JavaScriptCore/jit/JITArithmetic.cpp
changeset 0 4f2f89ce4247
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/JavaScriptCore/jit/JITArithmetic.cpp	Fri Sep 17 09:02:29 2010 +0300
@@ -0,0 +1,1839 @@
+/*
+ * Copyright (C) 2008 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+
+#if ENABLE(JIT)
+#if !USE(JSVALUE32_64)
+#include "JIT.h"
+
+#include "CodeBlock.h"
+#include "JITInlineMethods.h"
+#include "JITStubCall.h"
+#include "JITStubs.h"
+#include "JSArray.h"
+#include "JSFunction.h"
+#include "Interpreter.h"
+#include "ResultType.h"
+#include "SamplingTool.h"
+
+#ifndef NDEBUG
+#include <stdio.h>
+#endif
+
+using namespace std;
+
+namespace JSC {
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    emitGetVirtualRegisters(op1, regT0, op2, regT2);
+    // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT2);
+    emitFastArithImmToInt(regT0);
+    emitFastArithImmToInt(regT2);
+    lshift32(regT2, regT0);
+#if USE(JSVALUE32)
+    addSlowCase(branchAdd32(Overflow, regT0, regT0));
+    signExtend32ToPtr(regT0, regT0);
+#endif
+    emitFastArithReTagImmediate(regT0, regT0);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+#if USE(JSVALUE64)
+    UNUSED_PARAM(op1);
+    UNUSED_PARAM(op2);
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+#else
+    // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded.
+    Jump notImm1 = getSlowCase(iter);
+    Jump notImm2 = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitGetVirtualRegisters(op1, regT0, op2, regT2);
+    notImm1.link(this);
+    notImm2.link(this);
+#endif
+    JITStubCall stubCall(this, cti_op_lshift);
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(regT2);
+    stubCall.call(result);
+}
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op2)) {
+        // isOperandConstantImmediateInt(op2) => 1 SlowCase
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+        rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT2);
+        if (supportsFloatingPointTruncate()) {
+            Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
+#if USE(JSVALUE64)
+            // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
+            addSlowCase(emitJumpIfNotImmediateNumber(regT0));
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+            addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+#else
+            // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell)
+            emitJumpSlowCaseIfNotJSCell(regT0, op1);
+            addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get()));
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+            addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+            addSlowCase(branchAdd32(Overflow, regT0, regT0));
+#endif
+            lhsIsInt.link(this);
+            emitJumpSlowCaseIfNotImmediateInteger(regT2);
+        } else {
+            // !supportsFloatingPoint() => 2 SlowCases
+            emitJumpSlowCaseIfNotImmediateInteger(regT0);
+            emitJumpSlowCaseIfNotImmediateInteger(regT2);
+        }
+        emitFastArithImmToInt(regT2);
+        rshift32(regT2, regT0);
+#if USE(JSVALUE32)
+        signExtend32ToPtr(regT0, regT0);
+#endif
+    }
+#if USE(JSVALUE64)
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+    orPtr(Imm32(JSImmediate::TagTypeNumber), regT0);
+#endif
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    JITStubCall stubCall(this, cti_op_rshift);
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+    } else {
+        if (supportsFloatingPointTruncate()) {
+#if USE(JSVALUE64)
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+#else
+            linkSlowCaseIfNotJSCell(iter, op1);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+#endif
+            // We're reloading op1 to regT0 as we can no longer guarantee that
+            // we have not munged the operand.  It may have already been shifted
+            // correctly, but it still will not have been tagged.
+            stubCall.addArgument(op1, regT0);
+            stubCall.addArgument(regT2);
+        } else {
+            linkSlowCase(iter);
+            linkSlowCase(iter);
+            stubCall.addArgument(regT0);
+            stubCall.addArgument(regT2);
+        }
+    }
+
+    stubCall.call(result);
+}
+
+void JIT::emit_op_urshift(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    // Slow case of urshift makes assumptions about what registers hold the
+    // shift arguments, so any changes must be updated there as well.
+    if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitFastArithImmToInt(regT0);
+        int shift = getConstantOperand(op2).asInt32();
+        if (shift)
+            urshift32(Imm32(shift & 0x1f), regT0);
+        // unsigned shift < 0 or shift = k*2^32 may result in (essentially)
+        // a toUint conversion, which can result in a value we can represent
+        // as an immediate int.
