
626 |
*
|
|
627 |
*
|
|
628 |
*/
|
|
629 |
OMX_ERRORTYPE CClockSupervisor::ProduceRequest(OMX_INDEXTYPE aIndex, TEntryPoint aEntryPoint, TAny* aPassedStructPtr)
|
|
630 |
{
|
|
631 |
// Range checking on parameter/config index
|
|
632 |
if(aIndex < KMinJumpTableIndex || aIndex > KMaxJumpTableIndex)
|
|
633 |
{
|
|
634 |
return OMX_ErrorUnsupportedIndex;
|
|
635 |
}
|
|
636 |
// Note also that certain combinations on Get/Set within the supported range are unsupported.
|
|
637 |
// This is left to the function in the jump table.
|
|
638 |
|
|
639 |
// Acquire the mutex
|
|
640 |
iQueMutex.Wait();
|
|
641 |
|
|
642 |
// Index the routing table for the correct handler
|
|
643 |
FunctionPtr jumpTableFptr = iJumpTable[aIndex-KMinJumpTableIndex];
|
|
644 |
OMX_ERRORTYPE ret = (this->*jumpTableFptr)(aEntryPoint, aPassedStructPtr);
|
|
645 |
|
|
646 |
// Release the mutex
|
|
647 |
iQueMutex.Signal();
|
|
648 |
|
|
649 |
return ret;
|
|
650 |
}
|
|
651 |
|
|
652 |
|
|
653 |
/**
|
|
654 |
* According to scale, choose the earliest start time among the set of client
|
|
655 |
* start times. For forward play this is the minimum, for reverse play this is
|
|
656 |
* the maximum.
|
|
657 |
*/
|
|
658 |
void CClockSupervisor::CalculateStartTime()
|
|
659 |
{
|
|
660 |
// The nWaitMask field of the Media clock state is a bit mask specifying the client
|
|
661 |
// components that the clock component will wait on in the
|
|
662 |
// OMX_TIME_ClockStateWaitingForStartTime state. Bit masks are defined
|
|
663 |
// as OMX_CLOCKPORT0 through OMX_CLOCKPORT7.
|
|
664 |
|
|
665 |
// Based on scale locate the minimum or maximum start times of all clients
|
|
666 |
TInt64 startTime;
|
|
667 |
|
|
668 |
if (iMtc.iScaleQ16 >= 0)
|
|
669 |
{
|
|
670 |
startTime = KMaxTInt64;
|
|
671 |
|
|
672 |
// choose minimum
|
|
673 |
for (TInt portIndex = 0; portIndex < iStartTimes.Count(); portIndex++)
|
|
674 |
{
|
|
675 |
if(iStartTimesSet & (1 << portIndex))
|
|
676 |
{
|
|
677 |
startTime = Min(startTime, iStartTimes[portIndex]);
|
|
678 |
}
|
|
679 |
}
|
|
680 |
}
|
|
681 |
else
|
|
682 |
{
|
|
683 |
startTime = KMinTInt64;
|
|
684 |
|
|
685 |
// choose maximum
|
|
686 |
for (TInt portIndex = 0; portIndex < iStartTimes.Count(); portIndex++)
|
|
687 |
{
|
|
688 |
if(iStartTimesSet & (1 << portIndex))
|
|
689 |
{
|
|
690 |
startTime = Max(startTime, iStartTimes[portIndex]);
|
|
691 |
}
|
|
692 |
}
|
|
693 |
}
|
|
694 |
|
|
695 |
// adjust the media time to the new start time
|
|
696 |
UpdateMediaTime(startTime);
|
|
697 |
}
|
|
698 |
|
|
699 |
|
|
700 |
/**
|
|
701 |
* Perform actions related to placing the clock into the Stopped state
|
|
702 |
*/
|
|
703 |
void CClockSupervisor::DoTransitionToStoppedState()
|
|
704 |
{
|
|
705 |
// OMX_TIME_ClockStateStopped: Immediately stop the media clock, clear all
|
|
706 |
// pending media time requests, clear all client start times, and transition to the
|
|
707 |
// stopped state. This transition is valid from all other states.
|
|
708 |
|
|
709 |
// We should already have the mutex!
|
|
710 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
711 |
|
|
712 |
// clear any current start time
|
|
713 |
iMediaClockState.nStartTime = 0;
|
|
714 |
iMediaClockState.nWaitMask = 0;
|
|
715 |
|
|
716 |
// clear client start times
|
|
717 |
for(TInt index = 0, count = iStartTimes.Count(); index < count; index++)
|
|
718 |
{
|
|
719 |
iStartTimes[index] = 0;
|
|
720 |
}
|
|
721 |
iStartTimesSet = 0;
|
|
722 |
|
|
723 |
// clear all pending requests, placing them back on the free queue
|
|
724 |
while (!iPendingRequestQue.IsEmpty())
|
|
725 |
{
|
|
726 |
TMediaRequest* request = iPendingRequestQue.RemoveFirst();
|
|
727 |
|
|
728 |
// clear the delta on this now free request
|
|
729 |
request->iTriggerWallTime = 0;
|
|
730 |
|
|
731 |
iFreeRequestQue.Add(request,0);
|
|
732 |
}
|
|
733 |
|
|
734 |
TInt64 wallTimeNow = WallTime();
|
|
735 |
|
|
736 |
// if clock was previously running, stop the media time at the present value
|
|
737 |
if(iMediaClockState.eState == OMX_TIME_ClockStateRunning)
|
|
738 |
{
|
|
739 |
TInt64 mediaTimeNow = ((wallTimeNow - iMtc.iWallTimeBase) * iMtc.iScaleQ16 >> 16) + iMtc.iMediaTimeBase;
|
|
740 |
iMtc.iWallTimeBase = wallTimeNow;
|
|
741 |
iMtc.iMediaTimeBase = mediaTimeNow;
|
|
742 |
}
|
|
743 |
|
|
744 |
// Indicate stopped state
|
|
745 |
iMediaClockState.eState = OMX_TIME_ClockStateStopped;
|
|
746 |
|
|
747 |
// Indicate to clients a state change
|
|
748 |
OMX_TIME_MEDIATIMETYPE update;
|
|
749 |
update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE);
|
|
750 |
update.nVersion = TOmxILSpecVersion();
|
|
751 |
update.nClientPrivate = NULL;
|
|
752 |
update.eUpdateType = OMX_TIME_UpdateClockStateChanged;
|
|
753 |
update.xScale = iMtc.iScaleQ16;
|
|
754 |
update.eState = OMX_TIME_ClockStateStopped;
|
|
755 |
update.nMediaTimestamp = iMtc.iMediaTimeBase;
|
|
756 |
update.nWallTimeAtMediaTime = wallTimeNow;
|
|
757 |
update.nOffset = 0;
|
|
758 |
|
|
759 |
BroadcastUpdate(update);
|
|
760 |
}
|
|
761 |
|
|
762 |
|
|
763 |
/**
|
|
764 |
* Perform actions related to placing the clock into the Running state
|
|
765 |
*/
|
|
766 |
void CClockSupervisor::DoTransitionToRunningState()
|
|
767 |
{
|
|
768 |
// OMX_TIME_ClockStateRunning: Immediately start the media clock using the given
|
|
769 |
// start time and offset, and transition to the running state. This transition is valid from
|
|
770 |
// all other states.
