|
1 /* |
|
2 * Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of the License "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * Software Mac Implementation |
|
16 * plugin-dll headers |
|
17 * |
|
18 */ |
|
19 |
|
20 |
|
21 /** |
|
22 @file |
|
23 */ |
|
24 #include "cmacimpl.h" |
|
25 #include "pluginconfig.h" |
|
26 #include <cryptospi/cryptomacapi.h> |
|
27 /** |
|
28 * Headers from CryptoSpi framework |
|
29 */ |
|
30 #include <cryptospi/cryptospidef.h> |
|
31 |
|
32 using namespace SoftwareCrypto; |
|
33 using namespace CryptoSpi; |
|
34 |
|
35 /** |
|
36 * Constants used to generate Key1, Key2 and Key3 |
|
37 */ |
|
38 const TUint8 K1Constant[] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}; |
|
39 const TUint8 K2Constant[] = {0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02}; |
|
40 const TUint8 K3Constant[] = {0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; |
|
41 |
|
42 const TInt KAesXcbcMac96Size = 12; |
|
43 |
|
44 |
|
45 CCMacImpl* CCMacImpl::NewL(const CKey& aKey, CSymmetricCipher* aSymmetricCipher, TInt32 aAlgorithmUid) |
|
46 { |
|
47 CCMacImpl* self = CCMacImpl::NewLC(aKey, aSymmetricCipher, aAlgorithmUid); |
|
48 CleanupStack::Pop(self); |
|
49 return self; |
|
50 } |
|
51 |
|
52 CCMacImpl* CCMacImpl::NewLC(const CKey& aKey, CSymmetricCipher* aSymmetricCipher, TInt32 aAlgorithmUid) |
|
53 { |
|
54 CCMacImpl* self = NULL; |
|
55 TRAPD(err, self = new (ELeave) CCMacImpl(aSymmetricCipher)); |
|
56 if(err!=KErrNone) |
|
57 { |
|
58 delete aSymmetricCipher; |
|
59 User::Leave(err); |
|
60 } |
|
61 CleanupStack::PushL(self); |
|
62 self->ConstructL(aKey, aAlgorithmUid); |
|
63 return self; |
|
64 } |
|
65 |
|
66 CKey* CCMacImpl::Create128bitKeyL(const CKey& aKey) |
|
67 { |
|
68 TBuf8<KMacBlockSize> keybuffer; |
|
69 CryptoSpi::CKey* key = NULL; |
|
70 |
|
71 const TDesC8& keyContent=aKey.GetTDesC8L(CryptoSpi::KSymmetricKeyParameterUid); |
|
72 |
|
73 if( (TUint32)keyContent.Size() > KMacBlockSize) |
|
74 { |
|
75 // Create key |
|
76 CryptoSpi::CCryptoParams* keyParams = CryptoSpi::CCryptoParams::NewLC(); |
|
77 keybuffer.SetLength(KMacBlockSize); |
|
78 keybuffer.FillZ(); |
|
79 // 'keybuffer' is the key with 128 zero bits. |
|
80 keyParams->AddL(keybuffer, CryptoSpi::KSymmetricKeyParameterUid); |
|
81 key=CryptoSpi::CKey::NewLC(aKey.KeyProperty(),*keyParams); |
|
82 // evaluate final key data. |
|
83 SetKeyL(*key); |
|
84 CleanupStack::PopAndDestroy(2, keyParams); |
|
85 keybuffer.Copy(FinalL(keyContent)); |
|
86 // 'keybuffer' contains the final key data. |
|
87 } |
|
88 else |
|
89 { |
|
90 keybuffer.Copy(keyContent); |
|
91 TUint i; |
|
92 for (i=keybuffer.Size();i<KMacBlockSize;++i) |
|
93 { |
|
94 keybuffer.Append(0); |
|
95 } |
|
96 // 'keybuffer' contains the final key data. |
|
97 } |
|
98 |
|
99 // create a new CKey instance and assign it to iKey using 'keybuffer'. |
|
100 CryptoSpi::CCryptoParams* keyParams = CryptoSpi::CCryptoParams::NewLC(); |
|
101 keyParams->AddL(keybuffer, CryptoSpi::KSymmetricKeyParameterUid); |
|
102 key=CryptoSpi::CKey::NewL(aKey.KeyProperty(),*keyParams); |
|
103 CleanupStack::PopAndDestroy(keyParams); |
|
104 |
|
105 // 'key' will contain the final CKey instance. |
|
106 return key; |
|
107 } |
|
108 |
|
109 void CCMacImpl::SetKeyL(const CKey& aKey) |
|
110 { |
|
111 const TPtrC8 KeyConstant1(K1Constant, KMacBlockSize); |
|
112 const TPtrC8 KeyConstant2(K2Constant, KMacBlockSize); |