+        if (shift < 0 || !(shift & 31))
+            addSlowCase(branch32(LessThan, regT0, Imm32(0)));
+#if USE(JSVALUE32)
+        addSlowCase(branchAdd32(Overflow, regT0, regT0));
+        signExtend32ToPtr(regT0, regT0);
+#endif
+        emitFastArithReTagImmediate(regT0, regT0);
+        emitPutVirtualRegister(dst, regT0);
+        return;
+    }
+    emitGetVirtualRegisters(op1, regT0, op2, regT1);
+    if (!isOperandConstantImmediateInt(op1))
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT1);
+    emitFastArithImmToInt(regT0);
+    emitFastArithImmToInt(regT1);
+    urshift32(regT1, regT0);
+    addSlowCase(branch32(LessThan, regT0, Imm32(0)));
+#if USE(JSVALUE32)
+    addSlowCase(branchAdd32(Overflow, regT0, regT0));
+    signExtend32ToPtr(regT0, regT0);
+#endif
+    emitFastArithReTagImmediate(regT0, regT0);
+    emitPutVirtualRegister(dst, regT0);
+}
+
+void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    if (isOperandConstantImmediateInt(op2)) {
+        int shift = getConstantOperand(op2).asInt32();
+        // op1 = regT0
+        linkSlowCase(iter); // int32 check
+#if USE(JSVALUE64)
+        if (supportsFloatingPointTruncate()) {
+            JumpList failures;
+            failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+            failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
+            if (shift)
+                urshift32(Imm32(shift & 0x1f), regT0);
+            if (shift < 0 || !(shift & 31))
+                failures.append(branch32(LessThan, regT0, Imm32(0)));
+            emitFastArithReTagImmediate(regT0, regT0);
+            emitPutVirtualRegister(dst, regT0);
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
+            failures.link(this);
+        }
+#endif // JSVALUE64
+        if (shift < 0 || !(shift & 31))
+            linkSlowCase(iter); // failed to box in hot path
+#if USE(JSVALUE32)
+        linkSlowCase(iter); // Couldn't box result
+#endif
+    } else {
+        // op1 = regT0
+        // op2 = regT1
+        if (!isOperandConstantImmediateInt(op1)) {
+            linkSlowCase(iter); // int32 check -- op1 is not an int
+#if USE(JSVALUE64)
+            if (supportsFloatingPointTruncate()) {
+                JumpList failures;
+                failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double
+                addPtr(tagTypeNumberRegister, regT0);
+                movePtrToDouble(regT0, fpRegT0);
+                failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
+                failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int
+                emitFastArithImmToInt(regT1);
+                urshift32(regT1, regT0);
+                failures.append(branch32(LessThan, regT0, Imm32(0)));
+                emitFastArithReTagImmediate(regT0, regT0);
+                emitPutVirtualRegister(dst, regT0);
+                emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
+                failures.link(this);
+            }
+#endif
+        }
+        
+        linkSlowCase(iter); // int32 check - op2 is not an int
+        linkSlowCase(iter); // Can't represent unsigned result as an immediate
+#if USE(JSVALUE32)
+        linkSlowCase(iter); // Couldn't box result
+#endif
+    }
+    
+    JITStubCall stubCall(this, cti_op_urshift);
+    stubCall.addArgument(op1, regT0);
+    stubCall.addArgument(op2, regT1);
+    stubCall.call(dst);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the fast path:
+    // - int immediate to constant int immediate
+    // - constant int immediate to int immediate
+    // - int immediate to int immediate
+
+    if (isOperandConstantImmediateChar(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        addSlowCase(emitJumpIfNotJSCell(regT0));
+        JumpList failures;
+        emitLoadCharacterString(regT0, regT0, failures);
+        addSlowCase(failures);
+        addJump(branch32(LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
+        return;
+    }
+    if (isOperandConstantImmediateChar(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        addSlowCase(emitJumpIfNotJSCell(regT0));
+        JumpList failures;
+        emitLoadCharacterString(regT0, regT0, failures);
+        addSlowCase(failures);
+        addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
+        return;
+    }
+    if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+        int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+        addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
+    } else if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+        int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+        int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+        addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+        addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
+    }
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the slow path:
+    // - floating-point number to constant int immediate
+    // - constant int immediate to floating-point number
+    // - floating-point number to floating-point number.
