diff -r 000000000000 -r ae805ac0140d python-2.5.2/win32/Lib/test/test_long.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/python-2.5.2/win32/Lib/test/test_long.py Fri Apr 03 17:19:34 2009 +0100 @@ -0,0 +1,503 @@ +import unittest +from test import test_support + +import random + +# Used for lazy formatting of failure messages +class Frm(object): + def __init__(self, format, *args): + self.format = format + self.args = args + + def __str__(self): + return self.format % self.args + +# SHIFT should match the value in longintrepr.h for best testing. +SHIFT = 15 +BASE = 2 ** SHIFT +MASK = BASE - 1 +KARATSUBA_CUTOFF = 70 # from longobject.c + +# Max number of base BASE digits to use in test cases. Doubling +# this will more than double the runtime. +MAXDIGITS = 15 + +# build some special values +special = map(long, [0, 1, 2, BASE, BASE >> 1]) +special.append(0x5555555555555555L) +special.append(0xaaaaaaaaaaaaaaaaL) +# some solid strings of one bits +p2 = 4L # 0 and 1 already added +for i in range(2*SHIFT): + special.append(p2 - 1) + p2 = p2 << 1 +del p2 +# add complements & negations +special = special + map(lambda x: ~x, special) + \ + map(lambda x: -x, special) + + +class LongTest(unittest.TestCase): + + # Get quasi-random long consisting of ndigits digits (in base BASE). + # quasi == the most-significant digit will not be 0, and the number + # is constructed to contain long strings of 0 and 1 bits. These are + # more likely than random bits to provoke digit-boundary errors. + # The sign of the number is also random. + + def getran(self, ndigits): + self.assert_(ndigits > 0) + nbits_hi = ndigits * SHIFT + nbits_lo = nbits_hi - SHIFT + 1 + answer = 0L + nbits = 0 + r = int(random.random() * (SHIFT * 2)) | 1 # force 1 bits to start + while nbits < nbits_lo: + bits = (r >> 1) + 1 + bits = min(bits, nbits_hi - nbits) + self.assert_(1 <= bits <= SHIFT) + nbits = nbits + bits + answer = answer << bits + if r & 1: + answer = answer | ((1 << bits) - 1) + r = int(random.random() * (SHIFT * 2)) + self.assert_(nbits_lo <= nbits <= nbits_hi) + if random.random() < 0.5: + answer = -answer + return answer + + # Get random long consisting of ndigits random digits (relative to base + # BASE). The sign bit is also random. + + def getran2(ndigits): + answer = 0L + for i in xrange(ndigits): + answer = (answer << SHIFT) | random.randint(0, MASK) + if random.random() < 0.5: + answer = -answer + return answer + + def check_division(self, x, y): + eq = self.assertEqual + q, r = divmod(x, y) + q2, r2 = x//y, x%y + pab, pba = x*y, y*x + eq(pab, pba, Frm("multiplication does not commute for %r and %r", x, y)) + eq(q, q2, Frm("divmod returns different quotient than / for %r and %r", x, y)) + eq(r, r2, Frm("divmod returns different mod than %% for %r and %r", x, y)) + eq(x, q*y + r, Frm("x != q*y + r after divmod on x=%r, y=%r", x, y)) + if y > 0: + self.assert_(0 <= r < y, Frm("bad mod from divmod on %r and %r", x, y)) + else: + self.assert_(y < r <= 0, Frm("bad mod from divmod on %r and %r", x, y)) + + def test_division(self): + digits = range(1, MAXDIGITS+1) + range(KARATSUBA_CUTOFF, + KARATSUBA_CUTOFF + 14) + digits.append(KARATSUBA_CUTOFF * 3) + for lenx in digits: + x = self.getran(lenx) + for leny in digits: + y = self.getran(leny) or 1L + self.check_division(x, y) + + def test_karatsuba(self): + digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10) + digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100]) + + bits = [digit * SHIFT for digit in digits] + + # Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) == + # 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check. + for abits in bits: + a = (1L << abits) - 1 + for bbits in bits: + if bbits < abits: + continue + b = (1L << bbits) - 1 + x = a * b + y = ((1L << (abits + bbits)) - + (1L << abits) - + (1L << bbits) + + 1) + self.assertEqual(x, y, + Frm("bad result for a*b: a=%r, b=%r, x=%r, y=%r", a, b, x, y)) + + def check_bitop_identities_1(self, x): + eq = self.assertEqual + eq(x & 0, 0, Frm("x & 0 != 0 for x=%r", x)) + eq(x | 0, x, Frm("x | 0 != x for x=%r", x)) + eq(x ^ 0, x, Frm("x ^ 0 != x for x=%r", x)) + eq(x & -1, x, Frm("x & -1 != x for x=%r", x)) + eq(x | -1, -1, Frm("x | -1 != -1 for x=%r", x)) + eq(x ^ -1, ~x, Frm("x ^ -1 != ~x for x=%r", x)) + eq(x, ~~x, Frm("x != ~~x for x=%r", x)) + eq(x & x, x, Frm("x & x != x for x=%r", x)) + eq(x | x, x, Frm("x | x != x for x=%r", x)) + eq(x ^ x, 0, Frm("x ^ x != 0 for x=%r", x)) + eq(x & ~x, 0, Frm("x & ~x != 0 for x=%r", x)) + eq(x | ~x, -1, Frm("x | ~x != -1 for x=%r", x)) + eq(x ^ ~x, -1, Frm("x ^ ~x != -1 for x=%r", x)) + eq(-x, 1 + ~x, Frm("not -x == 1 + ~x for x=%r", x)) + eq(-x, ~(x-1), Frm("not -x == ~(x-1) forx =%r", x)) + for n in xrange(2*SHIFT): + p2 = 2L ** n + eq(x << n >> n, x, + Frm("x << n >> n != x for x=%r, n=%r", (x, n))) + eq(x // p2, x >> n, + Frm("x // p2 != x >> n for x=%r n=%r p2=%r", (x, n, p2))) + eq(x * p2, x << n, + Frm("x * p2 != x << n for x=%r n=%r p2=%r", (x, n, p2))) + eq(x & -p2, x >> n << n, + Frm("not x & -p2 == x >> n << n for x=%r n=%r p2=%r", (x, n, p2))) + eq(x & -p2, x & ~(p2 - 1), + Frm("not x & -p2 == x & ~(p2 - 1) for x=%r n=%r p2=%r", (x, n, p2))) + + def check_bitop_identities_2(self, x, y): + eq = self.assertEqual + eq(x & y, y & x, Frm("x & y != y & x for x=%r, y=%r", (x, y))) + eq(x | y, y | x, Frm("x | y != y | x for x=%r, y=%r", (x, y))) + eq(x ^ y, y ^ x, Frm("x ^ y != y ^ x for x=%r, y=%r", (x, y))) + eq(x ^ y ^ x, y, Frm("x ^ y ^ x != y for x=%r, y=%r", (x, y))) + eq(x & y, ~(~x | ~y), Frm("x & y != ~(~x | ~y) for x=%r, y=%r", (x, y))) + eq(x | y, ~(~x & ~y), Frm("x | y != ~(~x & ~y) for x=%r, y=%r", (x, y))) + eq(x ^ y, (x | y) & ~(x & y), + Frm("x ^ y != (x | y) & ~(x & y) for x=%r, y=%r", (x, y))) + eq(x ^ y, (x & ~y) | (~x & y), + Frm("x ^ y == (x & ~y) | (~x & y) for x=%r, y=%r", (x, y))) + eq(x ^ y, (x | y) & (~x | ~y), + Frm("x ^ y == (x | y) & (~x | ~y) for x=%r, y=%r", (x, y))) + + def check_bitop_identities_3(self, x, y, z): + eq = self.assertEqual + eq((x & y) & z, x & (y & z), + Frm("(x & y) & z != x & (y & z) for x=%r, y=%r, z=%r", (x, y, z))) + eq((x | y) | z, x | (y | z), + Frm("(x | y) | z != x | (y | z) for x=%r, y=%r, z=%r", (x, y, z))) + eq((x ^ y) ^ z, x ^ (y ^ z), + Frm("(x ^ y) ^ z != x ^ (y ^ z) for x=%r, y=%r, z=%r", (x, y, z))) + eq(x & (y | z), (x & y) | (x & z), + Frm("x & (y | z) != (x & y) | (x & z) for x=%r, y=%r, z=%r", (x, y, z))) + eq(x | (y & z), (x | y) & (x | z), + Frm("x | (y & z) != (x | y) & (x | z) for x=%r, y=%r, z=%r", (x, y, z))) + + def test_bitop_identities(self): + for x in special: + self.check_bitop_identities_1(x) + digits = xrange(1, MAXDIGITS+1) + for lenx in digits: + x = self.getran(lenx) + self.check_bitop_identities_1(x) + for leny in digits: + y = self.getran(leny) + self.check_bitop_identities_2(x, y) + self.check_bitop_identities_3(x, y, self.getran((lenx + leny)//2)) + + def slow_format(self, x, base): + if (x, base) == (0, 8): + # this is an oddball! + return "0L" + digits = [] + sign = 0 + if x < 0: + sign, x = 1, -x + while x: + x, r = divmod(x, base) + digits.append(int(r)) + digits.reverse() + digits = digits or [0] + return '-'[:sign] + \ + {8: '0', 10: '', 16: '0x'}[base] + \ + "".join(map(lambda i: "0123456789abcdef"[i], digits)) + "L" + + def check_format_1(self, x): + for base, mapper in (8, oct), (10, repr), (16, hex): + got = mapper(x) + expected = self.slow_format(x, base) + msg = Frm("%s returned %r but expected %r for %r", + mapper.__name__, got, expected, x) + self.assertEqual(got, expected, msg) + self.assertEqual(long(got, 0), x, Frm('long("%s", 0) != %r', got, x)) + # str() has to be checked a little differently since there's no + # trailing "L" + got = str(x) + expected = self.slow_format(x, 10)[:-1] + msg = Frm("%s returned %r but expected %r for %r", + mapper.