|
|
771 |
|
|
772 |
// We should already have the mutex!
|
|
773 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
774 |
|
|
775 |
// if we transistioned from stopped to running then start time will be cleared.
|
|
776 |
// we only set it on transition from waiting to running
|
|
777 |
// this is enforced not by a check but by logic flow!
|
|
778 |
// If this is not the case then start time should have been cleared and we can start now!
|
|
779 |
|
|
780 |
// Indicate running state
|
|
781 |
iMediaClockState.eState = OMX_TIME_ClockStateRunning;
|
|
782 |
|
|
783 |
// Indicate to clients a state change
|
|
784 |
OMX_TIME_MEDIATIMETYPE update;
|
|
785 |
update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE);
|
|
786 |
update.nVersion = TOmxILSpecVersion();
|
|
787 |
update.nClientPrivate = NULL;
|
|
788 |
update.eUpdateType = OMX_TIME_UpdateClockStateChanged;
|
|
789 |
update.xScale = iMtc.iScaleQ16;
|
|
790 |
update.eState = iMediaClockState.eState;
|
|
791 |
update.nMediaTimestamp = iMtc.iMediaTimeBase;
|
|
792 |
update.nWallTimeAtMediaTime = iMtc.iWallTimeBase;
|
|
793 |
update.nOffset = 0;
|
|
794 |
|
|
795 |
BroadcastUpdate(update);
|
|
796 |
}
|
|
797 |
|
|
798 |
/**
|
|
799 |
* Perform actions related to placing the clock into the Waiting state
|
|
800 |
*/
|
|
801 |
void CClockSupervisor::DoTransitionToWaitingState(OMX_U32 nWaitMask)
|
|
802 |
{
|
|
803 |
// OMX_TIME_WaitingForStartTime: Transition immediately to the waiting state, wait
|
|
804 |
// for all clients specified in nWaitMask to report their start time, start the media clock
|
|
805 |
// using the minimum of all client start times and transition to
|
|
806 |
// OMX_TIME_ClockStateRunning. This transition is only valid from the
|
|
807 |
// OMX_TIME_ClockStateStopped state.
|
|
808 |
// (*Added*) If in the backwards direction start the media clock using the maximum
|
|
809 |
// of all client start times.
|
|
810 |
|
|
811 |
// validity of state transition has been checked in HandleGetSetClockState()
|
|
812 |
|
|
813 |
// We should already have the mutex!
|
|
814 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
815 |
|
|
816 |
iMediaClockState.eState = OMX_TIME_ClockStateWaitingForStartTime;
|
|
817 |
|
|
818 |
// Start times set in calling function HandleClientStartTime()
|
|
819 |
|
|
820 |
// Remember all clients that need to report their start times
|
|
821 |
iMediaClockState.nWaitMask = nWaitMask;
|
|
822 |
|
|
823 |
// Indicate to clients a state change
|
|
824 |
OMX_TIME_MEDIATIMETYPE update;
|
|
825 |
update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE);
|
|
826 |
update.nVersion = TOmxILSpecVersion();
|
|
827 |
update.nClientPrivate = NULL;
|
|
828 |
update.eUpdateType = OMX_TIME_UpdateClockStateChanged;
|
|
829 |
update.xScale = iMtc.iScaleQ16;
|
|
830 |
update.eState = OMX_TIME_ClockStateWaitingForStartTime;
|
|
831 |
update.nMediaTimestamp = iMtc.iMediaTimeBase;
|
|
832 |
update.nWallTimeAtMediaTime = WallTime();
|
|
833 |
update.nOffset = 0;
|
|
834 |
|
|
835 |
BroadcastUpdate(update);
|
|
836 |
}
|
|
837 |
|
|
838 |
|
|
839 |
/**
|
|
840 |
* Update the wall clock with the system ticks
|
|
841 |
*
|
|
842 |
*/
|
|
843 |
OMX_ERRORTYPE CClockSupervisor::HandleSubmitMediaTimeRequest(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
844 |
{
|
|
845 |
// We should already have the mutex!
|
|
846 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
847 |
|
|
848 |
// A client requests the transmission of a particular timestamp via OMX_SetConfig on its
|
|
849 |
// clock port using the OMX_IndexConfigTimeMediaTimeRequest configuration
|
|
850 |
// and structure OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE
|
|
851 |
|
|
852 |
// OMX_GetConfig doesn't make any sense for MediaTimeRequest
|
|
853 |
if(aEntry == EGetConfig)
|
|
854 |
{
|
|
855 |
return OMX_ErrorUnsupportedIndex;
|
|
856 |
}
|
|
857 |
|
|
858 |
TMediaRequest *request = iFreeRequestQue.RemoveFirst();
|
|
859 |
if(request == NULL)
|
|
860 |
{
|
|
861 |
// too many pending requests!
|
|
862 |
return OMX_ErrorInsufficientResources;
|
|
863 |
}
|
|
864 |
|
|
865 |
OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE* rT = static_cast<OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE*>(aPassedStructPtr);
|
|
866 |
|
|
867 |
request->iMediaTime = rT->nMediaTimestamp;
|
|
868 |
request->iOffset = rT->nOffset;
|
|
869 |
request->iTriggerWallTime =
|
|
870 |
((rT->nMediaTimestamp - iMtc.iMediaTimeBase) * iMtc.iInverseScaleQ16 >> 16)
|
|
871 |
+ iMtc.iWallTimeBase - rT->nOffset;
|
|
872 |
request->iPortIndex = rT->nPortIndex;
|
|
873 |
request->iClientPrivate = rT->pClientPrivate;
|
|
874 |
|
|
875 |
TInt64 prevHeadTime(0);
|
|
876 |
TBool nonEmpty = iPendingRequestQue.FirstDelta(prevHeadTime);
|
|
877 |
iPendingRequestQue.Add(request, request->iTriggerWallTime);
|
|
878 |
// Wake the thread immediately if head of queue now will complete sooner
|
|
879 |
// than it would have previously, or if the queue was empty previously.
|
|
880 |
// This causes the timing thread to recalculate the sleep time.