+    if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(op1, regT0);
+        stubCall.addArgument(op2, regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+        return;
+    }
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+            int32_t op2imm = getConstantOperand(op2).asInt32();;
+
+            move(Imm32(op2imm), regT1);
+            convertInt32ToDouble(regT1, fpRegT1);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+    } else if (isOperandConstantImmediateInt(op1)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            int32_t op1imm = getConstantOperand(op1).asInt32();;
+
+            move(Imm32(op1imm), regT0);
+            convertInt32ToDouble(regT0, fpRegT0);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+    } else {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+            Jump fail3 = emitJumpIfImmediateInteger(regT1);
+            addPtr(tagTypeNumberRegister, regT0);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT0, fpRegT0);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+            Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+            fail2.link(this);
+            fail3.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2.link(this);
+            fail3.link(this);
+            fail4.link(this);
+#endif
+        }
+
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+    }
+}
+
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the fast path:
+    // - int immediate to constant int immediate
+    // - constant int immediate to int immediate
+    // - int immediate to int immediate
+
+    if (isOperandConstantImmediateChar(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        addSlowCase(emitJumpIfNotJSCell(regT0));
+        JumpList failures;
+        emitLoadCharacterString(regT0, regT0, failures);
+        addSlowCase(failures);
+        addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
+        return;
+    }
+    if (isOperandConstantImmediateChar(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        addSlowCase(emitJumpIfNotJSCell(regT0));
+        JumpList failures;
+        emitLoadCharacterString(regT0, regT0, failures);
+        addSlowCase(failures);
+        addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
+        return;
+    }
+    if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+        int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+        addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
+    } else if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+        int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+        int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+        addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+        addJump(branch32(LessThan, regT0, regT1), target);
+    }
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the slow path:
+    // - floating-point number to constant int immediate
+    // - constant int immediate to floating-point number
+    // - floating-point number to floating-point number.
+    if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(op1, regT0);
+        stubCall.addArgument(op2, regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+        return;
+    }
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+            int32_t op2imm = getConstantOperand(op2).asInt32();
+
+            move(Imm32(op2imm), regT1);
+            convertInt32ToDouble(regT1, fpRegT1);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+    } else if (isOperandConstantImmediateInt(op1)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            int32_t op1imm = getConstantOperand(op1).asInt32();
+
+            move(Imm32(op1imm), regT0);
+            convertInt32ToDouble(regT0, fpRegT0);
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+    } else {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+            Jump fail3 = emitJumpIfImmediateInteger(regT1);
+            addPtr(tagTypeNumberRegister, regT0);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT0, fpRegT0);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+            Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+            fail2.link(this);
+            fail3.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2.link(this);
+            fail3.link(this);
+            fail4.link(this);
+#endif
+        }
+
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jless);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+    }
+}
+
+void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the fast path:
+    // - int immediate to constant int immediate
+    // - constant int immediate to int immediate
+    // - int immediate to int immediate
+
+    if (isOperandConstantImmediateChar(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        addSlowCase(emitJumpIfNotJSCell(regT0));
+        JumpList failures;
+        emitLoadCharacterString(regT0, regT0, failures);
+        addSlowCase(failures);
+        addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
+        return;
+    }
+    if (isOperandConstantImmediateChar(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        addSlowCase(emitJumpIfNotJSCell(regT0));
+        JumpList failures;
+        emitLoadCharacterString(regT0, regT0, failures);
+        addSlowCase(failures);
+        addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
+        return;
+    }
+    if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+        int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+        addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(op2imm)), target);
+    } else if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+        int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+        int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+        addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT1, Imm32(op1imm)), target);
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT1);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+        addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT1), target);
+    }
+}
+
+void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool invert)
+{
+    unsigned op1 = currentInstruction[1].u.operand;
+    unsigned op2 = currentInstruction[2].u.operand;
+    unsigned target = currentInstruction[3].u.operand;
+
+    // We generate inline code for the following cases in the slow path:
+    // - floating-point number to constant int immediate
+    // - constant int immediate to floating-point number
+    // - floating-point number to floating-point number.
