|         |      1 /* | 
|         |      2 ** 2007 October 14 | 
|         |      3 ** | 
|         |      4 ** The author disclaims copyright to this source code.  In place of | 
|         |      5 ** a legal notice, here is a blessing: | 
|         |      6 ** | 
|         |      7 **    May you do good and not evil. | 
|         |      8 **    May you find forgiveness for yourself and forgive others. | 
|         |      9 **    May you share freely, never taking more than you give. | 
|         |     10 ** | 
|         |     11 ************************************************************************* | 
|         |     12 ** This file contains the C functions that implement a memory | 
|         |     13 ** allocation subsystem for use by SQLite.  | 
|         |     14 ** | 
|         |     15 ** This version of the memory allocation subsystem omits all | 
|         |     16 ** use of malloc(). The SQLite user supplies a block of memory | 
|         |     17 ** before calling sqlite3_initialize() from which allocations | 
|         |     18 ** are made and returned by the xMalloc() and xRealloc()  | 
|         |     19 ** implementations. Once sqlite3_initialize() has been called, | 
|         |     20 ** the amount of memory available to SQLite is fixed and cannot | 
|         |     21 ** be changed. | 
|         |     22 ** | 
|         |     23 ** This version of the memory allocation subsystem is included | 
|         |     24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. | 
|         |     25 ** | 
|         |     26 ** $Id: mem3.c,v 1.20 2008/07/18 18:56:17 drh Exp $ | 
|         |     27 */ | 
|         |     28 #include "sqliteInt.h" | 
|         |     29  | 
|         |     30 /* | 
|         |     31 ** This version of the memory allocator is only built into the library | 
|         |     32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not | 
|         |     33 ** mean that the library will use a memory-pool by default, just that | 
|         |     34 ** it is available. The mempool allocator is activated by calling | 
|         |     35 ** sqlite3_config(). | 
|         |     36 */ | 
|         |     37 #ifdef SQLITE_ENABLE_MEMSYS3 | 
|         |     38  | 
|         |     39 /* | 
|         |     40 ** Maximum size (in Mem3Blocks) of a "small" chunk. | 
|         |     41 */ | 
|         |     42 #define MX_SMALL 10 | 
|         |     43  | 
|         |     44  | 
|         |     45 /* | 
|         |     46 ** Number of freelist hash slots | 
|         |     47 */ | 
|         |     48 #define N_HASH  61 | 
|         |     49  | 
|         |     50 /* | 
|         |     51 ** A memory allocation (also called a "chunk") consists of two or  | 
|         |     52 ** more blocks where each block is 8 bytes.  The first 8 bytes are  | 
|         |     53 ** a header that is not returned to the user. | 
|         |     54 ** | 
|         |     55 ** A chunk is two or more blocks that is either checked out or | 
|         |     56 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the | 
|         |     57 ** size of the allocation in blocks if the allocation is free. | 
|         |     58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and | 
|         |     59 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit | 
|         |     60 ** is true if the previous chunk is checked out and false if the | 
|         |     61 ** previous chunk is free.  The u.hdr.prevSize field is the size of | 
|         |     62 ** the previous chunk in blocks if the previous chunk is on the | 
|         |     63 ** freelist. If the previous chunk is checked out, then | 
|         |     64 ** u.hdr.prevSize can be part of the data for that chunk and should | 
|         |     65 ** not be read or written. | 
|         |     66 ** | 
|         |     67 ** We often identify a chunk by its index in mem3.aPool[].  When | 
|         |     68 ** this is done, the chunk index refers to the second block of | 
|         |     69 ** the chunk.  In this way, the first chunk has an index of 1. | 
|         |     70 ** A chunk index of 0 means "no such chunk" and is the equivalent | 
|         |     71 ** of a NULL pointer. | 
|         |     72 ** | 
|         |     73 ** The second block of free chunks is of the form u.list.  The | 