|
113 const TPtrC8 KeyConstant3(K3Constant, KMacBlockSize); |
|
114 |
|
115 // Initialize the cipher class to encrypt Keyconstants to generate additional keys. |
|
116 if (iImplementationUid == CryptoSpi::KAlgorithmCipherAesXcbcPrf128) |
|
117 { |
|
118 // RFC 4434: keys that were not equal in length to 128 bits will no longer be |
|
119 // rejected but instead will be made 128 bits for AES-XCBC-PRF-128 Algorithm only. |
|
120 CryptoSpi::CKey* key = Create128bitKeyL(aKey); |
|
121 CleanupStack::PushL(key); |
|
122 iCipherImpl->SetKeyL(*key); |
|
123 CleanupStack::PopAndDestroy(key); |
|
124 } |
|
125 else |
|
126 { |
|
127 iCipherImpl->SetKeyL(aKey); |
|
128 } |
|
129 iCipherImpl->SetCryptoModeL(CryptoSpi::KCryptoModeEncryptUid); |
|
130 iCipherImpl->SetOperationModeL(CryptoSpi::KOperationModeNoneUid); |
|
131 |
|
132 // cipher class expects the output buffer to be empty. |
|
133 iKey1.Zero(); |
|
134 iKey2.Zero(); |
|
135 iKey3.Zero(); |
|
136 |
|
137 // aKey is used to generate Key1, Key2 and Key3. |
|
138 // Where Key1 = encrypt KeyConstant1 with aKey |
|
139 // Where Key2 = encrypt KeyConstant2 with aKey |
|
140 // Where Key3 = encrypt KeyConstant3 with aKey |
|
141 |
|
142 // Key1 is used to encrypt the data whereas |
|
143 // Key2 and Key3 is used to XOR with the last |
|
144 // block. |
|
145 iCipherImpl->ProcessFinalL(KeyConstant1, iKey1); |
|
146 iCipherImpl->ProcessFinalL(KeyConstant2, iKey2); |
|
147 iCipherImpl->ProcessFinalL(KeyConstant3, iKey3); |
|
148 |
|
149 // Create CKey instance with key1 |
|
150 CCryptoParams* keyParam =CCryptoParams::NewLC(); |
|
151 keyParam->AddL(iKey1, CryptoSpi::KSymmetricKeyParameterUid); |
|
152 |
|
153 delete iKey; |
|
154 iKey = NULL; |
|
155 iKey=CKey::NewL(aKey.KeyProperty(), *keyParam); |
|
156 // Initialize the cipher class for MAC calculation. |
|
157 iCipherImpl->SetKeyL(*iKey); |
|
158 iCipherImpl->SetOperationModeL(CryptoSpi::KOperationModeCBCUid); |
|
159 Mem::FillZ(iE, sizeof(iE)); |
|
160 iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize)); |
|
161 |
|
162 CleanupStack::PopAndDestroy(keyParam); |
|
163 } |
|
164 |
|
165 CCMacImpl::~CCMacImpl() |
|
166 { |
|
167 delete iKey; |
|
168 delete iCipherImpl; |
|
169 } |
|
170 |
|
171 CCMacImpl::CCMacImpl(const CCMacImpl& aCCMacImpl) |
|
172 { |
|
173 iImplementationUid = aCCMacImpl.iImplementationUid; |
|
174 iKey1.Copy(aCCMacImpl.iKey1); |
|
175 iKey2.Copy(aCCMacImpl.iKey2); |
|
176 iKey3.Copy(aCCMacImpl.iKey3); |
|
177 |
|
178 (void)Mem::Copy(iE, aCCMacImpl.iE, sizeof(iE)); |
|
179 (void)Mem::Copy(iData, aCCMacImpl.iData, sizeof(iData)); |
|
180 |
|
181 iCurrentTotalLength = aCCMacImpl.iCurrentTotalLength; |
|
182 } |
|
183 |
|
184 const CExtendedCharacteristics* CCMacImpl::GetExtendedCharacteristicsL() |
|
185 { |
|
186 return iCipherImpl->GetExtendedCharacteristicsL(); |
|
187 } |
|
188 |
|
189 CCMacImpl::CCMacImpl(CryptoSpi::CSymmetricCipher* aSymmetricCipher) |
|
190 { |
|
191 iCipherImpl = aSymmetricCipher; |
|
192 aSymmetricCipher = NULL; |
|
193 iMacValue.SetLength(KMacBlockSize); |
|
194 } |
|
195 |
|
196 void CCMacImpl::ConstructL(const CKey& aKey, TInt32 aAlgorithmUid) |
|
197 { |
|
198 iImplementationUid = aAlgorithmUid; |
|
199 |
|
200 switch(aAlgorithmUid) |
|
201 { |
|
202 case CryptoSpi::KAlgorithmCipherAesXcbcMac96: |
|
203 case CryptoSpi::KAlgorithmCipherAesXcbcPrf128: |
|
204 { |
|
205 SetKeyL(aKey); |