|
|
881 |
if(!nonEmpty || prevHeadTime > request->iTriggerWallTime)
|
|
882 |
{
|
|
883 |
TRequestStatus* status = &iCancelStatus;
|
|
884 |
iThread.RequestComplete(status, KErrCancel);
|
|
885 |
}
|
|
886 |
return OMX_ErrorNone;
|
|
887 |
}
|
|
888 |
|
|
889 |
|
|
890 |
/**
|
|
891 |
*
|
|
892 |
*
|
|
893 |
*/
|
|
894 |
OMX_ERRORTYPE CClockSupervisor::HandleQueryCurrentWallTime(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
895 |
{
|
|
896 |
// An IL client may query the current wall time via OMX_GetConfig on OMX_IndexConfigTimeCurrentWallTime.
|
|
897 |
// A client may obtain the current wall time, which is obtained via OMX_GetConfig on
|
|
898 |
// OMX_IndexConfigTimeCurrentWallTime.
|
|
899 |
|
|
900 |
// OMX_SetConfig doesn't make sense for wall time
|
|
901 |
if(aEntry == ESetConfig)
|
|
902 |
{
|
|
903 |
return OMX_ErrorUnsupportedIndex;
|
|
904 |
}
|
|
905 |
|
|
906 |
// We should already have the mutex!
|
|
907 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
908 |
|
|
909 |
OMX_TIME_CONFIG_TIMESTAMPTYPE& wallTs = *static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr);
|
|
910 |
wallTs.nTimestamp = WallTime();
|
|
911 |
return OMX_ErrorNone;
|
|
912 |
}
|
|
913 |
|
|
914 |
|
|
915 |
/**
|
|
916 |
* Calculates and returns the current media time.
|
|
917 |
*/
|
|
918 |
OMX_ERRORTYPE CClockSupervisor::HandleQueryCurrentMediaTime(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
919 |
{
|
|
920 |
// The clock component can be queried for the current media clock time using
|
|
921 |
// OMX_GetConfig with the read-only index OMX_IndexConfigTimeCurrentMediaTime and structure
|
|
922 |
// OMX_TIME_CONFIG_TIMESTAMPTYPE.
|
|
923 |
|
|
924 |
// OMX_SetConfig cannot be used for Media Time (audio or video reference updates are used instead)
|
|
925 |
if(aEntry == ESetConfig)
|
|
926 |
{
|
|
927 |
return OMX_ErrorUnsupportedIndex;
|
|
928 |
}
|
|
929 |
|
|
930 |
// We should already have the mutex!
|
|
931 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
932 |
|
|
933 |
OMX_TIME_CONFIG_TIMESTAMPTYPE* ts = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr);
|
|
934 |
if(iMediaClockState.eState == OMX_TIME_ClockStateRunning)
|
|
935 |
{
|
|
936 |
ts->nTimestamp = ((WallTime() - iMtc.iWallTimeBase) * iMtc.iScaleQ16 >> 16) + iMtc.iMediaTimeBase;
|
|
937 |
}
|
|
938 |
else
|
|
939 |
{
|
|
940 |
ts->nTimestamp = iMtc.iMediaTimeBase;
|
|
941 |
}
|
|
942 |
return OMX_ErrorNone;
|
|
943 |
}
|
|
944 |
|
|
945 |
/**
|
|
946 |
* An external component is providing an Audio reference time update.
|
|
947 |
*/
|
|
948 |
OMX_ERRORTYPE CClockSupervisor::HandleUpdateAudioReference(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
949 |
{
|
|
950 |
// The clock component can accept an audio reference clock.
|
|
951 |
// The reference clock tracks the media time at its associated component
|
|
952 |
// (i.e., the timestamp of the data currently being processed at that component)
|
|
953 |
// and provides periodic references to the clock component via OMX_SetConfig
|
|
954 |
// using OMX_IndexConfigTimeCurrentAudioReference, and structure OMX_TIME_CONFIG_TIMESTAMPTYPE
|
|
955 |
//
|
|
956 |
// When the clock component receives a reference, it updates its internally maintained
|
|
957 |
// media time with the reference. This action synchronizes the clock component with the
|
|
958 |
// component that is providing the reference clock.
|
|
959 |
|
|
960 |
// OMX_GetConfig not supported on reference time as it will generally be
|
|
961 |
// some arbitary time in the past
|
|
962 |
if(aEntry == EGetConfig)
|
|
963 |
{
|
|
964 |
return OMX_ErrorUnsupportedIndex;
|
|
965 |
}
|
|
966 |
|
|
967 |
// We should already have the mutex!
|
|
968 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
969 |
|
|
970 |
if(iActiveRefClock == OMX_TIME_RefClockAudio)
|
|
971 |
{
|
|
972 |
OMX_TIME_CONFIG_TIMESTAMPTYPE* ts = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr);
|
|
973 |
UpdateMediaTime(ts->nTimestamp);
|
|
974 |
}
|
|
975 |
|
|
976 |
return OMX_ErrorNone;
|
|
977 |
}
|
|
978 |
|
|
979 |
/**
|
|
980 |
* An external component is providing a Video reference time update.
|
|
981 |
*/
|
|
982 |
OMX_ERRORTYPE CClockSupervisor::HandleUpdateVideoReference(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
983 |
{
|
|
984 |
// The clock component can accept a video reference clock.
|
|
985 |
// The reference clock tracks the media time at its associated component
|
|
986 |
// (i.e., the timestamp of the data currently being processed at that component)
|
|
987 |
// and provides periodic references to the clock component via OMX_SetConfig
|
|
988 |
// using OMX_IndexConfigTimeCurrentVideoReference, and structure OMX_TIME_CONFIG_TIMESTAMPTYPE
|
|
989 |
//
|
|
990 |
// When the clock component receives a reference, it updates its internally maintained
|
|
991 |
// media time with the reference. This action synchronizes the clock component with the
|
|
992 |
// component that is providing the reference clock.
|
|
993 |
|
|
994 |
// OMX_GetConfig not supported on reference time as it will generally be
|
|
995 |
// some arbitary time in the past
|
|
996 |
if(aEntry == EGetConfig)
|
|
997 |
{
|
|
998 |
return OMX_ErrorUnsupportedIndex;
|
|
999 |
}
|
|
1000 |
|
|
1001 |
// We should already have the mutex!
|
|
1002 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
1003 |
|
|
1004 |
if(iActiveRefClock == OMX_TIME_RefClockVideo)
|
|
1005 |
{
|
|
1006 |
OMX_TIME_CONFIG_TIMESTAMPTYPE* ts = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr);
|
|
1007 |
UpdateMediaTime(ts->nTimestamp);
|
|
1008 |
}
|
|
1009 |
|
|
1010 |
return OMX_ErrorNone;
|
|
1011 |
}
|
|
1012 |
|
|
1013 |
/**
|
|
1014 |
*
|
|
1015 |
*
|
|
1016 |
*/
|
|
1017 |
OMX_ERRORTYPE CClockSupervisor::HandleSetPortClientStartTime(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
1018 |
{
|
|
1019 |
// We should already have the mutex!
