diff -r 000000000000 -r 4f2f89ce4247 JavaScriptCore/jit/JITArithmetic.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/JavaScriptCore/jit/JITArithmetic.cpp Fri Sep 17 09:02:29 2010 +0300 @@ -0,0 +1,1839 @@ +/* + * Copyright (C) 2008 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" + +#if ENABLE(JIT) +#if !USE(JSVALUE32_64) +#include "JIT.h" + +#include "CodeBlock.h" +#include "JITInlineMethods.h" +#include "JITStubCall.h" +#include "JITStubs.h" +#include "JSArray.h" +#include "JSFunction.h" +#include "Interpreter.h" +#include "ResultType.h" +#include "SamplingTool.h" + +#ifndef NDEBUG +#include +#endif + +using namespace std; + +namespace JSC { + +void JIT::emit_op_lshift(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + emitGetVirtualRegisters(op1, regT0, op2, regT2); + // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + emitFastArithImmToInt(regT0); + emitFastArithImmToInt(regT2); + lshift32(regT2, regT0); +#if USE(JSVALUE32) + addSlowCase(branchAdd32(Overflow, regT0, regT0)); + signExtend32ToPtr(regT0, regT0); +#endif + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + +#if USE(JSVALUE64) + UNUSED_PARAM(op1); + UNUSED_PARAM(op2); + linkSlowCase(iter); + linkSlowCase(iter); +#else + // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded. + Jump notImm1 = getSlowCase(iter); + Jump notImm2 = getSlowCase(iter); + linkSlowCase(iter); + emitGetVirtualRegisters(op1, regT0, op2, regT2); + notImm1.link(this); + notImm2.link(this); +#endif + JITStubCall stubCall(this, cti_op_lshift); + stubCall.addArgument(regT0); + stubCall.addArgument(regT2); + stubCall.call(result); +} + +void JIT::emit_op_rshift(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op2)) { + // isOperandConstantImmediateInt(op2) => 1 SlowCase + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + // Mask with 0x1f as per ecma-262 11.7.2 step 7. + rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT2); + if (supportsFloatingPointTruncate()) { + Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); +#if USE(JSVALUE64) + // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases + addSlowCase(emitJumpIfNotImmediateNumber(regT0)); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); +#else + // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell) + emitJumpSlowCaseIfNotJSCell(regT0, op1); + addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get())); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); + addSlowCase(branchAdd32(Overflow, regT0, regT0)); +#endif + lhsIsInt.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } else { + // !supportsFloatingPoint() => 2 SlowCases + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } + emitFastArithImmToInt(regT2); + rshift32(regT2, regT0); +#if USE(JSVALUE32) + signExtend32ToPtr(regT0, regT0); +#endif + } +#if USE(JSVALUE64) + emitFastArithIntToImmNoCheck(regT0, regT0); +#else + orPtr(Imm32(JSImmediate::TagTypeNumber), regT0); +#endif + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + JITStubCall stubCall(this, cti_op_rshift); + + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + } else { + if (supportsFloatingPointTruncate()) { +#if USE(JSVALUE64) + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); +#else + linkSlowCaseIfNotJSCell(iter, op1); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); +#endif + // We're reloading op1 to regT0 as we can no longer guarantee that + // we have not munged the operand. It may have already been shifted + // correctly, but it still will not have been tagged. + stubCall.addArgument(op1, regT0); + stubCall.addArgument(regT2); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + stubCall.addArgument(regT0); + stubCall.addArgument(regT2); + } + } + + stubCall.call(result); +} + +void JIT::emit_op_urshift(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + // Slow case of urshift makes assumptions about what registers hold the + // shift arguments, so any changes must be updated there as well. + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitFastArithImmToInt(regT0); + int shift = getConstantOperand(op2).asInt32(); + if (shift) + urshift32(Imm32(shift & 0x1f), regT0); + // unsigned shift < 0 or shift = k*2^32 may result in (essentially) + // a toUint conversion, which can result in a value we can represent + // as an immediate int. + if (shift < 0 || !(shift & 31)) + addSlowCase(branch32(LessThan, regT0, Imm32(0))); +#if USE(JSVALUE32) + addSlowCase(branchAdd32(Overflow, regT0, regT0)); + signExtend32ToPtr(regT0, regT0); +#endif + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); + return; + } + emitGetVirtualRegisters(op1, regT0, op2, regT1); + if (!isOperandConstantImmediateInt(op1)) + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + emitFastArithImmToInt(regT0); + emitFastArithImmToInt(regT1); + urshift32(regT1, regT0); + addSlowCase(branch32(LessThan, regT0, Imm32(0))); +#if USE(JSVALUE32) + addSlowCase(branchAdd32(Overflow, regT0, regT0)); + signExtend32ToPtr(regT0, regT0); +#endif + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); +} + +void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + if (isOperandConstantImmediateInt(op2)) { + int shift = getConstantOperand(op2).asInt32(); + // op1 = regT0 + linkSlowCase(iter); // int32 check +#if USE(JSVALUE64) + if (supportsFloatingPointTruncate()) { + JumpList failures; + failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); + if (shift) + urshift32(Imm32(shift & 0x1f), regT0); + if (shift < 0 || !