+
+    if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jlesseq);
+        stubCall.addArgument(op1, regT0);
+        stubCall.addArgument(op2, regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+        return;
+    }
+
+    if (isOperandConstantImmediateInt(op2)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            addPtr(tagTypeNumberRegister, regT0);
+            movePtrToDouble(regT0, fpRegT0);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+            int32_t op2imm = getConstantOperand(op2).asInt32();;
+
+            move(Imm32(op2imm), regT1);
+            convertInt32ToDouble(regT1, fpRegT1);
+
+            emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jlesseq);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+
+    } else if (isOperandConstantImmediateInt(op1)) {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            int32_t op1imm = getConstantOperand(op1).asInt32();;
+
+            move(Imm32(op1imm), regT0);
+            convertInt32ToDouble(regT0, fpRegT0);
+
+            emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail1.link(this);
+            fail2.link(this);
+#endif
+        }
+
+        JITStubCall stubCall(this, cti_op_jlesseq);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+
+    } else {
+        linkSlowCase(iter);
+
+        if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+            Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+            Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+            Jump fail3 = emitJumpIfImmediateInteger(regT1);
+            addPtr(tagTypeNumberRegister, regT0);
+            addPtr(tagTypeNumberRegister, regT1);
+            movePtrToDouble(regT0, fpRegT0);
+            movePtrToDouble(regT1, fpRegT1);
+#else
+            Jump fail1;
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1 = emitJumpIfNotJSCell(regT0);
+
+            Jump fail2;
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2 = emitJumpIfNotJSCell(regT1);
+
+            Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+            Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+            loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+            loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+            emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target);
+
+            emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+            fail1.link(this);
+            fail2.link(this);
+            fail3.link(this);
+#else
+            if (!m_codeBlock->isKnownNotImmediate(op1))
+                fail1.link(this);
+            if (!m_codeBlock->isKnownNotImmediate(op2))
+                fail2.link(this);
+            fail3.link(this);
+            fail4.link(this);
+#endif
+        }
+
+        linkSlowCase(iter);
+        JITStubCall stubCall(this, cti_op_jlesseq);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(regT1);
+        stubCall.call();
+        emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
+    }
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+    emit_op_jlesseq(currentInstruction, true);
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    emitSlow_op_jlesseq(currentInstruction, iter, true);
+}
+
+void JIT::emit_op_bitand(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t imm = getConstantOperandImmediateInt(op1);
+        andPtr(Imm32(imm), regT0);
+        if (imm >= 0)
+            emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+        andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), regT0);
+#endif
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+        int32_t imm = getConstantOperandImmediateInt(op2);
+        andPtr(Imm32(imm), regT0);
+        if (imm >= 0)
+            emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+        andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), regT0);
+#endif
+    } else {
+        emitGetVirtualRegisters(op1, regT0, op2, regT1);
+        andPtr(regT1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    }
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    linkSlowCase(iter);
+    if (isOperandConstantImmediateInt(op1)) {
+        JITStubCall stubCall(this, cti_op_bitand);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT0);
+        stubCall.call(result);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        JITStubCall stubCall(this, cti_op_bitand);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+    } else {
+        JITStubCall stubCall(this, cti_op_bitand);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT1);
+        stubCall.call(result);
+    }
+}
+
+void JIT::emit_op_post_inc(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    move(regT0, regT1);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchAdd32(Overflow, Imm32(1), regT1));
+    emitFastArithIntToImmNoCheck(regT1, regT1);
+#else
+    addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
+    signExtend32ToPtr(regT1, regT1);
+#endif
+    emitPutVirtualRegister(srcDst, regT1);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    JITStubCall stubCall(this, cti_op_post_inc);
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(Imm32(srcDst));
+    stubCall.call(result);
+}
+
+void JIT::emit_op_post_dec(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    move(regT0, regT1);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchSub32(Zero, Imm32(1), regT1));
+    emitFastArithIntToImmNoCheck(regT1, regT1);
+#else
+    addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
+    signExtend32ToPtr(regT1, regT1);
+#endif
+    emitPutVirtualRegister(srcDst, regT1);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned srcDst = currentInstruction[2].u.operand;
+
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    JITStubCall stubCall(this, cti_op_post_dec);
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(Imm32(srcDst));
+    stubCall.call(result);
+}
+