|
|
1020 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
1021 |
|
|
1022 |
// When a clock component client receives a buffer with flag OMX_BUFFERFLAG_STARTTIME set,
|
|
1023 |
// it performs an OMX_SetConfig call with OMX_IndexConfigTimeClientStartTime
|
|
1024 |
// on the clock component that is sending the buffer’s timestamp.
|
|
1025 |
// The transmission of the start time informs the clock component that the client’s stream
|
|
1026 |
// is ready for presentation and the timestamp of the first data to be presented.
|
|
1027 |
//
|
|
1028 |
// If the IL client requests a transition to OMX_TIME_ClockStateWaitingForStartTime, it
|
|
1029 |
// designates which clock component clients to wait for. The clock component then waits
|
|
1030 |
// for these clients to send their start times via the
|
|
1031 |
// OMX_IndexConfigTimeClientStartTime configuration. Once all required
|
|
1032 |
// clients have responded, the clock component starts the media clock using the earliest
|
|
1033 |
// client start time.
|
|
1034 |
//
|
|
1035 |
// When a client is sent a start time (i.e., the timestamp of a buffer marked with the
|
|
1036 |
// OMX_BUFFERFLAG_STARTTIME flag ), it sends the start time to the clock component
|
|
1037 |
// via OMX_SetConfig on OMX_IndexConfigTimeClientStartTime. This
|
|
1038 |
// action communicates to the clock component the following information about the client’s
|
|
1039 |
// data stream:
|
|
1040 |
// - The stream is ready.
|
|
1041 |
// - The starting timestamp of the stream
|
|
1042 |
|
|
1043 |
// TODO Perhaps OMX_GetConfig can be done for client start time, after all
|
|
1044 |
// the start times on each port have been stored. But for now this is not
|
|
1045 |
// supported.
|
|
1046 |
if(aEntry == EGetConfig)
|
|
1047 |
{
|
|
1048 |
return OMX_ErrorUnsupportedIndex;
|
|
1049 |
}
|
|
1050 |
|
|
1051 |
if(iMediaClockState.eState != OMX_TIME_ClockStateWaitingForStartTime)
|
|
1052 |
{
|
|
1053 |
return OMX_ErrorIncorrectStateOperation;
|
|
1054 |
}
|
|
1055 |
|
|
1056 |
OMX_TIME_CONFIG_TIMESTAMPTYPE* state = static_cast<OMX_TIME_CONFIG_TIMESTAMPTYPE*>(aPassedStructPtr);
|
|
1057 |
iMediaClockState.nWaitMask &= ~(1 << state->nPortIndex); // switch off bit
|
|
1058 |
iStartTimesSet |= 1 << state->nPortIndex; // switch on bit
|
|
1059 |
iStartTimes[state->nPortIndex] = state->nTimestamp;
|
|
1060 |
|
|
1061 |
if(iMediaClockState.nWaitMask == 0)
|
|
1062 |
{
|
|
1063 |
// cancel timer so transition occurs immediately instead of waiting for a heartbeat
|
|
1064 |
TRequestStatus* cancelStatus = &iCancelStatus;
|
|
1065 |
iThread.RequestComplete(cancelStatus, KErrCancel);
|
|
1066 |
}
|
|
1067 |
|
|
1068 |
return OMX_ErrorNone;
|
|
1069 |
}
|
|
1070 |
|
|
1071 |
/**
|
|
1072 |
* Sets the current media time to the specified value.
|
|
1073 |
*/
|
|
1074 |
void CClockSupervisor::UpdateMediaTime(TInt64 aMediaTime)
|
|
1075 |
{
|
|
1076 |
#ifdef _OMXIL_COMMON_DEBUG_TRACING_ON
|
|
1077 |
OMX_TIME_CONFIG_TIMESTAMPTYPE ts;
|
|
1078 |
HandleQueryCurrentMediaTime(EGetConfig, &ts);
|
|
1079 |
DEBUG_PRINTF4(_L8("Clock::UpdateMediaTime=[%ld]currentmediaTime=<%d> MediaTime <%ld>"), ts.nTimestamp-aMediaTime,ts.nTimestamp, aMediaTime);
|
|
1080 |
#endif // _OMXIL_COMMON_DEBUG_TRACING_ON
|
|
1081 |
iMtc.iWallTimeBase = WallTime();
|
|
1082 |
iMtc.iMediaTimeBase = aMediaTime;
|
|
1083 |
iPendingRequestQue.RecalculateAndReorder(iMtc);
|
|
1084 |
|
|
1085 |
TRequestStatus* status = &iCancelStatus;
|
|
1086 |
iThread.RequestComplete(status, KErrCancel);
|
|
1087 |
}
|
|
1088 |
|
|
1089 |
/**
|
|
1090 |
*
|
|
1091 |
*
|
|
1092 |
*/
|
|
1093 |
OMX_ERRORTYPE CClockSupervisor::HandleGetSetTimeScale(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
1094 |
{
|
|
1095 |
// The IL client queries and sets the media clock’s scale via the
|
|
1096 |
// OMX_IndexConfigTimeScale configuration, passing structure
|
|
1097 |
// OMX_TIME_CONFIG_SCALETYPE
|
|
1098 |
|
|
1099 |
// We should already have the mutex!
|
|
1100 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
1101 |
|
|
1102 |
OMX_TIME_CONFIG_SCALETYPE* sT = static_cast<OMX_TIME_CONFIG_SCALETYPE*>(aPassedStructPtr);
|
|
1103 |
|
|
1104 |
if (EGetConfig == aEntry)
|
|
1105 |
{
|
|
1106 |
sT->xScale = iMtc.iScaleQ16;
|
|
1107 |
}
|
|
1108 |
else
|
|
1109 |
{ // ESetConfig
|
|
1110 |
|
|
1111 |
if(sT->xScale == iMtc.iScaleQ16)
|
|
1112 |
{
|
|
1113 |
// do not broadcast update if the scale changed to the same value
|
|
1114 |
// IL client causes the scale change but only IL components receive the notification
|
|
1115 |
return OMX_ErrorNone;
|
|
1116 |
}
|
|
1117 |
iMtc.SetScaleQ16(sT->xScale, WallTime());
|
|
1118 |
|
|
1119 |
// Reorder before sending notifications
|
|
1120 |
iPendingRequestQue.RecalculateAndReorder(iMtc);
|
|
1121 |
|
|
1122 |
// Indicate to clients a scale change
|
|
1123 |
// The buffer payload is written here then copied to all clients' buffers
|
|
1124 |
// It should be noted that as this is happening across all ports, time can pass
|
|
1125 |
// making nMediaTimestamp and nWallTimeAtMediaTime inaccurate. Since at present we do
|
|
1126 |
// not recover buffer exhaustion scenarios, it is assumed that the messaging time is short
|
|
1127 |
// thus we do not recalculate the time.