(shift & 31)) + failures.append(branch32(LessThan, regT0, Imm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); + failures.link(this); + } +#endif // JSVALUE64 + if (shift < 0 || !(shift & 31)) + linkSlowCase(iter); // failed to box in hot path +#if USE(JSVALUE32) + linkSlowCase(iter); // Couldn't box result +#endif + } else { + // op1 = regT0 + // op2 = regT1 + if (!isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); // int32 check -- op1 is not an int +#if USE(JSVALUE64) + if (supportsFloatingPointTruncate()) { + JumpList failures; + failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); + failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int + emitFastArithImmToInt(regT1); + urshift32(regT1, regT0); + failures.append(branch32(LessThan, regT0, Imm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(dst, regT0); + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); + failures.link(this); + } +#endif + } + + linkSlowCase(iter); // int32 check - op2 is not an int + linkSlowCase(iter); // Can't represent unsigned result as an immediate +#if USE(JSVALUE32) + linkSlowCase(iter); // Couldn't box result +#endif + } + + JITStubCall stubCall(this, cti_op_urshift); + stubCall.addArgument(op1, regT0); + stubCall.addArgument(op2, regT1); + stubCall.call(dst); +} + +void JIT::emit_op_jnless(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + // We generate inline code for the following cases in the fast path: + // - int immediate to constant int immediate + // - constant int immediate to int immediate + // - int immediate to int immediate + + if (isOperandConstantImmediateChar(op1)) { + emitGetVirtualRegister(op2, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateChar(op2)) { + emitGetVirtualRegister(op1, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t op2imm = getConstantOperandImmediateInt(op2); +#else + int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); +#endif + addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target); + } else if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT1); +#if USE(JSVALUE64) + int32_t op1imm = getConstantOperandImmediateInt(op1); +#else + int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); +#endif + addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + + addJump(branch32(GreaterThanOrEqual, regT0, regT1), target); + } +} + +void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + // We generate inline code for the following cases in the slow path: + // - floating-point number to constant int immediate + // - constant int immediate to floating-point number + // - floating-point number to floating-point number. + if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(op1, regT0); + stubCall.addArgument(op2, regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(Zero, regT0), target); + return; + } + + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1 = emitJumpIfNotJSCell(regT0); + + Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); +#endif + + int32_t op2imm = getConstantOperand(op2).asInt32();; + + move(Imm32(op2imm), regT1); + convertInt32ToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); + +#if USE(JSVALUE64) + fail1.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1.link(this); + fail2.link(this); +#endif + } + + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(Zero, regT0), target); + + } else if (isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT1); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail1 = emitJumpIfNotJSCell(regT1); + + Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); + loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); +#endif + + int32_t op1imm = getConstantOperand(op1).asInt32();; + + move(Imm32(op1imm), regT0); + convertInt32ToDouble(regT0, fpRegT0); + + emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); + +#if USE(JSVALUE64) + fail1.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail1.link(this); + fail2.link(this); +#endif + } + + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(Zero, regT0), target); + + } else { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + Jump fail2 = emitJumpIfNotImmediateNumber(regT1); + Jump fail3 = emitJumpIfImmediateInteger(regT1); + addPtr(tagTypeNumberRegister, regT0); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT0, fpRegT0); + movePtrToDouble(regT1, fpRegT1); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1 = emitJumpIfNotJSCell(regT0); + + Jump fail2; + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail2 = emitJumpIfNotJSCell(regT1); + + Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); + Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); +#endif + + emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); + +#if USE(JSVALUE64) + fail1.link(this); + fail2.link(this); + fail3.