+void JIT::emit_op_pre_inc(Instruction* currentInstruction)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+    addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
+    signExtend32ToPtr(regT0, regT0);
+#endif
+    emitPutVirtualRegister(srcDst);
+}
+
+void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    Jump notImm = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitGetVirtualRegister(srcDst, regT0);
+    notImm.link(this);
+    JITStubCall stubCall(this, cti_op_pre_inc);
+    stubCall.addArgument(regT0);
+    stubCall.call(srcDst);
+}
+
+void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    emitGetVirtualRegister(srcDst, regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+    addSlowCase(branchSub32(Zero, Imm32(1), regT0));
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+    addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
+    signExtend32ToPtr(regT0, regT0);
+#endif
+    emitPutVirtualRegister(srcDst);
+}
+
+void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned srcDst = currentInstruction[1].u.operand;
+
+    Jump notImm = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitGetVirtualRegister(srcDst, regT0);
+    notImm.link(this);
+    JITStubCall stubCall(this, cti_op_pre_dec);
+    stubCall.addArgument(regT0);
+    stubCall.call(srcDst);
+}
+
+/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
+
+#if CPU(X86) || CPU(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx);
+    emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax);
+    emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx);
+#if USE(JSVALUE64)
+    addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))));
+    m_assembler.cdq();
+    m_assembler.idivl_r(X86Registers::ecx);
+#else
+    emitFastArithDeTagImmediate(X86Registers::eax);
+    addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx));
+    m_assembler.cdq();
+    m_assembler.idivl_r(X86Registers::ecx);
+    signExtend32ToPtr(X86Registers::edx, X86Registers::edx);
+#endif
+    emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+
+#if USE(JSVALUE64)
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+#else
+    Jump notImm1 = getSlowCase(iter);
+    Jump notImm2 = getSlowCase(iter);
+    linkSlowCase(iter);
+    emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax);
+    emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx);
+    notImm1.link(this);
+    notImm2.link(this);
+#endif
+    JITStubCall stubCall(this, cti_op_mod);
+    stubCall.addArgument(X86Registers::eax);
+    stubCall.addArgument(X86Registers::ecx);
+    stubCall.call(result);
+}
+
+#else // CPU(X86) || CPU(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+#if ENABLE(JIT_OPTIMIZE_MOD)
+    emitGetVirtualRegisters(op1, regT0, op2, regT2);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT2);
+
+    addSlowCase(branch32(Equal, regT2, Imm32(1)));
+
+    emitNakedCall(m_globalData->jitStubs->ctiSoftModulo());
+
+    emitPutVirtualRegister(result, regT0);
+#else
+    JITStubCall stubCall(this, cti_op_mod);
+    stubCall.addArgument(op1, regT2);
+    stubCall.addArgument(op2, regT2);
+    stubCall.call(result);
+#endif
+}
+
+void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+#if ENABLE(JIT_OPTIMIZE_MOD)
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    linkSlowCase(iter);
+    JITStubCall stubCall(this, cti_op_mod);
+    stubCall.addArgument(op1, regT2);
+    stubCall.addArgument(op2, regT2);
+    stubCall.call(result);
+#else
+    ASSERT_NOT_REACHED();
+#endif
+}
+
+#endif // CPU(X86) || CPU(X86_64)
+
+/* ------------------------------ END: OP_MOD ------------------------------ */
+
+#if USE(JSVALUE64)
+
+/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
+
+void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
+{
+    emitGetVirtualRegisters(op1, regT0, op2, regT1);
+    emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    emitJumpSlowCaseIfNotImmediateInteger(regT1);
+    if (opcodeID == op_add)
+        addSlowCase(branchAdd32(Overflow, regT1, regT0));
+    else if (opcodeID == op_sub)
+        addSlowCase(branchSub32(Overflow, regT1, regT0));
+    else {
+        ASSERT(opcodeID == op_mul);
+        addSlowCase(branchMul32(Overflow, regT1, regT0));
+        addSlowCase(branchTest32(Zero, regT0));
+    }
+    emitFastArithIntToImmNoCheck(regT0, regT0);
+}
+
+void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
+{
+    // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
+    COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
+
+    Jump notImm1;
+    Jump notImm2;
+    if (op1HasImmediateIntFastCase) {
+        notImm2 = getSlowCase(iter);
+    } else if (op2HasImmediateIntFastCase) {
+        notImm1 = getSlowCase(iter);
+    } else {
+        notImm1 = getSlowCase(iter);
+        notImm2 = getSlowCase(iter);
+    }
+
+    linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
+    if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
+        linkSlowCase(iter);
+    emitGetVirtualRegister(op1, regT0);
+
+    Label stubFunctionCall(this);
+    JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
+    if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
+        emitGetVirtualRegister(op1, regT0);
+        emitGetVirtualRegister(op2, regT1);
+    }
+    stubCall.addArgument(regT0);
+    stubCall.addArgument(regT1);
+    stubCall.call(result);
+    Jump end = jump();
+
+    if (op1HasImmediateIntFastCase) {
+        notImm2.link(this);
+        if (!types.second().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+        emitGetVirtualRegister(op1, regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT2);
+    } else if (op2HasImmediateIntFastCase) {
+        notImm1.link(this);
+        if (!types.first().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+        emitGetVirtualRegister(op2, regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT2);
+    } else {
+        // if we get here, eax is not an int32, edx not yet checked.