__name__, got, expected, x) + self.assertEqual(got, expected, msg) + + def test_format(self): + for x in special: + self.check_format_1(x) + for i in xrange(10): + for lenx in xrange(1, MAXDIGITS+1): + x = self.getran(lenx) + self.check_format_1(x) + + def test_misc(self): + import sys + + # check the extremes in int<->long conversion + hugepos = sys.maxint + hugeneg = -hugepos - 1 + hugepos_aslong = long(hugepos) + hugeneg_aslong = long(hugeneg) + self.assertEqual(hugepos, hugepos_aslong, "long(sys.maxint) != sys.maxint") + self.assertEqual(hugeneg, hugeneg_aslong, + "long(-sys.maxint-1) != -sys.maxint-1") + + # long -> int should not fail for hugepos_aslong or hugeneg_aslong + x = int(hugepos_aslong) + try: + self.assertEqual(x, hugepos, + "converting sys.maxint to long and back to int fails") + except OverflowError: + self.fail("int(long(sys.maxint)) overflowed!") + if not isinstance(x, int): + raise TestFailed("int(long(sys.maxint)) should have returned int") + x = int(hugeneg_aslong) + try: + self.assertEqual(x, hugeneg, + "converting -sys.maxint-1 to long and back to int fails") + except OverflowError: + self.fail("int(long(-sys.maxint-1)) overflowed!") + if not isinstance(x, int): + raise TestFailed("int(long(-sys.maxint-1)) should have " + "returned int") + # but long -> int should overflow for hugepos+1 and hugeneg-1 + x = hugepos_aslong + 1 + try: + y = int(x) + except OverflowError: + self.fail("int(long(sys.maxint) + 1) mustn't overflow") + self.assert_(isinstance(y, long), + "int(long(sys.maxint) + 1) should have returned long") + + x = hugeneg_aslong - 1 + try: + y = int(x) + except OverflowError: + self.fail("int(long(-sys.maxint-1) - 1) mustn't overflow") + self.assert_(isinstance(y, long), + "int(long(-sys.maxint-1) - 1) should have returned long") + + class long2(long): + pass + x = long2(1L<<100) + y = int(x) + self.assert_(type(y) is long, + "overflowing int conversion must return long not long subtype") + + # long -> Py_ssize_t conversion + class X(object): + def __getslice__(self, i, j): + return i, j + + self.assertEqual(X()[-5L:7L], (-5, 7)) + # use the clamping effect to test the smallest and largest longs + # that fit a Py_ssize_t + slicemin, slicemax = X()[-2L**100:2L**100] + self.assertEqual(X()[slicemin:slicemax], (slicemin, slicemax)) + +# ----------------------------------- tests of auto int->long conversion + + def test_auto_overflow(self): + import math, sys + + special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1] + sqrt = int(math.sqrt(sys.maxint)) + special.extend([sqrt-1, sqrt, sqrt+1]) + special.extend([-i for i in special]) + + def checkit(*args): + # Heavy use of nested scopes here! + self.assertEqual(got, expected, + Frm("for %r expected %r got %r", args, expected, got)) + + for x in special: + longx = long(x) + + expected = -longx + got = -x + checkit('-', x) + + for y in special: + longy = long(y) + + expected = longx + longy + got = x + y + checkit(x, '+', y) + + expected = longx - longy + got = x - y + checkit(x, '-', y) + + expected = longx * longy + got = x * y + checkit(x, '*', y) + + if y: + expected = longx / longy + got = x / y + checkit(x, '/', y) + + expected = longx // longy + got = x // y + checkit(x, '//', y) + + expected = divmod(longx, longy) + got = divmod(longx, longy) + checkit(x, 'divmod', y) + + if abs(y) < 5 and not (x == 0 and y < 0): + expected = longx ** longy + got = x ** y + checkit(x, '**', y) + + for z in special: + if z != 0 : + if y >= 0: + expected = pow(longx, longy, long(z)) + got = pow(x, y, z) + checkit('pow', x, y, '%', z) + else: + self.assertRaises(TypeError, pow,longx, longy, long(z)) + + def test_float_overflow(self): + import math + + for x in -2.0, -1.0, 0.0, 1.0, 2.0: + self.assertEqual(float(long(x)), x) + + shuge = '12345' * 120 + huge = 1L << 30000 + mhuge = -huge + namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math} + for test in ["float(huge)", "float(mhuge)", + "complex(huge)", "complex(mhuge)", + "complex(huge, 1)", "complex(mhuge, 