|
206 break; |
|
207 } |
|
208 default: |
|
209 { |
|
210 User::Leave(KErrNotSupported); |
|
211 } |
|
212 } |
|
213 } |
|
214 |
|
215 /** |
|
216 * Takes the message and XOR it with iData. |
|
217 * |
|
218 * @param aKey 128bit key. This key will be XORed with iData. |
|
219 * @param aOutput The result of the XOR operation will be copied to this. |
|
220 * Its length should be 128bit (16bytes). |
|
221 */ |
|
222 |
|
223 void CCMacImpl::XORKeyWithData(const TDesC8& aKey, TDes8& aOutput) |
|
224 { |
|
225 for (TInt i = 0; i < KMacBlockSize; ++i) |
|
226 { |
|
227 aOutput[i] = iData[i] ^ aKey[i]; |
|
228 } |
|
229 } |
|
230 |
|
231 /** |
|
232 * This function is used to pad message M to make the total message |
|
233 * length multiple of block size (128bit). The last block M[n] will be |
|
234 * padded with a single "1" bit followed by the number of "0" bits required |
|
235 * to increase M[n]'s size to 128 bits (Block Size). |
|
236 * |
|
237 * Used in AES-XCBC-MAC-96 and AES-XCBC-PRF-128 Mac algorithms. |
|
238 */ |
|
239 void CCMacImpl::PadMessage() |
|
240 { |
|
241 if(iCurrentTotalLength < KMacBlockSize) |
|
242 { |
|
243 iData[iCurrentTotalLength] = 0x80; |
|
244 Mem::FillZ(iData + iCurrentTotalLength+1, KMacBlockSize - iCurrentTotalLength - 1); |
|
245 } |
|
246 } |
|
247 |
|
248 void CCMacImpl::Reset() |
|
249 { |
|
250 Mem::FillZ(iE,sizeof(iE)); |
|
251 iCurrentTotalLength =0; |
|
252 // record for Reset, for the next time MacL, UpdateL or FinalL is called as we |
|
253 // cannot leave in Reset. |
|
254 TRAP(iDelayedReset, iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize))); |
|
255 } |
|
256 |
|
257 TPtrC8 CCMacImpl::MacL(const TDesC8& aMessage) |
|
258 { |
|
259 // Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset. |
|
260 if (iDelayedReset != KErrNone) |
|
261 { |
|
262 // iE was reset to 128 zero bits in previous call to Reset which leaved. |
|
263 iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize)); |
|
264 iDelayedReset = KErrNone; |
|
265 } |
|
266 |
|
267 if (aMessage!=KNullDesC8()) |
|
268 { |
|
269 DoUpdateL(aMessage); |
|
270 } |
|
271 |
|
272 // Calculate MAC |
|
273 TPtrC8 macPtr(KNullDesC8()); |
|
274 macPtr.Set(DoFinalL()); |
|
275 |
|
276 // Restore the internal state. |
|
277 // We don't want to save any state change happened in |
|
278 // DoFinalL. |
|
279 // iE is not updated in DoFinalL function and hence |
|
280 // can be used to reset iCipherImpl to previous state. |
|
281 iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize)); |
|
282 |
|
283 return macPtr; |
|
284 } |
|
285 |
|
286 TPtrC8 CCMacImpl::FinalL(const TDesC8& aMessage) |
|
287 { |
|
288 // Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset. |
|
289 if (iDelayedReset == KErrNone) |
|
290 { |
|
291 // iE was reset to 128 zero bits in previous call to Reset which leaved. |
|
292 iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize)); |
|
293 iDelayedReset = KErrNone; |
|
294 } |
|
295 |
|
296 if (aMessage!=KNullDesC8()) |
|
297 { |
|
298 DoUpdateL(aMessage); |
|
299 } |
|
300 TPtrC8 macPtr(KNullDesC8()); |
|
301 macPtr.Set(DoFinalL()); |
|
302 Reset(); |
|
303 return macPtr; |
|
304 } |
|
305 |
|
306 void CCMacImpl::UpdateL(const TDesC8& aMessage) |
|
307 { |
|
308 // Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset. |
|
309 if (iDelayedReset == KErrNone) |
|
310 { |
|