+        notImm1.link(this);
+        if (!types.first().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+        if (!types.second().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT1);
+        Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
+        convertInt32ToDouble(regT1, fpRegT2);
+        Jump op2wasInteger = jump();
+
+        // if we get here, eax IS an int32, edx is not.
+        notImm2.link(this);
+        if (!types.second().definitelyIsNumber())
+            emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+        convertInt32ToDouble(regT0, fpRegT1);
+        op2isDouble.link(this);
+        addPtr(tagTypeNumberRegister, regT1);
+        movePtrToDouble(regT1, fpRegT2);
+        op2wasInteger.link(this);
+    }
+
+    if (opcodeID == op_add)
+        addDouble(fpRegT2, fpRegT1);
+    else if (opcodeID == op_sub)
+        subDouble(fpRegT2, fpRegT1);
+    else if (opcodeID == op_mul)
+        mulDouble(fpRegT2, fpRegT1);
+    else {
+        ASSERT(opcodeID == op_div);
+        divDouble(fpRegT2, fpRegT1);
+    }
+    moveDoubleToPtr(fpRegT1, regT0);
+    subPtr(tagTypeNumberRegister, regT0);
+    emitPutVirtualRegister(result, regT0);
+
+    end.link(this);
+}
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+        return;
+    }
+
+    if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0));
+        emitFastArithIntToImmNoCheck(regT0, regT0);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0));
+        emitFastArithIntToImmNoCheck(regT0, regT0);
+    } else
+        compileBinaryArithOp(op_add, result, op1, op2, types);
+
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+        return;
+
+    bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
+    bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
+    compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+}
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    // For now, only plant a fast int case if the constant operand is greater than zero.
+    int32_t value;
+    if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        emitFastArithReTagImmediate(regT0, regT0);
+    } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        emitFastArithReTagImmediate(regT0, regT0);
+    } else
+        compileBinaryArithOp(op_mul, result, op1, op2, types);
+
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
+    bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
+    compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
+}
+
+void JIT::emit_op_div(Instruction* currentInstruction)
+{
+    unsigned dst = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (isOperandConstantImmediateDouble(op1)) {
+        emitGetVirtualRegister(op1, regT0);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT0);
+    } else if (isOperandConstantImmediateInt(op1)) {
+        emitLoadInt32ToDouble(op1, fpRegT0);
+    } else {
+        emitGetVirtualRegister(op1, regT0);
+        if (!types.first().definitelyIsNumber())
+            emitJumpSlowCaseIfNotImmediateNumber(regT0);
+        Jump notInt = emitJumpIfNotImmediateInteger(regT0);
+        convertInt32ToDouble(regT0, fpRegT0);
+        Jump skipDoubleLoad = jump();
+        notInt.link(this);
+        addPtr(tagTypeNumberRegister, regT0);
+        movePtrToDouble(regT0, fpRegT0);
+        skipDoubleLoad.link(this);
+    }
+
+    if (isOperandConstantImmediateDouble(op2)) {
+        emitGetVirtualRegister(op2, regT1);
+        addPtr(tagTypeNumberRegister, regT1);
+        movePtrToDouble(regT1, fpRegT1);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitLoadInt32ToDouble(op2, fpRegT1);
+    } else {
+        emitGetVirtualRegister(op2, regT1);
+        if (!types.second().definitelyIsNumber())
+            emitJumpSlowCaseIfNotImmediateNumber(regT1);
+        Jump notInt = emitJumpIfNotImmediateInteger(regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        Jump skipDoubleLoad = jump();
+        notInt.link(this);
+        addPtr(tagTypeNumberRegister, regT1);
+        movePtrToDouble(regT1, fpRegT1);
+        skipDoubleLoad.link(this);
+    }
+    divDouble(fpRegT1, fpRegT0);
+
+    // Double result.