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1.link(this); + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail2.link(this); + fail3.link(this); + fail4.link(this); +#endif + } + + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(Zero, regT0), target); + } +} + +void JIT::emit_op_jless(Instruction* currentInstruction) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + // We generate inline code for the following cases in the fast path: + // - int immediate to constant int immediate + // - constant int immediate to int immediate + // - int immediate to int immediate + + if (isOperandConstantImmediateChar(op1)) { + emitGetVirtualRegister(op2, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateChar(op2)) { + emitGetVirtualRegister(op1, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t op2imm = getConstantOperandImmediateInt(op2); +#else + int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); +#endif + addJump(branch32(LessThan, regT0, Imm32(op2imm)), target); + } else if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT1); +#if USE(JSVALUE64) + int32_t op1imm = getConstantOperandImmediateInt(op1); +#else + int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); +#endif + addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + + addJump(branch32(LessThan, regT0, regT1), target); + } +} + +void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + // We generate inline code for the following cases in the slow path: + // - floating-point number to constant int immediate + // - constant int immediate to floating-point number + // - floating-point number to floating-point number. + if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(op1, regT0); + stubCall.addArgument(op2, regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target); + return; + } + + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1 = emitJumpIfNotJSCell(regT0); + + Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); +#endif + + int32_t op2imm = getConstantOperand(op2).asInt32(); + + move(Imm32(op2imm), regT1); + convertInt32ToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); + +#if USE(JSVALUE64) + fail1.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1.link(this); + fail2.link(this); +#endif + } + + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target); + + } else if (isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT1); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail1 = emitJumpIfNotJSCell(regT1); + + Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); + loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); +#endif + + int32_t op1imm = getConstantOperand(op1).asInt32(); + + move(Imm32(op1imm), regT0); + convertInt32ToDouble(regT0, fpRegT0); + + emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); + +#if USE(JSVALUE64) + fail1.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail1.link(this); + fail2.link(this); +#endif + } + + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target); + + } else { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + Jump fail2 = emitJumpIfNotImmediateNumber(regT1); + Jump fail3 = emitJumpIfImmediateInteger(regT1); + addPtr(tagTypeNumberRegister, regT0); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT0, fpRegT0); + movePtrToDouble(regT1, fpRegT1); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1 = emitJumpIfNotJSCell(regT0); + + Jump fail2; + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail2 = emitJumpIfNotJSCell(regT1); + + Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); + Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); +#endif + + emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); + +#if USE(JSVALUE64) + fail1.link(this); + fail2.link(this); + fail3.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1.link(this); + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail2.link(this); + fail3.link(this); + fail4.link(this); +#endif + } + + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jless); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(NonZero, regT0), target); + } +} + +void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + // We generate inline code for the following cases in the fast path: + // - int immediate to constant int immediate + // - constant int immediate to int immediate + // - int immediate to int immediate + + if (isOperandConstantImmediateChar(op1)) { + emitGetVirtualRegister(op2, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateChar(op2)) { + emitGetVirtualRegister(op1, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t op2imm = getConstantOperandImmediateInt(op2); +#else + int32_t op2imm = static_cast(JSImmediate::rawValue(getConstantOperand(op2))); +#endif + addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(op2imm)), target); + } else if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT1); +#if USE(JSVALUE64) + int32_t op1imm = getConstantOperandImmediateInt(op1); +#else + int32_t op1imm = static_cast(JSImmediate::rawValue(getConstantOperand(op1))); +#endif + addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT1, Imm32(op1imm)), target); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + + addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT1), target); + } +} + +void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector::iterator& iter, bool invert) +{ + unsigned op1 = currentInstruction[1].u.operand; + unsigned op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + // We generate inline code for the following cases in the slow path: + // - floating-point number to constant int immediate + // - constant int immediate to floating-point number + // - floating-point number to floating-point number. + + if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jlesseq); + stubCall.addArgument(op1, regT0); + stubCall.addArgument(op2, regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + return; + } + + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1 = emitJumpIfNotJSCell(regT0); + + Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); +#endif + + int32_t op2imm = getConstantOperand(op2).asInt32();; + + move(Imm32(op2imm), regT1); + convertInt32ToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); + +#if USE(JSVALUE64) + fail1.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1.link(this); + fail2.link(this); +#endif + } + + JITStubCall stubCall(this, cti_op_jlesseq); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + + } else if (isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT1); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail1 = emitJumpIfNotJSCell(regT1); + + Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); + loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); +#endif + + int32_t op1imm = getConstantOperand(op1).asInt32();; + + move(Imm32(op1imm), regT0); + convertInt32ToDouble(regT0, fpRegT0); + + emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); + +#if USE(JSVALUE64) + fail1.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail1.link(this); + fail2.link(this); +#endif + } + + JITStubCall stubCall(this, cti_op_jlesseq); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + + } else { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { +#if USE(JSVALUE64) + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + Jump fail2 = emitJumpIfNotImmediateNumber(regT1); + Jump fail3 = emitJumpIfImmediateInteger(regT1); + addPtr(tagTypeNumberRegister, regT0); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT0, fpRegT0); + movePtrToDouble(regT1, fpRegT1); +#else + Jump fail1; + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1 = emitJumpIfNotJSCell(regT0); + + Jump fail2; + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail2 = emitJumpIfNotJSCell(regT1); + + Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); + Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); +#endif + + emitJumpSlowToHot(branchDouble(invert ? DoubleLessThanOrUnordered : DoubleGreaterThanOrEqual, fpRegT1, fpRegT0), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); + +#if USE(JSVALUE64) + fail1.link(this); + fail2.link(this); + fail3.link(this); +#else + if (!m_codeBlock->isKnownNotImmediate(op1)) + fail1.link(this); + if (!m_codeBlock->isKnownNotImmediate(op2)) + fail2.link(this); + fail3.link(this); + fail4.link(this); +#endif + } + + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_jlesseq); + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); + } +} + +void JIT::emit_op_jnlesseq(Instruction* currentInstruction) +{ + emit_op_jlesseq(currentInstruction, true); +} + +void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector::iterator& iter) +{ + emitSlow_op_jlesseq(currentInstruction, iter, true); +} + +void JIT::emit_op_bitand(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t imm = getConstantOperandImmediateInt(op1); + andPtr(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); +#else + andPtr(Imm32(static_cast(JSImmediate::rawValue(getConstantOperand(op1)))), regT0); +#endif + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + int32_t imm = getConstantOperandImmediateInt(op2); + andPtr(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); +#else + andPtr(Imm32(static_cast(JSImmediate::rawValue(getConstantOperand(op2)))), regT0); +#endif + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + andPtr(regT1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + } + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + linkSlowCase(iter); + if (isOperandConstantImmediateInt(op1)) { + JITStubCall stubCall(this, cti_op_bitand); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT0); + stubCall.call(result); + } else if (isOperandConstantImmediateInt(op2)) { + JITStubCall stubCall(this, cti_op_bitand); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(result); + } else { + JITStubCall stubCall(this, cti_op_bitand); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT1); + stubCall.call(result); + } +} + +void JIT::emit_op_post_inc(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + move(regT0, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + addSlowCase(branchAdd32(Overflow, Imm32(1), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT1); +#else + addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); + signExtend32ToPtr(regT1, regT1); +#endif + emitPutVirtualRegister(srcDst, regT1); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_post_inc); + stubCall.addArgument(regT0); + stubCall.addArgument(Imm32(srcDst)); + stubCall.call(result); +} + +void JIT::emit_op_post_dec(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + move(regT0, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + addSlowCase(branchSub32(Zero, Imm32(1), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT1); +#else + addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); + signExtend32ToPtr(regT1, regT1); +#endif + emitPutVirtualRegister(srcDst, regT1); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned srcDst = currentInstruction[2].u.operand; + + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_post_dec); + stubCall.addArgument(regT0); + stubCall.addArgument(Imm32(srcDst)); + stubCall.call(result); +} + +void JIT::emit_op_pre_inc(Instruction* currentInstruction) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); +#else + addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); + signExtend32ToPtr(regT0, regT0); +#endif + emitPutVirtualRegister(srcDst); +} + +void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + emitGetVirtualRegister(srcDst, regT0); + notImm.link(this); + JITStubCall stubCall(this, cti_op_pre_inc); + stubCall.addArgument(regT0); + stubCall.call(srcDst); +} + +void JIT::emit_op_pre_dec(Instruction* currentInstruction) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); +#if USE(JSVALUE64) + addSlowCase(branchSub32(Zero, Imm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); +#else + addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); + signExtend32ToPtr(regT0, regT0); +#endif + emitPutVirtualRegister(srcDst); +} + +void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned srcDst = currentInstruction[1].u.operand; + + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + emitGetVirtualRegister(srcDst, regT0); + notImm.link(this); + JITStubCall stubCall(this, cti_op_pre_dec); + stubCall.addArgument(regT0); + stubCall.call(srcDst); +} + +/* ------------------------------ BEGIN: OP_MOD ------------------------------ */ + +#if CPU(X86) || CPU(X86_64) + +void JIT::emit_op_mod(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx); + emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax); + emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx); +#if USE(JSVALUE64) + addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0))))); + m_assembler.cdq(); + m_assembler.idivl_r(X86Registers::ecx); +#else + emitFastArithDeTagImmediate(X86Registers::eax); + addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx)); + m_assembler.cdq(); + m_assembler.idivl_r(X86Registers::ecx); + signExtend32ToPtr(X86Registers::edx, X86Registers::edx); +#endif + emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + +#if USE(JSVALUE64) + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); +#else + Jump notImm1 = getSlowCase(iter); + Jump notImm2 = getSlowCase(iter); + linkSlowCase(iter); + emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax); + emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx); + notImm1.link(this); + notImm2.link(this); +#endif + JITStubCall stubCall(this, cti_op_mod); + stubCall.addArgument(X86Registers::eax); + stubCall.addArgument(X86Registers::ecx); + stubCall.call(result); +} + +#else // CPU(X86) || CPU(X86_64) + +void JIT::emit_op_mod(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + +#if ENABLE(JIT_OPTIMIZE_MOD) + emitGetVirtualRegisters(op1, regT0, op2, regT2); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + + addSlowCase(branch32(Equal, regT2, Imm32(1))); + + emitNakedCall(m_globalData->jitStubs->ctiSoftModulo()); + + emitPutVirtualRegister(result, regT0); +#else + JITStubCall stubCall(this, cti_op_mod); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); +#endif +} + +void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) +{ +#if ENABLE(JIT_OPTIMIZE_MOD) + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITStubCall stubCall(this, cti_op_mod); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); +#else + ASSERT_NOT_REACHED(); +#endif +} + +#endif // CPU(X86) || CPU(X86_64) + +/* ------------------------------ END: OP_MOD ------------------------------ */ + +#if USE(JSVALUE64) + +/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ + +void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) +{ + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + if (opcodeID == op_add) + addSlowCase(branchAdd32(Overflow, regT1, regT0)); + else if (opcodeID == op_sub) + addSlowCase(branchSub32(Overflow, regT1, regT0)); + else { + ASSERT(opcodeID == op_mul); + addSlowCase(branchMul32(Overflow, regT1, regT0)); + addSlowCase(branchTest32(Zero, regT0)); + } + emitFastArithIntToImmNoCheck(regT0, regT0); +} + +void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase) +{ + // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. + COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); + + Jump notImm1; + Jump notImm2; + if (op1HasImmediateIntFastCase) { + notImm2 = getSlowCase(iter); + } else if (op2HasImmediateIntFastCase) { + notImm1 = getSlowCase(iter); + } else { + notImm1 = getSlowCase(iter); + notImm2 = getSlowCase(iter); + } + + linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. + if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number. + linkSlowCase(iter); + emitGetVirtualRegister(op1, regT0); + + Label stubFunctionCall(this); + JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); + if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) { + emitGetVirtualRegister(op1, regT0); + emitGetVirtualRegister(op2, regT1); + } + stubCall.addArgument(regT0); + stubCall.addArgument(regT1); + stubCall.call(result); + Jump end = jump(); + + if (op1HasImmediateIntFastCase) { + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op1, regT1); + convertInt32ToDouble(regT1, fpRegT1); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT2); + } else if (op2HasImmediateIntFastCase) { + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op2, regT1); + convertInt32ToDouble(regT1, fpRegT1); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT2); + } else { + // if we get here, eax is not an int32, edx not yet checked. + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT1); + Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT2); + Jump op2wasInteger = jump(); + + // if we get here, eax IS an int32, edx is not. + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + convertInt32ToDouble(regT0, fpRegT1); + op2isDouble.link(this); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT2); + op2wasInteger.link(this); + } + + if (opcodeID == op_add) + addDouble(fpRegT2, fpRegT1); + else if (opcodeID == op_sub) + subDouble(fpRegT2, fpRegT1); + else if (opcodeID == op_mul) + mulDouble(fpRegT2, fpRegT1); + else { + ASSERT(opcodeID == op_div); + divDouble(fpRegT2, fpRegT1); + } + moveDoubleToPtr(fpRegT1, regT0); + subPtr(tagTypeNumberRegister, regT0); + emitPutVirtualRegister(result, regT0); + + end.link(this); +} + +void JIT::emit_op_add(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + JITStubCall stubCall(this, cti_op_add); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); + return; + } + + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + } else + compileBinaryArithOp(op_add, result, op1, op2, types); + + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) + return; + + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1); + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2); + compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); +} + +void JIT::emit_op_mul(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + // For now, only plant a fast int case if the constant operand is greater than zero. + int32_t value; + if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); + emitFastArithReTagImmediate(regT0, regT0); + } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); + emitFastArithReTagImmediate(regT0, regT0); + } else + compileBinaryArithOp(op_mul, result, op1, op2, types); + + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0; + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0; + compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); +} + +void JIT::emit_op_div(Instruction* currentInstruction) +{ + unsigned dst = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (isOperandConstantImmediateDouble(op1)) { + emitGetVirtualRegister(op1, regT0); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + } else if (isOperandConstantImmediateInt(op1)) { + emitLoadInt32ToDouble(op1, fpRegT0); + } else { + emitGetVirtualRegister(op1, regT0); + if (!types.first().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT0); + Jump notInt = emitJumpIfNotImmediateInteger(regT0); + convertInt32ToDouble(regT0, fpRegT0); + Jump skipDoubleLoad = jump(); + notInt.link(this); + addPtr(tagTypeNumberRegister, regT0); + movePtrToDouble(regT0, fpRegT0); + skipDoubleLoad.link(this); + } + + if (isOperandConstantImmediateDouble(op2)) { + emitGetVirtualRegister(op2, regT1); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); + } else if (isOperandConstantImmediateInt(op2)) { + emitLoadInt32ToDouble(op2, fpRegT1); + } else { + emitGetVirtualRegister(op2, regT1); + if (!types.second().