311 // iE was reset to 128 zero bits in previous call to Reset which leaved. |
|
312 iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize)); |
|
313 iDelayedReset = KErrNone; |
|
314 } |
|
315 |
|
316 if (aMessage!=KNullDesC8()) |
|
317 { |
|
318 DoUpdateL(aMessage); |
|
319 } |
|
320 } |
|
321 |
|
322 void CCMacImpl::ProcessBlockL() |
|
323 { |
|
324 TPtrC8 dataPtr(iData, KMacBlockSize); |
|
325 TPtr8 intermediateCipherPtr(iE,0,KMacBlockSize); |
|
326 // iData (Block) should be XORed with iE calculated |
|
327 // from previoue processing. If it's the first processing |
|
328 // then iE will be zero. |
|
329 // Here we are not doing explicit XORing because iCpherImpl |
|
330 // is set in CBC mode. Therefore this operation will be |
|
331 // done by iCipherImpl |
|
332 iCipherImpl->ProcessL(dataPtr, intermediateCipherPtr); |
|
333 // After processing discard the block. |
|
334 iCurrentTotalLength = 0; |
|
335 } |
|
336 |
|
337 void CCMacImpl::DoUpdateL(const TDesC8& aMessage) |
|
338 { |
|
339 TInt curLength = aMessage.Length(); |
|
340 const TUint8* msgPtr = aMessage.Ptr(); |
|
341 |
|
342 while(curLength > 0) |
|
343 { |
|
344 // If block is formed then process it. |
|
345 if(iCurrentTotalLength == KMacBlockSize) |
|
346 ProcessBlockL(); |
|
347 |
|
348 // Check the space left in the block. |
|
349 TUint remainingLength = KMacBlockSize - iCurrentTotalLength; |
|
350 // If unprocesed message length is less then remainingLength |
|
351 // then copy the entire data to iData else copy till iData |
|
352 // if full. |
|
353 TUint length = Min(curLength, remainingLength); |
|
354 Mem::Copy(iData+iCurrentTotalLength, msgPtr, length); |
|
355 // Update data offset |
|
356 iCurrentTotalLength += length; |
|
357 curLength -= length; |
|
358 msgPtr += length; |
|
359 } |
|
360 } |
|
361 |
|
362 TPtrC8 CCMacImpl::DoFinalL() |
|
363 { |
|
364 TBuf8<KMacBlockSize> finalBlock; |
|
365 finalBlock.SetLength(KMacBlockSize); |
|
366 |
|
367 // If padding is required then use Key3 |
|
368 // else use Key2. |
|
369 if(iCurrentTotalLength < KMacBlockSize) |
|
370 { |
|
371 PadMessage(); |
|
372 XORKeyWithData(iKey3, finalBlock); |
|
373 } |
|
374 else |
|
375 { |
|
376 XORKeyWithData(iKey2, finalBlock); |
|
377 } |
|
378 |
|
379 // cipher class expects the output buffer to be empty. |
|
380 iMacValue.Zero(); |
|
381 |
|
382 iCipherImpl->ProcessFinalL(finalBlock, iMacValue); |
|
383 |
|
384 return (iImplementationUid == CryptoSpi::KAlgorithmCipherAesXcbcMac96)? iMacValue.Left(KAesXcbcMac96Size): TPtrC8(iMacValue); |
|
385 } |
|
386 |
|
387 void CCMacImpl::ReInitialiseAndSetKeyL(const CKey& aKey) |
|
388 { |
|
389 Reset(); |
|
390 SetKeyL(aKey); |
|
391 } |
|
392 |
|
393 |
|
394 CCMacImpl* CCMacImpl::CopyL() |
|
395 { |
|
396 CCMacImpl* clone = new(ELeave) CCMacImpl(*this); |
|
397 CleanupStack::PushL(clone); |
|
398 clone->iKey = CKey::NewL(*iKey); |
|
399 CryptoSpi::CSymmetricCipherFactory::CreateSymmetricCipherL(clone->iCipherImpl, |
|
400 CryptoSpi::KAesUid, |
|
401 *iKey, |
|
402 CryptoSpi::KCryptoModeEncryptUid, |
|
403 CryptoSpi::KOperationModeCBCUid, |
|
404 CryptoSpi::KPaddingModeNoneUid, |
|
405 NULL); |
|
406 clone->iCipherImpl->SetIvL(TPtrC8(clone->iE, KMacBlockSize)); |
|
407 CleanupStack::Pop(); |
|
408 return clone; |
|
409 } |
|
410 |
|
411 CCMacImpl* CCMacImpl::ReplicateL() |
|
412 { |
|
413 CCMacImpl* replica = CopyL(); |
|
414 replica->Reset(); |
|
415 return replica; |
|
416 } |