|         |     74 ** two fields form a double-linked list of chunks of related sizes. | 
|         |     75 ** Pointers to the head of the list are stored in mem3.aiSmall[]  | 
|         |     76 ** for smaller chunks and mem3.aiHash[] for larger chunks. | 
|         |     77 ** | 
|         |     78 ** The second block of a chunk is user data if the chunk is checked  | 
|         |     79 ** out.  If a chunk is checked out, the user data may extend into | 
|         |     80 ** the u.hdr.prevSize value of the following chunk. | 
|         |     81 */ | 
|         |     82 typedef struct Mem3Block Mem3Block; | 
|         |     83 struct Mem3Block { | 
|         |     84   union { | 
|         |     85     struct { | 
|         |     86       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */ | 
|         |     87       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */ | 
|         |     88     } hdr; | 
|         |     89     struct { | 
|         |     90       u32 next;       /* Index in mem3.aPool[] of next free chunk */ | 
|         |     91       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */ | 
|         |     92     } list; | 
|         |     93   } u; | 
|         |     94 }; | 
|         |     95  | 
|         |     96 /* | 
|         |     97 ** All of the static variables used by this module are collected | 
|         |     98 ** into a single structure named "mem3".  This is to keep the | 
|         |     99 ** static variables organized and to reduce namespace pollution | 
|         |    100 ** when this module is combined with other in the amalgamation. | 
|         |    101 */ | 
|         |    102 static struct { | 
|         |    103   /* | 
|         |    104   ** True if we are evaluating an out-of-memory callback. | 
|         |    105   */ | 
|         |    106   int alarmBusy; | 
|         |    107    | 
|         |    108   /* | 
|         |    109   ** Mutex to control access to the memory allocation subsystem. | 
|         |    110   */ | 
|         |    111   sqlite3_mutex *mutex; | 
|         |    112    | 
|         |    113   /* | 
|         |    114   ** The minimum amount of free space that we have seen. | 
|         |    115   */ | 
|         |    116   u32 mnMaster; | 
|         |    117  | 
|         |    118   /* | 
|         |    119   ** iMaster is the index of the master chunk.  Most new allocations | 
|         |    120   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks) | 
|         |    121   ** of the current master.  iMaster is 0 if there is not master chunk. | 
|         |    122   ** The master chunk is not in either the aiHash[] or aiSmall[]. | 
|         |    123   */ | 
|         |    124   u32 iMaster; | 
|         |    125   u32 szMaster; | 
|         |    126  | 
|         |    127   /* | 
|         |    128   ** Array of lists of free blocks according to the block size  | 
|         |    129   ** for smaller chunks, or a hash on the block size for larger | 
|         |    130   ** chunks. | 
|         |    131   */ | 
|         |    132   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */ | 
|         |    133   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */ | 
|         |    134  | 
|         |    135   /* | 
|         |    136   ** Memory available for allocation. nPool is the size of the array | 
|         |    137   ** (in Mem3Blocks) pointed to by aPool less 2. | 
|         |    138   */ | 
|         |    139   u32 nPool; | 
|         |    140   Mem3Block *aPool; | 
|         |    141 } mem3; | 
|         |    142  | 
|         |    143 /* | 
|         |    144 ** Unlink the chunk at mem3.aPool[i] from list it is currently | 
|         |    145 ** on.  *pRoot is the list that i is a member of. | 
|         |    146 */ | 
|         |    147 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ | 
|         |    148   u32 next = mem3.aPool[i].u.list.next; | 
|         |    149   u32 prev = mem3.aPool[i].u.list.prev; | 
|         |    150   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    151   if( prev==0 ){ | 
|         |    152     *pRoot = next; | 
|         |    153   }else{ | 
|         |    154     mem3.aPool[prev].u.list.next = next; | 
|         |    155   } | 
|         |    156   if( next ){ | 
|         |    157     mem3.aPool[next].u.list.prev = prev; | 
|         |    158   } | 