1)", + "complex(1, huge)", "complex(1, mhuge)", + "1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.", + "1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.", + "1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.", + "1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.", + "1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.", + "1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.", + "math.sin(huge)", "math.sin(mhuge)", + "math.sqrt(huge)", "math.sqrt(mhuge)", # should do better + "math.floor(huge)", "math.floor(mhuge)"]: + + self.assertRaises(OverflowError, eval, test, namespace) + + # XXX Perhaps float(shuge) can raise OverflowError on some box? + # The comparison should not. + self.assertNotEqual(float(shuge), int(shuge), + "float(shuge) should not equal int(shuge)") + + def test_logs(self): + import math + + LOG10E = math.log10(math.e) + + for exp in range(10) + [100, 1000, 10000]: + value = 10 ** exp + log10 = math.log10(value) + self.assertAlmostEqual(log10, exp) + + # log10(value) == exp, so log(value) == log10(value)/log10(e) == + # exp/LOG10E + expected = exp / LOG10E + log = math.log(value) + self.assertAlmostEqual(log, expected) + + for bad in -(1L << 10000), -2L, 0L: + self.assertRaises(ValueError, math.log, bad) + self.assertRaises(ValueError, math.log10, bad) + + def test_mixed_compares(self): + eq = self.assertEqual + import math + import sys + + # We're mostly concerned with that mixing floats and longs does the + # right stuff, even when longs are too large to fit in a float. + # The safest way to check the results is to use an entirely different + # method, which we do here via a skeletal rational class (which + # represents all Python ints, longs and floats exactly). + class Rat: + def __init__(self, value): + if isinstance(value, (int, long)): + self.n = value + self.d = 1 + elif isinstance(value, float): + # Convert to exact rational equivalent. + f, e = math.frexp(abs(value)) + assert f == 0 or 0.5 <= f < 1.0 + # |value| = f * 2**e exactly + + # Suck up CHUNK bits at a time; 28 is enough so that we suck + # up all bits in 2 iterations for all known binary double- + # precision formats, and small enough to fit in an int. + CHUNK = 28 + top = 0 + # invariant: |value| = (top + f) * 2**e exactly + while f: + f = math.ldexp(f, CHUNK) + digit = int(f) + assert digit >> CHUNK == 0 + top = (top << CHUNK) | digit + f -= digit + assert 0.0 <= f < 1.0 + e -= CHUNK + + # Now |value| = top * 2**e exactly. + if e >= 0: + n = top << e + d = 1 + else: + n = top + d = 1 << -e + if value < 0: + n = -n + self.n = n + self.d = d + assert float(n) / float(d) == value + else: + raise TypeError("can't deal with %r" % val) + + def __cmp__(self, other): + if not isinstance(other, Rat): + other = Rat(other) + return cmp(self.n * other.d, self.d * other.n) + + cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200] + # 2**48 is an important boundary in the internals. 2**53 is an + # important boundary for IEEE double precision. + for t in 2.0**48, 2.0**50, 2.0**53: + cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0, + long(t-1), long(t), long(t+1)]) + cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)]) + # 1L<<20000 should exceed all double formats. long(1e200) is to + # check that we get equality with 1e200 above. + t = long(1e200) + cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1]) + cases.extend([-x for x in cases]) + for x in cases: + Rx = Rat(x) + for y in cases: + Ry = Rat(y) + Rcmp = cmp(Rx, Ry) + xycmp = cmp(x, y) + eq(Rcmp, xycmp, Frm("%r %r %d %d", x, y, Rcmp, xycmp)) + eq(x == y, Rcmp == 0, Frm("%r == %r %d", x, y, Rcmp)) + eq(x != y, Rcmp != 0, Frm("%r != %r %d", x, y, Rcmp)) + eq(x < y, Rcmp < 0, Frm("%r < %r %d", x, y, Rcmp)) + eq(x <= y, Rcmp <= 0, Frm("%r <= %r %d", x, y, Rcmp)) + eq(x > y, Rcmp > 0, Frm("%r > %r %d", x, y, Rcmp)) + eq(x >= y, Rcmp >= 0, Frm("%r >= %r %d", x, y, Rcmp)) + +def test_main(): + test_support.run_unittest(LongTest) + +if __name__ == "__main__": + test_main()