|
|
1128 |
|
|
1129 |
OMX_TIME_MEDIATIMETYPE update;
|
|
1130 |
update.nSize = sizeof(OMX_TIME_MEDIATIMETYPE);
|
|
1131 |
update.nVersion = TOmxILSpecVersion();
|
|
1132 |
update.nClientPrivate = NULL;
|
|
1133 |
update.eUpdateType = OMX_TIME_UpdateScaleChanged;
|
|
1134 |
update.xScale = iMtc.iScaleQ16;
|
|
1135 |
update.eState = iMediaClockState.eState;
|
|
1136 |
update.nMediaTimestamp = iMtc.iMediaTimeBase;
|
|
1137 |
update.nWallTimeAtMediaTime = iMtc.iWallTimeBase;
|
|
1138 |
update.nOffset = 0;
|
|
1139 |
|
|
1140 |
BroadcastUpdate(update);
|
|
1141 |
|
|
1142 |
// Signal the Timer thread as it may need to fulfill all requests on a direction change,
|
|
1143 |
// of fulfill some requests as we have moved forward in time
|
|
1144 |
TRequestStatus* cancelStatus = &iCancelStatus;
|
|
1145 |
iThread.RequestComplete(cancelStatus, KErrCancel);
|
|
1146 |
//******************************************
|
|
1147 |
}
|
|
1148 |
return OMX_ErrorNone;
|
|
1149 |
}
|
|
1150 |
|
|
1151 |
|
|
1152 |
/**
|
|
1153 |
*
|
|
1154 |
*
|
|
1155 |
*/
|
|
1156 |
OMX_ERRORTYPE CClockSupervisor::HandleGetSetClockState(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
1157 |
{
|
|
1158 |
// An OMX_GetConfig execution using index OMX_IndexConfigTimeClockState
|
|
1159 |
// and structure OMX_TIME_CONFIG_CLOCKSTATETYPE queries the current clock state.
|
|
1160 |
// An OMX_SetConfig execution using index OMX_IndexConfigTimeClockState
|
|
1161 |
// and structure OMX_TIME_CONFIG_CLOCKSTATETYPE commands the clock
|
|
1162 |
// component to transition to the given state, effectively providing the IL client a
|
|
1163 |
// mechanism for starting and stopping the media clock.
|
|
1164 |
//
|
|
1165 |
// Upon receiving OMX_SetConfig from the IL client that requests a transition to the
|
|
1166 |
// given state, the clock component will do the following:
|
|
1167 |
//
|
|
1168 |
// - OMX_TIME_ClockStateStopped: Immediately stop the media clock, clear all
|
|
1169 |
// pending media time requests, clear and all client start times, and transition to the
|
|
1170 |
// stopped state. This transition is valid from all other states.
|
|
1171 |
//
|
|
1172 |
// - OMX_TIME_ClockStateRunning: Immediately start the media clock using the given
|
|
1173 |
// start time and offset, and transition to the running state. This transition is valid from
|
|
1174 |
// all other states.
|
|
1175 |
//
|
|
1176 |
// - OMX_TIME_WaitingForStartTime: Transition immediately to the waiting state, wait
|
|
1177 |
// for all clients specified in nWaitMask to report their start time, start the media clock
|
|
1178 |
// using the minimum of all client start times and transition to
|
|
1179 |
// OMX_TIME_ClockStateRunning. This transition is only valid from the
|
|
1180 |
// OMX_TIME_ClockStateStopped state.
|
|
1181 |
|
|
1182 |
// We should already have the mutex!
|
|
1183 |
__ASSERT_DEBUG(iQueMutex.IsHeld(), Panic(EMutexUnheld));
|
|
1184 |
|
|
1185 |
OMX_ERRORTYPE ret = OMX_ErrorNone;
|
|
1186 |
|
|
1187 |
OMX_TIME_CONFIG_CLOCKSTATETYPE* const &clkState
|
|
1188 |
= static_cast<OMX_TIME_CONFIG_CLOCKSTATETYPE*>(aPassedStructPtr);
|
|
1189 |
|
|
1190 |
if (ESetConfig == aEntry)
|
|
1191 |
{
|
|
1192 |
if (iMediaClockState.eState == clkState->eState)
|
|
1193 |
{
|
|
1194 |
// Already in this state!
|
|
1195 |
return OMX_ErrorSameState;
|
|
1196 |
}
|
|
1197 |
if (clkState->eState != OMX_TIME_ClockStateStopped &&
|
|
1198 |
clkState->eState != OMX_TIME_ClockStateWaitingForStartTime &&
|
|
1199 |
clkState->eState != OMX_TIME_ClockStateRunning)
|
|
1200 |
{
|
|
1201 |
return OMX_ErrorUnsupportedSetting;
|
|
1202 |
}
|
|
1203 |
|
|
1204 |
// need buffers to notify clock state changes, so require to be in Executing
|
|
1205 |
if(!iProcessingFunction.IsExecuting())
|
|
1206 |
{
|
|
1207 |
return OMX_ErrorIncorrectStateOperation;
|
|
1208 |
}
|
|
1209 |
|
|
1210 |
switch (clkState->eState)
|
|
1211 |
{
|
|
1212 |
case OMX_TIME_ClockStateStopped:
|
|
1213 |
{
|
|
1214 |
DoTransitionToStoppedState();
|
|
1215 |
break;
|
|
1216 |
}
|
|
1217 |
case OMX_TIME_ClockStateWaitingForStartTime:
|
|
1218 |
{
|
|
1219 |
// Can't go into this state from Running state
|
|
1220 |
if (OMX_TIME_ClockStateRunning == iMediaClockState.eState)
|
|
1221 |
{
|
|
1222 |
ret = OMX_ErrorIncorrectStateTransition;
|
|
1223 |
break;
|
|
1224 |
}
|
|
1225 |
// Waiting for no ports makes no sense. Also don't allow wait on ports we don't have.