|         |    159   mem3.aPool[i].u.list.next = 0; | 
|         |    160   mem3.aPool[i].u.list.prev = 0; | 
|         |    161 } | 
|         |    162  | 
|         |    163 /* | 
|         |    164 ** Unlink the chunk at index i from  | 
|         |    165 ** whatever list is currently a member of. | 
|         |    166 */ | 
|         |    167 static void memsys3Unlink(u32 i){ | 
|         |    168   u32 size, hash; | 
|         |    169   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    170   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); | 
|         |    171   assert( i>=1 ); | 
|         |    172   size = mem3.aPool[i-1].u.hdr.size4x/4; | 
|         |    173   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); | 
|         |    174   assert( size>=2 ); | 
|         |    175   if( size <= MX_SMALL ){ | 
|         |    176     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); | 
|         |    177   }else{ | 
|         |    178     hash = size % N_HASH; | 
|         |    179     memsys3UnlinkFromList(i, &mem3.aiHash[hash]); | 
|         |    180   } | 
|         |    181 } | 
|         |    182  | 
|         |    183 /* | 
|         |    184 ** Link the chunk at mem3.aPool[i] so that is on the list rooted | 
|         |    185 ** at *pRoot. | 
|         |    186 */ | 
|         |    187 static void memsys3LinkIntoList(u32 i, u32 *pRoot){ | 
|         |    188   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    189   mem3.aPool[i].u.list.next = *pRoot; | 
|         |    190   mem3.aPool[i].u.list.prev = 0; | 
|         |    191   if( *pRoot ){ | 
|         |    192     mem3.aPool[*pRoot].u.list.prev = i; | 
|         |    193   } | 
|         |    194   *pRoot = i; | 
|         |    195 } | 
|         |    196  | 
|         |    197 /* | 
|         |    198 ** Link the chunk at index i into either the appropriate | 
|         |    199 ** small chunk list, or into the large chunk hash table. | 
|         |    200 */ | 
|         |    201 static void memsys3Link(u32 i){ | 
|         |    202   u32 size, hash; | 
|         |    203   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    204   assert( i>=1 ); | 
|         |    205   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); | 
|         |    206   size = mem3.aPool[i-1].u.hdr.size4x/4; | 
|         |    207   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); | 
|         |    208   assert( size>=2 ); | 
|         |    209   if( size <= MX_SMALL ){ | 
|         |    210     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); | 
|         |    211   }else{ | 
|         |    212     hash = size % N_HASH; | 
|         |    213     memsys3LinkIntoList(i, &mem3.aiHash[hash]); | 
|         |    214   } | 
|         |    215 } | 
|         |    216  | 
|         |    217 /* | 
|         |    218 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex | 
|         |    219 ** will already be held (obtained by code in malloc.c) if | 
|         |    220 ** sqlite3Config.bMemStat is true. | 
|         |    221 */ | 
|         |    222 static void memsys3Enter(void){ | 
|         |    223   if( sqlite3Config.bMemstat==0 && mem3.mutex==0 ){ | 
|         |    224     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); | 
|         |    225   } | 
|         |    226   sqlite3_mutex_enter(mem3.mutex); | 
|         |    227 } | 
|         |    228 static void memsys3Leave(void){ | 
|         |    229   sqlite3_mutex_leave(mem3.mutex); | 
|         |    230 } | 
|         |    231  | 
|         |    232 /* | 
|         |    233 ** Called when we are unable to satisfy an allocation of nBytes. | 
|         |    234 */ | 
|         |    235 static void memsys3OutOfMemory(int nByte){ | 
|         |    236   if( !mem3.alarmBusy ){ | 
|         |    237     mem3.alarmBusy = 1; | 
|         |    238     assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    239     sqlite3_mutex_leave(mem3.mutex); | 
|         |    240     sqlite3_release_memory(nByte); | 
|         |    241     sqlite3_mutex_enter(mem3.mutex); | 
|         |    242     mem3.alarmBusy = 0; | 
|         |    243   } | 
|         |    244 } | 
|         |    245  | 
|         |    246  | 
|         |    247 /* | 
|         |    248 ** Chunk i is a free chunk that has been unlinked.  Adjust its  | 
