--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/kernel/eka/euser/epoc/win32/uc_realx.cpp Mon Oct 19 15:55:17 2009 +0100
@@ -0,0 +1,3281 @@
+// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// e32\euser\epoc\win32\uc_realx.cpp
+//
+//
+
+#include "u32std.h"
+#include <e32math.h>
+
+#pragma warning (disable : 4100) // unreferenced formal parameter
+#pragma warning (disable : 4700) // local variable 'this' used without
+ // having been initialised
+#pragma warning ( disable : 4414 ) // short jump to function converted to near
+
+
+#if defined(__VC32__) && (_MSC_VER==1100) // untested on MSVC++ > 5.0
+// Workaround for MSVC++ 5.0 bug; MSVC incorrectly fixes up conditional jumps
+// when the destination is a C++ function.
+#define _ASM_j(cond,dest) _asm jn##cond short $+11 _asm jmp dest
+#define _ASM_jn(cond,dest) _asm j##cond short $+11 _asm jmp dest
+#pragma optimize( "", off ) // stop MSVC murdering the code
+#else
+#define _ASM_j(cond,dest) _asm j##cond dest
+#define _ASM_jn(cond,dest) _asm jn##cond dest
+#endif
+
+//
+// 64-bit precision floating point routines
+// Register storage format:
+// edx:ebx=64 bit normalised mantissa
+// ecx bits 16-31 = 16-bit exponent, biased by 7FFF
+// ecx bit 0 = sign
+// ecx bit 8 = rounded-down flag
+// ecx bit 9 = rounded-up flag
+//
+// Memory storage format:
+// 3 doublewords per number
+// Low 32 bits of mantissa at [addr]
+// High 32 bits of mantissa at [addr+4]
+// Exponent/flags/sign at [addr+8]
+//
+
+LOCAL_C void TRealXPanic(TInt aErr)
+ {
+ User::Panic(_L("MATHX"),aErr);
+ }
+
+__NAKED__ LOCAL_C void TRealXPanicEax(void)
+ {
+ _asm push eax
+ _asm call TRealXPanic
+ }
+
+LOCAL_C __NAKED__ void TRealXRealIndefinite(void)
+ {
+ // return 'real indefinite' NaN in ecx,edx:ebx
+ _asm mov ecx, 0xFFFF0001 // exponent=FFFF, sign negative
+ _asm mov edx, 0xC0000000 // mantissa=C0000000 00000000
+ _asm xor ebx, ebx
+ _asm mov eax, -6 // return KErrArgument
+ _asm ret
+ }
+
+LOCAL_C __NAKED__ void TRealXBinOpNaN(void)
+ {
+ // generic routine to process NaN's in binary operations
+ // destination operand in ecx,edx:eax
+ // source operand at [esi]
+
+ _asm mov eax, [esi+8] // source operand into eax,edi:ebp
+ _asm mov edi, [esi+4]
+ _asm mov ebp, [esi]
+ _asm cmp ecx, 0xFFFF0000 // check if dest is a NaN
+ _asm jb short TRealXBinOpNaN1 // if not, swap them
+ _asm cmp edx, 0x80000000
+ _asm jne short TRealXBinOpNaN2
+ _asm test ebx, ebx
+ _asm jne short TRealXBinOpNaN2
+ TRealXBinOpNaN1: // swap the operands
+ _asm xchg ecx, eax
+ _asm xchg edx, edi
+ _asm xchg ebx, ebp
+ TRealXBinOpNaN2:
+ _asm cmp eax, 0xFFFF0000 // check if both operands are NaNs
+ _asm jb short TRealXBinOpNaN4 // if not, ignore non-NaN operand
+ _asm cmp edi, 0x80000000
+ _asm jne short TRealXBinOpNaN3
+ _asm test ebp, ebp
+ _asm je short TRealXBinOpNaN4
+ TRealXBinOpNaN3: // if both operands are NaN's, compare significands
+ _asm cmp edx, edi
+ _asm ja short TRealXBinOpNaN4
+ _asm jb short TRealXBinOpNaN5
+ _asm cmp ebx, ebp
+ _asm jae short TRealXBinOpNaN4
+ TRealXBinOpNaN5: // come here if dest is smaller - copy source to dest
+ _asm mov ecx, eax
+ _asm mov edx, edi
+ _asm mov ebx, ebp
+ TRealXBinOpNaN4: // NaN with larger significand is in ecx,edx:ebx
+ _asm or edx, 0x40000000 // convert an SNaN to a QNaN
+ _asm mov eax, -6 // return KErrArgument