|
|
1226 |
if (clkState->nWaitMask == 0 || clkState->nWaitMask >= 1 << KNumPorts)
|
|
1227 |
{
|
|
1228 |
ret = OMX_ErrorUnsupportedSetting;
|
|
1229 |
break;
|
|
1230 |
}
|
|
1231 |
DoTransitionToWaitingState(clkState->nWaitMask);
|
|
1232 |
break;
|
|
1233 |
}
|
|
1234 |
case OMX_TIME_ClockStateRunning:
|
|
1235 |
{
|
|
1236 |
// set media time to that passed by the IL client
|
|
1237 |
iMtc.iWallTimeBase = WallTime();
|
|
1238 |
iMtc.iMediaTimeBase = clkState->nStartTime;
|
|
1239 |
// changed time base so pending trigger wall times may be different
|
|
1240 |
iPendingRequestQue.RecalculateAndReorder(iMtc);
|
|
1241 |
DoTransitionToRunningState();
|
|
1242 |
// wake the timer thread to reset timer or service pending updates
|
|
1243 |
TRequestStatus* statusPtr = &iCancelStatus;
|
|
1244 |
iThread.RequestComplete(statusPtr, KErrCancel);
|
|
1245 |
|
|
1246 |
break;
|
|
1247 |
}
|
|
1248 |
// default condition already checked before Executing test
|
|
1249 |
}
|
|
1250 |
}
|
|
1251 |
else
|
|
1252 |
{
|
|
1253 |
clkState->eState = iMediaClockState.eState;
|
|
1254 |
}
|
|
1255 |
|
|
1256 |
return ret;
|
|
1257 |
}
|
|
1258 |
|
|
1259 |
/**
|
|
1260 |
*
|
|
1261 |
*
|
|
1262 |
*/
|
|
1263 |
OMX_ERRORTYPE CClockSupervisor::HandleGetSetActiveRefClock(TEntryPoint aEntry, OMX_PTR aPassedStructPtr)
|
|
1264 |
{
|
|
1265 |
// The IL client controls which reference clock the clock component uses (if any) via the
|
|
1266 |
// OMX_IndexConfigTimeActiveRefClock configuration and structure OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE
|
|
1267 |
|
|
1268 |
// don't need the mutex here as just getting/setting one machine word
|
|
1269 |
|
|
1270 |
OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE& ref = *static_cast<OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE*>(aPassedStructPtr);
|
|
1271 |
|
|
1272 |
if (ESetConfig == aEntry)
|
|
1273 |
{
|
|
1274 |
if (ref.eClock != OMX_TIME_RefClockAudio &&
|
|
1275 |
ref.eClock != OMX_TIME_RefClockVideo &&
|
|
1276 |
ref.eClock != OMX_TIME_RefClockNone)
|
|
1277 |
{
|
|
1278 |
return OMX_ErrorUnsupportedSetting;
|
|
1279 |
}
|
|
1280 |
iActiveRefClock = ref.eClock;
|
|
1281 |
}
|
|
1282 |
else // EGetConfig
|
|
1283 |
{
|
|
1284 |
ref.eClock = iActiveRefClock;
|
|
1285 |
}
|
|
1286 |
return OMX_ErrorNone;
|
|
1287 |
}
|
|
1288 |
|
|
1289 |
void CClockSupervisor::BroadcastUpdate(const OMX_TIME_MEDIATIMETYPE& aUpdate)
|
|
1290 |
{
|
|
1291 |
// notify state change on all enabled ports
|
|
1292 |
for(TInt portIndex = 0; portIndex < KNumPorts; portIndex++)
|
|
1293 |
{
|
|
1294 |
if(iProcessingFunction.PortEnabled(portIndex))
|
|
1295 |
{
|
|
1296 |
OMX_BUFFERHEADERTYPE* buffer = iProcessingFunction.AcquireBuffer(portIndex);
|
|
1297 |
if(buffer == NULL)
|
|
1298 |
{
|
|
1299 |
// starved of buffers!
|
|
1300 |
iThreadRunning = EFalse;
|
|
1301 |
iProcessingFunction.InvalidateComponent();
|
|
1302 |
return;
|
|
1303 |
}
|
|
1304 |
OMX_TIME_MEDIATIMETYPE& mT = *reinterpret_cast<OMX_TIME_MEDIATIMETYPE*>(buffer->pBuffer);
|
|
1305 |
mT = aUpdate;
|
|
1306 |
buffer->nOffset = 0;
|
|
1307 |
buffer->nFilledLen = sizeof(OMX_TIME_MEDIATIMETYPE);
|
|
1308 |
iProcessingFunction.SendBuffer(buffer);
|
|
1309 |
}
|
|
1310 |
}
|
|
1311 |
}
|
|
1312 |
|
|
1313 |
void CClockSupervisor::ReportClockThreadPanic()
|
|
1314 |
{
|
|
1315 |
iThreadRunning = EFalse;
|
|
1316 |
iProcessingFunction.InvalidateComponent();
|
|
1317 |
}
|
|
1318 |
/**
|
|
1319 |
* Adjusts the media time scale.
|
|
1320 |
* The wall/media time bases are updated so there is no instantaneous change to media time.
|
|
1321 |
* iInverseScaleQ16 is also recalculated.
|
|
1322 |
*/
|
|
1323 |
void TMediaTimeContext::SetScaleQ16(TInt32 aScaleQ16, TInt64 aWallTimeNow)
|
|
1324 |
{
|
|
1325 |
TInt64 mediaTimeNow = ((aWallTimeNow - iWallTimeBase) * iScaleQ16 >> 16) + iMediaTimeBase;
|
|
1326 |
iWallTimeBase = aWallTimeNow;
|
|
1327 |
iMediaTimeBase = mediaTimeNow;
|
|
1328 |
iScaleQ16 = aScaleQ16;
|
|
1329 |
|
|
1330 |
// calculate inverse scale
|
|
1331 |
// 1.0/scale in Q16 format becomes 2^32/scaleQ16
|
|
1332 |
// values of -1 and +1 will cause overflow and are clipped
|
|
1333 |
// division by zero also yields KMaxTInt (2^31 - 1)
|
|
1334 |
if(iScaleQ16 == 0 || iScaleQ16 == 1)
|
|
1335 |
{
|
|
1336 |
iInverseScaleQ16 = 0x7FFFFFFF;
|
|
1337 |
}
|
|
1338 |
else if(iScaleQ16 == -1)
|
|
1339 |
{
|
|
1340 |
iInverseScaleQ16 = 0x80000000;
|
|
1341 |
}
|
|
1342 |
else
|
|
1343 |
{
|
|
1344 |
iInverseScaleQ16 = static_cast<TInt32>(0x100000000LL / iScaleQ16);
|
|
1345 |
}
|
|
1346 |
}
|
|
1347 |
|
|
1348 |
|
|
1349 |
TRequestDeltaQue::TRequestDeltaQue()
|
|
1350 |
: iHead(0),
|
|
1351 |
iCount(0)
|
|
1352 |
{
|
|
1353 |
// do nothing
|
|
1354 |
}
|
|
1355 |
|
|
1356 |
void TRequestDeltaQue::Add(TMediaRequest* aElement, TInt64 aDelta)
|
|
1357 |
{
|
|
1358 |
CHECK_DEBUG();
|
|
1359 |
|
|
1360 |
__ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)),
|
|
1361 |
Panic(ERequestQueueCorrupt));
|
|
1362 |
|
|
1363 |
if (!iHead)
|
|
1364 |
{
|
|
1365 |
iHead = aElement;
|
|
1366 |
aElement->iPrev = aElement;
|
|
1367 |
aElement->iNext = aElement;
|
|
1368 |
}
|
|
1369 |
else // set the new element links
|
|
1370 |
{
|
|
1371 |
TBool front(EFalse);
|
|
1372 |
TMediaRequest* item(NULL);
|
|
1373 |
front = InsertBeforeFoundPosition (aDelta, item);
|
|
1374 |
|
|
1375 |
if (front)
|
|
1376 |
{
|
|
1377 |
// insert infront BEFORE as we have the lesser delta
|
|
1378 |
// set up the element
|
|
1379 |