|         |    249 ** size parameters for check-out and return a pointer to the  | 
|         |    250 ** user portion of the chunk. | 
|         |    251 */ | 
|         |    252 static void *memsys3Checkout(u32 i, int nBlock){ | 
|         |    253   u32 x; | 
|         |    254   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    255   assert( i>=1 ); | 
|         |    256   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); | 
|         |    257   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); | 
|         |    258   x = mem3.aPool[i-1].u.hdr.size4x; | 
|         |    259   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); | 
|         |    260   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; | 
|         |    261   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; | 
|         |    262   return &mem3.aPool[i]; | 
|         |    263 } | 
|         |    264  | 
|         |    265 /* | 
|         |    266 ** Carve a piece off of the end of the mem3.iMaster free chunk. | 
|         |    267 ** Return a pointer to the new allocation.  Or, if the master chunk | 
|         |    268 ** is not large enough, return 0. | 
|         |    269 */ | 
|         |    270 static void *memsys3FromMaster(int nBlock){ | 
|         |    271   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    272   assert( mem3.szMaster>=nBlock ); | 
|         |    273   if( nBlock>=mem3.szMaster-1 ){ | 
|         |    274     /* Use the entire master */ | 
|         |    275     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); | 
|         |    276     mem3.iMaster = 0; | 
|         |    277     mem3.szMaster = 0; | 
|         |    278     mem3.mnMaster = 0; | 
|         |    279     return p; | 
|         |    280   }else{ | 
|         |    281     /* Split the master block.  Return the tail. */ | 
|         |    282     u32 newi, x; | 
|         |    283     newi = mem3.iMaster + mem3.szMaster - nBlock; | 
|         |    284     assert( newi > mem3.iMaster+1 ); | 
|         |    285     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; | 
|         |    286     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; | 
|         |    287     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; | 
|         |    288     mem3.szMaster -= nBlock; | 
|         |    289     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; | 
|         |    290     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; | 
|         |    291     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; | 
|         |    292     if( mem3.szMaster < mem3.mnMaster ){ | 
|         |    293       mem3.mnMaster = mem3.szMaster; | 
|         |    294     } | 
|         |    295     return (void*)&mem3.aPool[newi]; | 
|         |    296   } | 
|         |    297 } | 
|         |    298  | 
|         |    299 /* | 
|         |    300 ** *pRoot is the head of a list of free chunks of the same size | 
|         |    301 ** or same size hash.  In other words, *pRoot is an entry in either | 
|         |    302 ** mem3.aiSmall[] or mem3.aiHash[].   | 
|         |    303 ** | 
|         |    304 ** This routine examines all entries on the given list and tries | 
|         |    305 ** to coalesce each entries with adjacent free chunks.   | 
|         |    306 ** | 
|         |    307 ** If it sees a chunk that is larger than mem3.iMaster, it replaces  | 
|         |    308 ** the current mem3.iMaster with the new larger chunk.  In order for | 
|         |    309 ** this mem3.iMaster replacement to work, the master chunk must be | 
|         |    310 ** linked into the hash tables.  That is not the normal state of | 
|         |    311 ** affairs, of course.  The calling routine must link the master | 
|         |    312 ** chunk before invoking this routine, then must unlink the (possibly | 
|         |    313 ** changed) master chunk once this routine has finished. | 
|         |    314 */ | 
|         |    315 static void memsys3Merge(u32 *pRoot){ | 
|         |    316   u32 iNext, prev, size, i, x; | 
|         |    317  | 
|         |    318   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    319   for(i=*pRoot; i>0; i=iNext){ | 
|         |    320     iNext = mem3.aPool[i].u.list.next; | 
|         |    321     size = mem3.aPool[i-1].u.hdr.size4x; | 
|         |    322     assert( (size&1)==0 ); | 