+    moveDoubleToPtr(fpRegT0, regT0);
+    subPtr(tagTypeNumberRegister, regT0);
+
+    emitPutVirtualRegister(dst, regT0);
+}
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+    if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
+#ifndef NDEBUG
+        breakpoint();
+#endif
+        return;
+    }
+    if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
+        if (!types.first().definitelyIsNumber())
+            linkSlowCase(iter);
+    }
+    if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) {
+        if (!types.second().definitelyIsNumber())
+            linkSlowCase(iter);
+    }
+    // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
+    JITStubCall stubCall(this, cti_op_div);
+    stubCall.addArgument(op1, regT2);
+    stubCall.addArgument(op2, regT2);
+    stubCall.call(result);
+}
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    compileBinaryArithOp(op_sub, result, op1, op2, types);
+    emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
+}
+
+#else // USE(JSVALUE64)
+
+/* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
+
+void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
+{
+    Structure* numberStructure = m_globalData->numberStructure.get();
+    Jump wasJSNumberCell1;
+    Jump wasJSNumberCell2;
+
+    emitGetVirtualRegisters(src1, regT0, src2, regT1);
+
+    if (types.second().isReusable() && supportsFloatingPoint()) {
+        ASSERT(types.second().mightBeNumber());
+
+        // Check op2 is a number
+        Jump op2imm = emitJumpIfImmediateInteger(regT1);
+        if (!types.second().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT1, src2);
+            addSlowCase(checkStructure(regT1, numberStructure));
+        }
+
+        // (1) In this case src2 is a reusable number cell.
+        //     Slow case if src1 is not a number type.
+        Jump op1imm = emitJumpIfImmediateInteger(regT0);
+        if (!types.first().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT0, src1);
+            addSlowCase(checkStructure(regT0, numberStructure));
+        }
+
+        // (1a) if we get here, src1 is also a number cell
+        loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        Jump loadedDouble = jump();
+        // (1b) if we get here, src1 is an immediate
+        op1imm.link(this);
+        emitFastArithImmToInt(regT0);
+        convertInt32ToDouble(regT0, fpRegT0);
+        // (1c)
+        loadedDouble.link(this);
+        if (opcodeID == op_add)
+            addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        else if (opcodeID == op_sub)
+            subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        else {
+            ASSERT(opcodeID == op_mul);
+            mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        }
+
+        // Store the result to the JSNumberCell and jump.
+        storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+        move(regT1, regT0);
+        emitPutVirtualRegister(dst);
+        wasJSNumberCell2 = jump();
+
+        // (2) This handles cases where src2 is an immediate number.
+        //     Two slow cases - either src1 isn't an immediate, or the subtract overflows.
+        op2imm.link(this);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+    } else if (types.first().isReusable() && supportsFloatingPoint()) {
+        ASSERT(types.first().mightBeNumber());
+
+        // Check op1 is a number
+        Jump op1imm = emitJumpIfImmediateInteger(regT0);
+        if (!types.first().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT0, src1);
+            addSlowCase(checkStructure(regT0, numberStructure));
+        }
+
+        // (1) In this case src1 is a reusable number cell.
+        //     Slow case if src2 is not a number type.
+        Jump op2imm = emitJumpIfImmediateInteger(regT1);
+        if (!types.second().definitelyIsNumber()) {
+            emitJumpSlowCaseIfNotJSCell(regT1, src2);
+            addSlowCase(checkStructure(regT1, numberStructure));
+        }
+
+        // (1a) if we get here, src2 is also a number cell
+        loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+        Jump loadedDouble = jump();
+        // (1b) if we get here, src2 is an immediate
+        op2imm.link(this);
+        emitFastArithImmToInt(regT1);
+        convertInt32ToDouble(regT1, fpRegT1);
+        // (1c)
+        loadedDouble.link(this);
+        loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+        if (opcodeID == op_add)
+            addDouble(fpRegT1, fpRegT0);
+        else if (opcodeID == op_sub)
+            subDouble(fpRegT1, fpRegT0);
+        else {
+            ASSERT(opcodeID == op_mul);
+            mulDouble(fpRegT1, fpRegT0);
+        }
+        storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+        emitPutVirtualRegister(dst);
+
+        // Store the result to the JSNumberCell and jump.
+        storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+        emitPutVirtualRegister(dst);
+        wasJSNumberCell1 = jump();
+
+        // (2) This handles cases where src1 is an immediate number.
+        //     Two slow cases - either src2 isn't an immediate, or the subtract overflows.