+ _asm ret
+ }
+
+// Add TRealX at [esi] + ecx,edx:ebx
+// Result in ecx,edx:ebx
+// Error code in eax
+// Note: +0 + +0 = +0, -0 + -0 = -0, +0 + -0 = -0 + +0 = +0,
+// +/-0 + X = X + +/-0 = X, X + -X = -X + X = +0
+__NAKED__ LOCAL_C void TRealXAdd()
+ {
+ _asm xor ch, ch // clear rounding flags
+ _asm cmp ecx, 0xFFFF0000 // check if dest=NaN or infinity
+ _asm jnc addfpsd // branch if it is
+ _asm mov eax, [esi+8] // fetch sign/exponent of source
+ _asm cmp eax, 0xFFFF0000 // check if source=NaN or infinity
+ _asm jnc addfpss // branch if it is
+ _asm cmp eax, 0x10000 // check if source=0
+ _asm jc addfp0s // branch if it is
+ _asm cmp ecx, 0x10000 // check if dest=0
+ _asm jc addfp0d // branch if it is
+ _asm and cl, 1 // clear bits 1-7 of ecx
+ _asm and al, 1 // clear bits 1-7 of eax
+ _asm mov ch, cl
+ _asm xor ch, al // xor of signs into ch bit 0
+ _asm add ch, ch
+ _asm or cl, ch // and into cl bit 1
+ _asm or al, ch // and al bit 1
+ _asm xor ch, ch // clear rounding flags
+ _asm mov ebp, [esi] // fetch source mantissa 0-31
+ _asm mov edi, [esi+4] // fetch source mantissa 32-63
+ _asm ror ecx, 16 // dest exponent into cx
+ _asm ror eax, 16 // source exponent into ax
+ _asm push ecx // push dest exponent/sign
+ _asm sub cx, ax // cx = dest exponent - source exponent
+ _asm je short addfp3b // if equal, no shifting required
+ _asm ja short addfp1 // branch if dest exponent >= source exponent
+ _asm xchg ebx, ebp // make sure edi:ebp contains the mantissa to be shifted
+ _asm xchg edx, edi //
+ _asm xchg eax, [esp] // and larger exponent and corresponding sign is on the stack
+ _asm neg cx // make cx positive = number of right shifts needed
+ addfp1:
+ _asm cmp cx, 64 // if more than 64 shifts needed
+ _asm ja addfp2 // branch to output larger number
+ _asm jb addfp3 // branch if <64 shifts
+ _asm mov eax, edi // exactly 64 shifts needed - rounding word=mant high
+ _asm test ebp, ebp // check bits lost
+ _asm jz short addfp3a
+ _asm or ch, 1 // if not all zero, set rounded-down flag
+ addfp3a:
+ _asm xor edi, edi // clear edx:ebx
+ _asm xor ebp, ebp
+ _asm jmp short addfp5 // finished shifting
+ addfp3b: // exponents equal
+ _asm xor eax, eax // set rounding word=0
+ _asm jmp short addfp5
+ addfp3:
+ _asm cmp cl, 32 // 32 or more shifts needed ?
+ _asm jb short addfp4 // skip if <32
+ _asm mov eax, ebp // rounding word=mant low
+ _asm mov ebp, edi // mant low=mant high
+ _asm xor edi, edi // mant high=0
+ _asm sub cl, 32 // reduce count by 32
+ _asm jz short addfp5 // if now zero, finished shifting
+ _asm shrd edi, eax, cl // shift ebp:eax:edi right by cl bits
+ _asm shrd eax, ebp, cl //
+ _asm shr ebp, cl //
+ _asm test edi, edi // check bits lost in shift
+ _asm jz short addfp5 // if all zero, finished
+ _asm or ch, 1 // else set rounded-down flag
+ _asm xor edi, edi // clear edx again
+ _asm jmp short addfp5 // finished shifting
+ addfp4: // <32 shifts needed now
+ _asm xor eax, eax // clear rounding word initially
+ _asm shrd eax, ebp, cl // shift edi:ebp:eax right by cl bits
+ _asm shrd ebp, edi, cl //
+ _asm shr edi, cl //
+
+ addfp5:
+ _asm mov [esp+3], ch // rounding flag into ch image on stack
+ _asm pop ecx // recover sign and exponent into ecx, with rounding flag
+ _asm ror ecx, 16 // into normal position
+ _asm test cl, 2 // addition or subtraction needed ?