|         |    323     if( (size&2)==0 ){ | 
|         |    324       memsys3UnlinkFromList(i, pRoot); | 
|         |    325       assert( i > mem3.aPool[i-1].u.hdr.prevSize ); | 
|         |    326       prev = i - mem3.aPool[i-1].u.hdr.prevSize; | 
|         |    327       if( prev==iNext ){ | 
|         |    328         iNext = mem3.aPool[prev].u.list.next; | 
|         |    329       } | 
|         |    330       memsys3Unlink(prev); | 
|         |    331       size = i + size/4 - prev; | 
|         |    332       x = mem3.aPool[prev-1].u.hdr.size4x & 2; | 
|         |    333       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; | 
|         |    334       mem3.aPool[prev+size-1].u.hdr.prevSize = size; | 
|         |    335       memsys3Link(prev); | 
|         |    336       i = prev; | 
|         |    337     }else{ | 
|         |    338       size /= 4; | 
|         |    339     } | 
|         |    340     if( size>mem3.szMaster ){ | 
|         |    341       mem3.iMaster = i; | 
|         |    342       mem3.szMaster = size; | 
|         |    343     } | 
|         |    344   } | 
|         |    345 } | 
|         |    346  | 
|         |    347 /* | 
|         |    348 ** Return a block of memory of at least nBytes in size. | 
|         |    349 ** Return NULL if unable. | 
|         |    350 ** | 
|         |    351 ** This function assumes that the necessary mutexes, if any, are | 
|         |    352 ** already held by the caller. Hence "Unsafe". | 
|         |    353 */ | 
|         |    354 static void *memsys3MallocUnsafe(int nByte){ | 
|         |    355   u32 i; | 
|         |    356   int nBlock; | 
|         |    357   int toFree; | 
|         |    358  | 
|         |    359   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    360   assert( sizeof(Mem3Block)==8 ); | 
|         |    361   if( nByte<=12 ){ | 
|         |    362     nBlock = 2; | 
|         |    363   }else{ | 
|         |    364     nBlock = (nByte + 11)/8; | 
|         |    365   } | 
|         |    366   assert( nBlock>=2 ); | 
|         |    367  | 
|         |    368   /* STEP 1: | 
|         |    369   ** Look for an entry of the correct size in either the small | 
|         |    370   ** chunk table or in the large chunk hash table.  This is | 
|         |    371   ** successful most of the time (about 9 times out of 10). | 
|         |    372   */ | 
|         |    373   if( nBlock <= MX_SMALL ){ | 
|         |    374     i = mem3.aiSmall[nBlock-2]; | 
|         |    375     if( i>0 ){ | 
|         |    376       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); | 
|         |    377       return memsys3Checkout(i, nBlock); | 
|         |    378     } | 
|         |    379   }else{ | 
|         |    380     int hash = nBlock % N_HASH; | 
|         |    381     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ | 
|         |    382       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ | 
|         |    383         memsys3UnlinkFromList(i, &mem3.aiHash[hash]); | 
|         |    384         return memsys3Checkout(i, nBlock); | 
|         |    385       } | 
|         |    386     } | 
|         |    387   } | 
|         |    388  | 
|         |    389   /* STEP 2: | 
|         |    390   ** Try to satisfy the allocation by carving a piece off of the end | 
|         |    391   ** of the master chunk.  This step usually works if step 1 fails. | 
|         |    392   */ | 
|         |    393   if( mem3.szMaster>=nBlock ){ | 
|         |    394     return memsys3FromMaster(nBlock); | 
|         |    395   } | 
|         |    396  | 
|         |    397  | 
|         |    398   /* STEP 3:   | 
|         |    399   ** Loop through the entire memory pool.  Coalesce adjacent free | 
|         |    400   ** chunks.  Recompute the master chunk as the largest free chunk. | 
|         |    401   ** Then try again to satisfy the allocation by carving a piece off | 
|         |    402   ** of the end of the master chunk.  This step happens very | 
|         |    403   ** rarely (we hope!) | 
|         |    404   */ | 
|         |    405   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ | 
|         |    406     memsys3OutOfMemory(toFree); | 
|         |    407     if( mem3.iMaster ){ | 
|         |    408       memsys3Link(mem3.iMaster); | 
|         |    409       mem3.iMaster = 0; | 