aElement->iPrev = item->iPrev;
|
|
1380 |
aElement->iNext = item;
|
|
1381 |
|
|
1382 |
// set up the item before in the list
|
|
1383 |
item->iPrev->iNext = aElement;
|
|
1384 |
|
|
1385 |
// set up the item after in the list
|
|
1386 |
item->iPrev = aElement;
|
|
1387 |
|
|
1388 |
// setup the new head
|
|
1389 |
iHead = aElement;
|
|
1390 |
}
|
|
1391 |
else
|
|
1392 |
{
|
|
1393 |
// insert this element AFTER the item in the list
|
|
1394 |
// set up the element
|
|
1395 |
aElement->iPrev = item;
|
|
1396 |
aElement->iNext = item->iNext;
|
|
1397 |
|
|
1398 |
// set up the item before in the list
|
|
1399 |
item->iNext = aElement;
|
|
1400 |
|
|
1401 |
// set up the item after in the list
|
|
1402 |
aElement->iNext->iPrev = aElement;
|
|
1403 |
}
|
|
1404 |
}
|
|
1405 |
iCount++;
|
|
1406 |
|
|
1407 |
#ifdef _OMXIL_COMMON_DEBUG_TRACING_ON
|
|
1408 |
// print the trigger times in debug mode
|
|
1409 |
DbgPrint();
|
|
1410 |
#endif
|
|
1411 |
|
|
1412 |
CHECK_DEBUG();
|
|
1413 |
}
|
|
1414 |
|
|
1415 |
TBool TRequestDeltaQue::InsertBeforeFoundPosition(TInt64 aDelta, TMediaRequest*& aItem) const
|
|
1416 |
{
|
|
1417 |
CHECK_DEBUG();
|
|
1418 |
|
|
1419 |
__ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)),
|
|
1420 |
Panic(ERequestQueueCorrupt));
|
|
1421 |
|
|
1422 |
// search for the position where to insert
|
|
1423 |
// and insert after this
|
|
1424 |
|
|
1425 |
aItem = iHead->iPrev; // tail
|
|
1426 |
|
|
1427 |
// start from the end and linearly work backwards
|
|
1428 |
while (aItem->iTriggerWallTime > aDelta && aItem != iHead)
|
|
1429 |
{
|
|
1430 |
aItem = aItem->iPrev;
|
|
1431 |
}
|
|
1432 |
|
|
1433 |
// indicates that we insert before the item and not after it
|
|
1434 |
if (aItem == iHead && aItem->iTriggerWallTime > aDelta)
|
|
1435 |
{
|
|
1436 |
return ETrue;
|
|
1437 |
}
|
|
1438 |
|
|
1439 |
// no CHECK_DEBUG required as this method is const
|
|
1440 |
|
|
1441 |
return EFalse;
|
|
1442 |
}
|
|
1443 |
|
|
1444 |
/**
|
|
1445 |
* If scale changes, the iTriggerWallTimes must be recalculated.
|
|
1446 |
*
|
|
1447 |
* In addition, because offset is not affected by scale, it is possible for
|
|
1448 |
* the order of the elements to change. This event is assumed to be rare, and
|
|
1449 |
* when it does occur we expect the list to remain 'roughly sorted' requiring
|
|
1450 |
* few exchanges.
|
|
1451 |
*
|
|
1452 |
* So we choose ** bubble sort **.
|
|
1453 |
*
|
|
1454 |
* Time recalculation is merged with the first pass of bubble sort. Times are
|
|
1455 |
* recalculated in the first iteration only. Swaps can occur as necessary in
|
|
1456 |
* all iterations. We expect that in most cases there will only be one pass
|
|
1457 |
* with no swaps.
|
|
1458 |
*
|
|
1459 |
* Note that bubble sort would be worst-case complexity if reversing the list
|
|
1460 |
* due to a time direction change. In such cases future requests complete
|
|
1461 |
* immediately (because they are now in the past). So we do not sort at at all
|
|
1462 |
* in this case.
|
|
1463 |
*/
|
|
1464 |
void TRequestDeltaQue::RecalculateAndReorder(TMediaTimeContext& aMtc)
|
|
1465 |
{
|
|
1466 |
CHECK_DEBUG();
|
|
1467 |
|
|
1468 |
__ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)),
|
|
1469 |
Panic(ERequestQueueCorrupt));
|
|
1470 |
|
|
1471 |
if(iCount == 0)
|
|
1472 |
{
|
|
1473 |
// nothing to do
|
|
1474 |
return;
|
|
1475 |
}
|
|
1476 |
// note if there is 1 item there is no reorder but we do need to recalculate
|
|
1477 |
|
|
1478 |
TBool swapped(EFalse);
|
|
1479 |
TBool deltaCalculated(EFalse);
|
|
1480 |
|
|
1481 |
do
|
|
1482 |
{
|
|
1483 |
// start from end of queue
|
|
1484 |
swapped = EFalse;
|
|
1485 |
TMediaRequest* item(iHead->iPrev); // tail
|
|
1486 |
|
|
1487 |
if (!deltaCalculated)
|
|
1488 |
{
|
|
1489 |
// calculate the tails new delta
|
|
1490 |
item->iTriggerWallTime =
|
|
1491 |
((item->iMediaTime - aMtc.iMediaTimeBase) * aMtc.iInverseScaleQ16 >> 16)
|
|
1492 |
+ aMtc.iWallTimeBase - item->iOffset;
|
|
1493 |
}
|
|
1494 |
|
|
1495 |
while (item != iHead)
|
|
1496 |
{
|
|
1497 |
TMediaRequest* swap = item->iPrev;
|
|
1498 |
if (!deltaCalculated)
|
|
1499 |
{
|
|
1500 |
// recalculate the Prev item delta
|
|
1501 |
swap->iTriggerWallTime =
|
|
1502 |
((swap->iMediaTime - aMtc.iMediaTimeBase) * aMtc.iInverseScaleQ16 >> 16)
|
|
1503 |
+ aMtc.iWallTimeBase - swap->iOffset;
|
|
1504 |
}
|
|
1505 |
|
|
1506 |
if (swap->iTriggerWallTime > item->iTriggerWallTime)
|
|
1507 |
{
|
|
1508 |
// switch (swap, item) for (item, swap)
|
|
1509 |
item->Deque();
|
|
1510 |
item->AddBefore(swap);
|
|
1511 |
if(swap == iHead)
|
|
1512 |
{
|
|
1513 |
iHead = item;
|
|
1514 |
}
|
|
1515 |
|
|
1516 |
swapped = ETrue;
|
|
1517 |
}
|
|
1518 |
else
|
|
1519 |
{
|
|
1520 |
// move along list
|
|
1521 |
item = item->iPrev;
|
|
1522 |
}
|
|
1523 |
|
|
1524 |
} // while
|
|
1525 |
|
|
1526 |
// after the first pass of the queue, all deltas calculated
|
|
1527 |
deltaCalculated = ETrue;
|
|
1528 |
|
|
1529 |
} while (swapped);
|
|
1530 |
|
|
1531 |
#ifdef _OMXIL_COMMON_DEBUG_TRACING_ON
|
|
1532 |
DbgPrint();
|
|
1533 |
#endif
|
|
1534 |
|
|
1535 |
CHECK_DEBUG();
|
|
1536 |
}
|
|
1537 |
|
|
1538 |
|
|
1539 |
TMediaRequest* TRequestDeltaQue::RemoveFirst()
|
|
1540 |
{
|
|
1541 |
CHECK_DEBUG();
|
|
1542 |
|
|
1543 |
__ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)),
|
|
1544 |
Panic(ERequestQueueCorrupt));
|
|
1545 |
|
|
1546 |
TMediaRequest* item = NULL;
|
|
1547 |
|
|
1548 |
// empty?