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT1); + Jump notInt = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT1); + Jump skipDoubleLoad = jump(); + notInt.link(this); + addPtr(tagTypeNumberRegister, regT1); + movePtrToDouble(regT1, fpRegT1); + skipDoubleLoad.link(this); + } + divDouble(fpRegT1, fpRegT0); + + // Double result. + moveDoubleToPtr(fpRegT0, regT0); + subPtr(tagTypeNumberRegister, regT0); + + emitPutVirtualRegister(dst, regT0); +} + +void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) { +#ifndef NDEBUG + breakpoint(); +#endif + return; + } + if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) { + if (!types.first().definitelyIsNumber()) + linkSlowCase(iter); + } + if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) { + if (!types.second().definitelyIsNumber()) + linkSlowCase(iter); + } + // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. + JITStubCall stubCall(this, cti_op_div); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); +} + +void JIT::emit_op_sub(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOp(op_sub, result, op1, op2, types); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false); +} + +#else // USE(JSVALUE64) + +/* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ + +void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) +{ + Structure* numberStructure = m_globalData->numberStructure.get(); + Jump wasJSNumberCell1; + Jump wasJSNumberCell2; + + emitGetVirtualRegisters(src1, regT0, src2, regT1); + + if (types.second().isReusable() && supportsFloatingPoint()) { + ASSERT(types.second().mightBeNumber()); + + // Check op2 is a number + Jump op2imm = emitJumpIfImmediateInteger(regT1); + if (!types.second().definitelyIsNumber()) { + emitJumpSlowCaseIfNotJSCell(regT1, src2); + addSlowCase(checkStructure(regT1, numberStructure)); + } + + // (1) In this case src2 is a reusable number cell. + // Slow case if src1 is not a number type. + Jump op1imm = emitJumpIfImmediateInteger(regT0); + if (!types.first().definitelyIsNumber()) { + emitJumpSlowCaseIfNotJSCell(regT0, src1); + addSlowCase(checkStructure(regT0, numberStructure)); + } + + // (1a) if we get here, src1 is also a number cell + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + Jump loadedDouble = jump(); + // (1b) if we get here, src1 is an immediate + op1imm.link(this); + emitFastArithImmToInt(regT0); + convertInt32ToDouble(regT0, fpRegT0); + // (1c) + loadedDouble.link(this); + if (opcodeID == op_add) + addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + else if (opcodeID == op_sub) + subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + else { + ASSERT(opcodeID == op_mul); + mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + } + + // Store the result to the JSNumberCell and jump. + storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value))); + move(regT1, regT0); + emitPutVirtualRegister(dst); + wasJSNumberCell2 = jump(); + + // (2) This handles cases where src2 is an immediate number. + // Two slow cases - either src1 isn't an immediate, or the subtract overflows. + op2imm.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + } else if (types.first().isReusable() && supportsFloatingPoint()) { + ASSERT(types.first().mightBeNumber()); + + // Check op1 is a number + Jump op1imm = emitJumpIfImmediateInteger(regT0); + if (!types.first().definitelyIsNumber()) { + emitJumpSlowCaseIfNotJSCell(regT0, src1); + addSlowCase(checkStructure(regT0, numberStructure)); + } + + // (1) In this case src1 is a reusable number cell. + // Slow case if src2 is not a number type. + Jump op2imm = emitJumpIfImmediateInteger(regT1); + if (!types.second().definitelyIsNumber()) { + emitJumpSlowCaseIfNotJSCell(regT1, src2); + addSlowCase(checkStructure(regT1, numberStructure)); + } + + // (1a) if we get here, src2 is also a number cell + loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); + Jump loadedDouble = jump(); + // (1b) if we get here, src2 is an immediate + op2imm.link(this); + emitFastArithImmToInt(regT1); + convertInt32ToDouble(regT1, fpRegT1); + // (1c) + loadedDouble.link(this); + loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); + if (opcodeID == op_add) + addDouble(fpRegT1, fpRegT0); + else if (opcodeID == op_sub) + subDouble(fpRegT1, fpRegT0); + else { + ASSERT(opcodeID == op_mul); + mulDouble(fpRegT1, fpRegT0); + } + storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); + emitPutVirtualRegister(dst); + + // Store the result to the JSNumberCell and jump. + storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); + emitPutVirtualRegister(dst); + wasJSNumberCell1 = jump(); + + // (2) This handles cases where src1 is an immediate number. + // Two slow cases - either src2 isn't an immediate, or the subtract overflows. + op1imm.