|         |    410       mem3.szMaster = 0; | 
|         |    411     } | 
|         |    412     for(i=0; i<N_HASH; i++){ | 
|         |    413       memsys3Merge(&mem3.aiHash[i]); | 
|         |    414     } | 
|         |    415     for(i=0; i<MX_SMALL-1; i++){ | 
|         |    416       memsys3Merge(&mem3.aiSmall[i]); | 
|         |    417     } | 
|         |    418     if( mem3.szMaster ){ | 
|         |    419       memsys3Unlink(mem3.iMaster); | 
|         |    420       if( mem3.szMaster>=nBlock ){ | 
|         |    421         return memsys3FromMaster(nBlock); | 
|         |    422       } | 
|         |    423     } | 
|         |    424   } | 
|         |    425  | 
|         |    426   /* If none of the above worked, then we fail. */ | 
|         |    427   return 0; | 
|         |    428 } | 
|         |    429  | 
|         |    430 /* | 
|         |    431 ** Free an outstanding memory allocation. | 
|         |    432 ** | 
|         |    433 ** This function assumes that the necessary mutexes, if any, are | 
|         |    434 ** already held by the caller. Hence "Unsafe". | 
|         |    435 */ | 
|         |    436 void memsys3FreeUnsafe(void *pOld){ | 
|         |    437   Mem3Block *p = (Mem3Block*)pOld; | 
|         |    438   int i; | 
|         |    439   u32 size, x; | 
|         |    440   assert( sqlite3_mutex_held(mem3.mutex) ); | 
|         |    441   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); | 
|         |    442   i = p - mem3.aPool; | 
|         |    443   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); | 
|         |    444   size = mem3.aPool[i-1].u.hdr.size4x/4; | 
|         |    445   assert( i+size<=mem3.nPool+1 ); | 
|         |    446   mem3.aPool[i-1].u.hdr.size4x &= ~1; | 
|         |    447   mem3.aPool[i+size-1].u.hdr.prevSize = size; | 
|         |    448   mem3.aPool[i+size-1].u.hdr.size4x &= ~2; | 
|         |    449   memsys3Link(i); | 
|         |    450  | 
|         |    451   /* Try to expand the master using the newly freed chunk */ | 
|         |    452   if( mem3.iMaster ){ | 
|         |    453     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ | 
|         |    454       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; | 
|         |    455       mem3.iMaster -= size; | 
|         |    456       mem3.szMaster += size; | 
|         |    457       memsys3Unlink(mem3.iMaster); | 
|         |    458       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; | 
|         |    459       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; | 
|         |    460       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; | 
|         |    461     } | 
|         |    462     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; | 
|         |    463     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ | 
|         |    464       memsys3Unlink(mem3.iMaster+mem3.szMaster); | 
|         |    465       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; | 
|         |    466       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; | 
|         |    467       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; | 
|         |    468     } | 
|         |    469   } | 
|         |    470 } | 
|         |    471  | 
|         |    472 /* | 
|         |    473 ** Return the size of an outstanding allocation, in bytes.  The | 
|         |    474 ** size returned omits the 8-byte header overhead.  This only | 
|         |    475 ** works for chunks that are currently checked out. | 
|         |    476 */ | 
|         |    477 static int memsys3Size(void *p){ | 
|         |    478   Mem3Block *pBlock; | 
|         |    479   if( p==0 ) return 0; | 
|         |    480   pBlock = (Mem3Block*)p; | 
|         |    481   assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); | 
|         |    482   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; | 
|         |    483 } | 
|         |    484  | 
|         |    485 /* | 
|         |    486 ** Round up a request size to the next valid allocation size. | 
|         |    487 */ | 
|         |    488 static int memsys3Roundup(int n){ | 
|         |    489   if( n<=12 ){ | 
|         |    490     return 12; | 
|         |    491   }else{ | 
|         |    492     return ((n+11)&~7) - 4; | 
|         |    493   } | 