|
|
1549 |
if (!iHead)
|
|
1550 |
{
|
|
1551 |
return NULL;
|
|
1552 |
}
|
|
1553 |
else
|
|
1554 |
// only one element?
|
|
1555 |
if (1 == iCount)
|
|
1556 |
{
|
|
1557 |
item = iHead;
|
|
1558 |
iHead = NULL;
|
|
1559 |
}
|
|
1560 |
else
|
|
1561 |
{
|
|
1562 |
item = iHead;
|
|
1563 |
item->iPrev->iNext = item->iNext;
|
|
1564 |
item->iNext->iPrev = item->iPrev;
|
|
1565 |
|
|
1566 |
// setup the new head
|
|
1567 |
iHead = item->iNext;
|
|
1568 |
}
|
|
1569 |
|
|
1570 |
iCount--;
|
|
1571 |
|
|
1572 |
CHECK_DEBUG();
|
|
1573 |
|
|
1574 |
return item;
|
|
1575 |
}
|
|
1576 |
|
|
1577 |
TBool TRequestDeltaQue::FirstDelta(TInt64& aDelta) const
|
|
1578 |
{
|
|
1579 |
CHECK_DEBUG();
|
|
1580 |
|
|
1581 |
__ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)),
|
|
1582 |
Panic(ERequestQueueCorrupt));
|
|
1583 |
|
|
1584 |
if (!iHead)
|
|
1585 |
{
|
|
1586 |
return EFalse;
|
|
1587 |
}
|
|
1588 |
|
|
1589 |
aDelta = iHead->iTriggerWallTime;
|
|
1590 |
return ETrue;
|
|
1591 |
}
|
|
1592 |
|
|
1593 |
TBool TRequestDeltaQue::IsEmpty() const
|
|
1594 |
{
|
|
1595 |
__ASSERT_DEBUG(((iHead == NULL && iCount == 0) || (iHead != NULL && iCount > 0)),
|
|
1596 |
Panic(ERequestQueueCorrupt));
|
|
1597 |
|
|
1598 |
return (!iHead);
|
|
1599 |
}
|
|
1600 |
|
|
1601 |
TUint TRequestDeltaQue::Count() const
|
|
1602 |
{
|
|
1603 |
return iCount;
|
|
1604 |
}
|
|
1605 |
|
|
1606 |
void TMediaRequest::Deque()
|
|
1607 |
{
|
|
1608 |
iPrev->iNext = iNext;
|
|
1609 |
iNext->iPrev = iPrev;
|
|
1610 |
}
|
|
1611 |
|
|
1612 |
void TMediaRequest::AddBefore(TMediaRequest* x)
|
|
1613 |
{
|
|
1614 |
x->iPrev->iNext = this;
|
|
1615 |
iPrev = x->iPrev;
|
|
1616 |
iNext = x;
|
|
1617 |
x->iPrev = this;
|
|
1618 |
}
|
|
1619 |
|
|
1620 |
#ifdef _DEBUG
|
|
1621 |
|
|
1622 |
/**
|
|
1623 |
* Checks the linked list for consistency.
|
|
1624 |
*/
|
|
1625 |
void TRequestDeltaQue::DbgCheck() const
|
|
1626 |
{
|
|
1627 |
if(iCount == 0)
|
|
1628 |
{
|
|
1629 |
__ASSERT_DEBUG(iHead == NULL, Panic(ERequestQueueCorrupt));
|
|
1630 |
}
|
|
1631 |
else
|
|
1632 |
{
|
|
1633 |
TMediaRequest* last = iHead;
|
|
1634 |
TInt index = iCount - 1;
|
|
1635 |
while(index-- > 0)
|
|
1636 |
{
|
|
1637 |
TMediaRequest* current = last->iNext;
|
|
1638 |
__ASSERT_DEBUG(current->iPrev == last, Panic(ERequestQueueCorrupt));
|
|
1639 |
__ASSERT_DEBUG(current->iTriggerWallTime >= last->iTriggerWallTime, Panic(ERequestQueueUnordered));
|
|
1640 |
last = current;
|
|
1641 |
}
|
|
1642 |
__ASSERT_DEBUG(last->iNext == iHead, Panic(ERequestQueueCorrupt));
|
|
1643 |
__ASSERT_DEBUG(iHead->iPrev == last, Panic(ERequestQueueCorrupt));
|
|
1644 |
}
|
|
1645 |
}
|
|
1646 |
|
|
1647 |
#endif
|
|
1648 |
|
|
1649 |
#ifdef _OMXIL_COMMON_DEBUG_TRACING_ON
|
|
1650 |
|
|
1651 |
void TRequestDeltaQue::DbgPrint() const
|
|
1652 |
{
|
|
1653 |
TMediaRequest* x = iHead;
|
|
1654 |
TBuf8<256> msg;
|
|
1655 |
msg.Append(_L8("pending times: "));
|
|
1656 |
for(TInt index = 0; index < iCount; index++)
|
|
1657 |
{
|
|
1658 |
if(index > 0)
|
|
1659 |
{
|
|
1660 |
msg.Append(_L8(", "));
|
|
1661 |
}
|
|
1662 |
msg.AppendFormat(_L8("%ld"), x->iTriggerWallTime);
|
|
1663 |
x = x->iNext;
|
|
1664 |
}
|
|
1665 |
DEBUG_PRINTF(msg);
|
|
1666 |
}
|
|
1667 |
|
|
1668 |
#endif
|