+        op1imm.link(this);
+        emitJumpSlowCaseIfNotImmediateInteger(regT1);
+    } else
+        emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
+
+    if (opcodeID == op_add) {
+        emitFastArithDeTagImmediate(regT0);
+        addSlowCase(branchAdd32(Overflow, regT1, regT0));
+    } else  if (opcodeID == op_sub) {
+        addSlowCase(branchSub32(Overflow, regT1, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+    } else {
+        ASSERT(opcodeID == op_mul);
+        // convert eax & edx from JSImmediates to ints, and check if either are zero
+        emitFastArithImmToInt(regT1);
+        Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0);
+        Jump op2NonZero = branchTest32(NonZero, regT1);
+        op1Zero.link(this);
+        // if either input is zero, add the two together, and check if the result is < 0.
+        // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate.
+        move(regT0, regT2);
+        addSlowCase(branchAdd32(Signed, regT1, regT2));
+        // Skip the above check if neither input is zero
+        op2NonZero.link(this);
+        addSlowCase(branchMul32(Overflow, regT1, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+    }
+    emitPutVirtualRegister(dst);
+
+    if (types.second().isReusable() && supportsFloatingPoint())
+        wasJSNumberCell2.link(this);
+    else if (types.first().isReusable() && supportsFloatingPoint())
+        wasJSNumberCell1.link(this);
+}
+
+void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
+{
+    linkSlowCase(iter);
+    if (types.second().isReusable() && supportsFloatingPoint()) {
+        if (!types.first().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src1);
+            linkSlowCase(iter);
+        }
+        if (!types.second().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src2);
+            linkSlowCase(iter);
+        }
+    } else if (types.first().isReusable() && supportsFloatingPoint()) {
+        if (!types.first().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src1);
+            linkSlowCase(iter);
+        }
+        if (!types.second().definitelyIsNumber()) {
+            linkSlowCaseIfNotJSCell(iter, src2);
+            linkSlowCase(iter);
+        }
+    }
+    linkSlowCase(iter);
+
+    // additional entry point to handle -0 cases.
+    if (opcodeID == op_mul)
+        linkSlowCase(iter);
+
+    JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
+    stubCall.addArgument(src1, regT2);
+    stubCall.addArgument(src2, regT2);
+    stubCall.call(dst);
+}
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+        return;
+    }
+
+    if (isOperandConstantImmediateInt(op1)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else {
+        compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
+    }
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+    if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+        return;
+
+    if (isOperandConstantImmediateInt(op1)) {
+        Jump notImm = getSlowCase(iter);
+        linkSlowCase(iter);
+        sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0);
+        notImm.link(this);
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(regT0);
+        stubCall.call(result);
+    } else if (isOperandConstantImmediateInt(op2)) {
+        Jump notImm = getSlowCase(iter);
+        linkSlowCase(iter);
+        sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0);
+        notImm.link(this);
+        JITStubCall stubCall(this, cti_op_add);
+        stubCall.addArgument(regT0);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+    } else {
+        OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+        ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber());
+        compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types);
+    }
+}
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    // For now, only plant a fast int case if the constant operand is greater than zero.
+    int32_t value;
+    if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
+        emitGetVirtualRegister(op2, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitFastArithDeTagImmediate(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
+        emitGetVirtualRegister(op1, regT0);
+        emitJumpSlowCaseIfNotImmediateInteger(regT0);
+        emitFastArithDeTagImmediate(regT0);
+        addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+        signExtend32ToPtr(regT0, regT0);
+        emitFastArithReTagImmediate(regT0, regT0);
+        emitPutVirtualRegister(result);
+    } else
+        compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    unsigned result = currentInstruction[1].u.operand;
+    unsigned op1 = currentInstruction[2].u.operand;
+    unsigned op2 = currentInstruction[3].u.operand;
+
+    if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0))
+        || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) {
+        linkSlowCase(iter);
+        linkSlowCase(iter);
+        // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
+        JITStubCall stubCall(this, cti_op_mul);
+        stubCall.addArgument(op1, regT2);
+        stubCall.addArgument(op2, regT2);
+        stubCall.call(result);
+    } else
+        compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+    compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+    compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
+}
+
+#endif // USE(JSVALUE64)
+
+/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
+
+} // namespace JSC
+
+#endif // !USE(JSVALUE32_64)
+#endif // ENABLE(JIT)