|         |    494 } | 
|         |    495  | 
|         |    496 /* | 
|         |    497 ** Allocate nBytes of memory. | 
|         |    498 */ | 
|         |    499 static void *memsys3Malloc(int nBytes){ | 
|         |    500   sqlite3_int64 *p; | 
|         |    501   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */ | 
|         |    502   memsys3Enter(); | 
|         |    503   p = memsys3MallocUnsafe(nBytes); | 
|         |    504   memsys3Leave(); | 
|         |    505   return (void*)p;  | 
|         |    506 } | 
|         |    507  | 
|         |    508 /* | 
|         |    509 ** Free memory. | 
|         |    510 */ | 
|         |    511 void memsys3Free(void *pPrior){ | 
|         |    512   assert( pPrior ); | 
|         |    513   memsys3Enter(); | 
|         |    514   memsys3FreeUnsafe(pPrior); | 
|         |    515   memsys3Leave(); | 
|         |    516 } | 
|         |    517  | 
|         |    518 /* | 
|         |    519 ** Change the size of an existing memory allocation | 
|         |    520 */ | 
|         |    521 void *memsys3Realloc(void *pPrior, int nBytes){ | 
|         |    522   int nOld; | 
|         |    523   void *p; | 
|         |    524   if( pPrior==0 ){ | 
|         |    525     return sqlite3_malloc(nBytes); | 
|         |    526   } | 
|         |    527   if( nBytes<=0 ){ | 
|         |    528     sqlite3_free(pPrior); | 
|         |    529     return 0; | 
|         |    530   } | 
|         |    531   nOld = memsys3Size(pPrior); | 
|         |    532   if( nBytes<=nOld && nBytes>=nOld-128 ){ | 
|         |    533     return pPrior; | 
|         |    534   } | 
|         |    535   memsys3Enter(); | 
|         |    536   p = memsys3MallocUnsafe(nBytes); | 
|         |    537   if( p ){ | 
|         |    538     if( nOld<nBytes ){ | 
|         |    539       memcpy(p, pPrior, nOld); | 
|         |    540     }else{ | 
|         |    541       memcpy(p, pPrior, nBytes); | 
|         |    542     } | 
|         |    543     memsys3FreeUnsafe(pPrior); | 
|         |    544   } | 
|         |    545   memsys3Leave(); | 
|         |    546   return p; | 
|         |    547 } | 
|         |    548  | 
|         |    549 /* | 
|         |    550 ** Initialize this module. | 
|         |    551 */ | 
|         |    552 static int memsys3Init(void *NotUsed){ | 
|         |    553   if( !sqlite3Config.pHeap ){ | 
|         |    554     return SQLITE_ERROR; | 
|         |    555   } | 
|         |    556  | 
|         |    557   /* Store a pointer to the memory block in global structure mem3. */ | 
|         |    558   assert( sizeof(Mem3Block)==8 ); | 
|         |    559   mem3.aPool = (Mem3Block *)sqlite3Config.pHeap; | 
|         |    560   mem3.nPool = (sqlite3Config.nHeap / sizeof(Mem3Block)) - 2; | 
|         |    561  | 
|         |    562   /* Initialize the master block. */ | 
|         |    563   mem3.szMaster = mem3.nPool; | 
|         |    564   mem3.mnMaster = mem3.szMaster; | 
|         |    565   mem3.iMaster = 1; | 
|         |    566   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; | 
|         |    567   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; | 
|         |    568   mem3.aPool[mem3.nPool].u.hdr.size4x = 1; | 
|         |    569  | 
|         |    570   return SQLITE_OK; | 
|         |    571 } | 
|         |    572  | 
|         |    573 /* | 
|         |    574 ** Deinitialize this module. | 
|         |    575 */ | 
|         |    576 static void memsys3Shutdown(void *NotUsed){ | 
|         |    577   return; | 
|         |    578 } | 
|         |    579  | 
|         |    580  | 
|         |    581  | 
|         |    582 /* | 
|         |    583 ** Open the file indicated and write a log of all unfreed memory  | 
|         |    584 ** allocations into that log. | 
|         |    585 */ | 
|         |    586 #ifdef SQLITE_DEBUG | 
|         |    587 void sqlite3Memsys3Dump(const char *zFilename){ | 
|         |    588   FILE *out; | 
|         |    589   int i, j; | 
|         |    590   u32 size; | 
|         |    591   if( zFilename==0 || zFilename[0]==0 ){ | 
|         |    592     out = stdout; | 
|         |    593   }else{ | 
|         |    594     out = fopen(zFilename, "w"); | 
|         |    595     if( out==0 ){ | 
|         |    596       fprintf(stderr, "** Unable to output memory debug output log: %s **\n", | 