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + } else + emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); + + if (opcodeID == op_add) { + emitFastArithDeTagImmediate(regT0); + addSlowCase(branchAdd32(Overflow, regT1, regT0)); + } else if (opcodeID == op_sub) { + addSlowCase(branchSub32(Overflow, regT1, regT0)); + signExtend32ToPtr(regT0, regT0); + emitFastArithReTagImmediate(regT0, regT0); + } else { + ASSERT(opcodeID == op_mul); + // convert eax & edx from JSImmediates to ints, and check if either are zero + emitFastArithImmToInt(regT1); + Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0); + Jump op2NonZero = branchTest32(NonZero, regT1); + op1Zero.link(this); + // if either input is zero, add the two together, and check if the result is < 0. + // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate. + move(regT0, regT2); + addSlowCase(branchAdd32(Signed, regT1, regT2)); + // Skip the above check if neither input is zero + op2NonZero.link(this); + addSlowCase(branchMul32(Overflow, regT1, regT0)); + signExtend32ToPtr(regT0, regT0); + emitFastArithReTagImmediate(regT0, regT0); + } + emitPutVirtualRegister(dst); + + if (types.second().isReusable() && supportsFloatingPoint()) + wasJSNumberCell2.link(this); + else if (types.first().isReusable() && supportsFloatingPoint()) + wasJSNumberCell1.link(this); +} + +void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) +{ + linkSlowCase(iter); + if (types.second().isReusable() && supportsFloatingPoint()) { + if (!types.first().definitelyIsNumber()) { + linkSlowCaseIfNotJSCell(iter, src1); + linkSlowCase(iter); + } + if (!types.second().definitelyIsNumber()) { + linkSlowCaseIfNotJSCell(iter, src2); + linkSlowCase(iter); + } + } else if (types.first().isReusable() && supportsFloatingPoint()) { + if (!types.first().definitelyIsNumber()) { + linkSlowCaseIfNotJSCell(iter, src1); + linkSlowCase(iter); + } + if (!types.second().definitelyIsNumber()) { + linkSlowCaseIfNotJSCell(iter, src2); + linkSlowCase(iter); + } + } + linkSlowCase(iter); + + // additional entry point to handle -0 cases. + if (opcodeID == op_mul) + linkSlowCase(iter); + + JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); + stubCall.addArgument(src1, regT2); + stubCall.addArgument(src2, regT2); + stubCall.call(dst); +} + +void JIT::emit_op_add(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + JITStubCall stubCall(this, cti_op_add); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); + return; + } + + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0)); + signExtend32ToPtr(regT0, regT0); + emitPutVirtualRegister(result); + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0)); + signExtend32ToPtr(regT0, regT0); + emitPutVirtualRegister(result); + } else { + compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); + } +} + +void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) + return; + + if (isOperandConstantImmediateInt(op1)) { + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0); + notImm.link(this); + JITStubCall stubCall(this, cti_op_add); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(regT0); + stubCall.call(result); + } else if (isOperandConstantImmediateInt(op2)) { + Jump notImm = getSlowCase(iter); + linkSlowCase(iter); + sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0); + notImm.link(this); + JITStubCall stubCall(this, cti_op_add); + stubCall.addArgument(regT0); + stubCall.addArgument(op2, regT2); + stubCall.call(result); + } else { + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber()); + compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types); + } +} + +void JIT::emit_op_mul(Instruction* currentInstruction) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + // For now, only plant a fast int case if the constant operand is greater than zero. + int32_t value; + if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitFastArithDeTagImmediate(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); + signExtend32ToPtr(regT0, regT0); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(result); + } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitFastArithDeTagImmediate(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); + signExtend32ToPtr(regT0, regT0); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(result); + } else + compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); +} + +void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) +{ + unsigned result = currentInstruction[1].u.operand; + unsigned op1 = currentInstruction[2].u.operand; + unsigned op2 = currentInstruction[3].u.operand; + + if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) + || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { + linkSlowCase(iter); + linkSlowCase(iter); + // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. + JITStubCall stubCall(this, cti_op_mul); + stubCall.addArgument(op1, regT2); + stubCall.addArgument(op2, regT2); + stubCall.call(result); + } else + compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); +} + +void JIT::emit_op_sub(Instruction* currentInstruction) +{ + compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); +} + +void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) +{ + compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); +} + +#endif // USE(JSVALUE64) + +/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ + +} // namespace JSC + +#endif // !USE(JSVALUE32_64) +#endif // ENABLE(JIT)