|         |    597                       zFilename); | 
|         |    598       return; | 
|         |    599     } | 
|         |    600   } | 
|         |    601   memsys3Enter(); | 
|         |    602   fprintf(out, "CHUNKS:\n"); | 
|         |    603   for(i=1; i<=mem3.nPool; i+=size/4){ | 
|         |    604     size = mem3.aPool[i-1].u.hdr.size4x; | 
|         |    605     if( size/4<=1 ){ | 
|         |    606       fprintf(out, "%p size error\n", &mem3.aPool[i]); | 
|         |    607       assert( 0 ); | 
|         |    608       break; | 
|         |    609     } | 
|         |    610     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ | 
|         |    611       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); | 
|         |    612       assert( 0 ); | 
|         |    613       break; | 
|         |    614     } | 
|         |    615     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ | 
|         |    616       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); | 
|         |    617       assert( 0 ); | 
|         |    618       break; | 
|         |    619     } | 
|         |    620     if( size&1 ){ | 
|         |    621       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); | 
|         |    622     }else{ | 
|         |    623       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, | 
|         |    624                   i==mem3.iMaster ? " **master**" : ""); | 
|         |    625     } | 
|         |    626   } | 
|         |    627   for(i=0; i<MX_SMALL-1; i++){ | 
|         |    628     if( mem3.aiSmall[i]==0 ) continue; | 
|         |    629     fprintf(out, "small(%2d):", i); | 
|         |    630     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ | 
|         |    631       fprintf(out, " %p(%d)", &mem3.aPool[j], | 
|         |    632               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); | 
|         |    633     } | 
|         |    634     fprintf(out, "\n");  | 
|         |    635   } | 
|         |    636   for(i=0; i<N_HASH; i++){ | 
|         |    637     if( mem3.aiHash[i]==0 ) continue; | 
|         |    638     fprintf(out, "hash(%2d):", i); | 
|         |    639     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ | 
|         |    640       fprintf(out, " %p(%d)", &mem3.aPool[j], | 
|         |    641               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); | 
|         |    642     } | 
|         |    643     fprintf(out, "\n");  | 
|         |    644   } | 
|         |    645   fprintf(out, "master=%d\n", mem3.iMaster); | 
|         |    646   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); | 
|         |    647   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); | 
|         |    648   sqlite3_mutex_leave(mem3.mutex); | 
|         |    649   if( out==stdout ){ | 
|         |    650     fflush(stdout); | 
|         |    651   }else{ | 
|         |    652     fclose(out); | 
|         |    653   } | 
|         |    654 } | 
|         |    655 #endif | 
|         |    656  | 
|         |    657 /* | 
|         |    658 ** This routine is the only routine in this file with external  | 
|         |    659 ** linkage. | 
|         |    660 ** | 
|         |    661 ** Populate the low-level memory allocation function pointers in | 
|         |    662 ** sqlite3Config.m with pointers to the routines in this file. The | 
|         |    663 ** arguments specify the block of memory to manage. | 
|         |    664 ** | 
|         |    665 ** This routine is only called by sqlite3_config(), and therefore | 
|         |    666 ** is not required to be threadsafe (it is not). | 
|         |    667 */ | 
|         |    668 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ | 
|         |    669   static const sqlite3_mem_methods mempoolMethods = { | 
|         |    670      memsys3Malloc, | 
|         |    671      memsys3Free, | 
|         |    672      memsys3Realloc, | 
|         |    673      memsys3Size, | 
|         |    674      memsys3Roundup, | 
|         |    675      memsys3Init, | 
|         |    676      memsys3Shutdown, | 
|         |    677      0 | 
|         |    678   }; | 
|         |    679   return &mempoolMethods; | 
|         |    680 } | 
|         |    681  | 
|         |    682 #endif /* SQLITE_ENABLE_MEMSYS3 */ |