+ _asm jnz short subfp1 // branch if subtraction
+ _asm add ebx,ebp // addition required - add mantissas
+ _asm adc edx,edi //
+ _asm jnc short roundfp // branch if no carry
+ _asm rcr edx,1 // shift carry right into mantissa
+ _asm rcr ebx,1 //
+ _asm rcr eax,1 // and into rounding word
+ _asm jnc short addfp5a
+ _asm or ch, 1 // if 1 shifted out, set rounded-down flag
+ addfp5a:
+ _asm add ecx, 0x10000 // and increment exponent
+
+ // perform rounding based on rounding word in eax and rounding flag in ch
+ roundfp:
+ _asm cmp eax, 0x80000000
+ _asm jc roundfp0 // if rounding word<80000000, round down
+ _asm ja roundfp1 // if >80000000, round up
+ _asm test ch, 1
+ _asm jnz short roundfp1 // if rounded-down flag set, round up
+ _asm test ch, 2
+ _asm jnz short roundfp0 // if rounded-up flag set, round down
+ _asm test bl, 1 // else test mantissa lsb
+ _asm jz short roundfp0 // round down if 0, up if 1 (round to even)
+ roundfp1: // Come here to round up
+ _asm add ebx, 1 // increment mantissa
+ _asm adc edx,0 //
+ _asm jnc roundfp1a // if no carry OK
+ _asm rcr edx,1 // else shift carry into mantissa (edx:ebx=0 here)
+ _asm add ecx, 0x10000 // and increment exponent
+ roundfp1a:
+ _asm cmp ecx, 0xFFFF0000 // check for overflow
+ _asm jae short addfpovfw // jump if overflow
+ _asm mov ch, 2 // else set rounded-up flag
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ roundfp0: // Come here to round down
+ _asm cmp ecx, 0xFFFF0000 // check for overflow
+ _asm jae short addfpovfw // jump if overflow
+ _asm test eax, eax // else check if rounding word zero
+ _asm jz short roundfp0a // if so, leave rounding flags as they are
+ _asm mov ch, 1 // else set rounded-down flag
+ roundfp0a:
+ _asm xor eax, eax // return KErrNone
+ _asm ret // exit
+
+ addfpovfw: // Come here if overflow occurs
+ _asm xor ch, ch // clear rounding flags, exponent=FFFF
+ _asm xor ebx, ebx
+ _asm mov edx, 0x80000000 // mantissa=80000000 00000000 for infinity
+ _asm mov eax, -9 // return KErrOverflow
+ _asm ret
+
+ // exponents differ by more than 64 - output larger number
+ addfp2:
+ _asm pop ecx // recover exponent and sign
+ _asm ror ecx, 16 // into normal position
+ _asm or ch, 1 // set rounded-down flag
+ _asm test cl, 2 // check if signs the same
+ _asm jz addfp2a
+ _asm xor ch, 3 // if not, set rounded-up flag
+ addfp2a:
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // signs differ, so must subtract mantissas
+ subfp1:
+ _asm add ch, ch // if rounded-down flag set, change it to rounded-up
+ _asm neg eax // subtract rounding word from 0
+ _asm sbb ebx, ebp // and subtract mantissas with borrow
+ _asm sbb edx, edi //
+ _asm jnc short subfp2 // if no borrow, sign is correct
+ _asm xor cl, 1 // else change sign of result
+ _asm shr ch, 1 // change rounding back to rounded-down
+ _asm not eax // negate rounding word
+ _asm not ebx // and mantissa
+ _asm not edx //
+ _asm add eax,1 // two's complement negation
+ _asm adc ebx,0 //
+ _asm adc edx,0 //
+ subfp2:
+ _asm jnz short subfp3 // branch if edx non-zero at this point
+ _asm mov edx, ebx // else shift ebx into edx
+ _asm or edx, edx //
+ _asm jz short subfp4 // if still zero, branch
+ _asm mov ebx, eax // else shift rounding word into ebx
+ _asm xor eax, eax // and zero rounding word
+ _asm sub ecx, 0x200000 // decrease exponent by 32 due to shift
+ _asm jnc short subfp3 // if no borrow, carry on
+ _asm jmp short subfpundflw // if borrow here, underflow
+ subfp4:
+ _asm mov edx, eax // move rounding word into edx
+ _asm or edx, edx // is edx still zero ?
+ _asm jz short subfp0 // if so, result is precisely zero
+ _asm xor ebx, ebx // else zero ebx and rounding word
+ _asm xor eax, eax //
+ _asm sub ecx, 0x400000 // and decrease exponent by 64 due to shift
+ _asm jc short subfpundflw // if borrow, underflow
+ subfp3:
+ _asm mov edi, ecx // preserve sign and exponent
+ _asm bsr ecx, edx // position of most significant 1 into ecx
+ _asm neg ecx //
+ _asm add ecx, 31 // cl = 31-position of MS 1 = number of shifts to normalise
+ _asm shld edx, ebx, cl // shift edx:ebx:eax left by cl bits
+ _asm shld ebx, eax, cl //
+ _asm shl eax, cl //
+ _asm mov ebp, ecx // bit count into ebp for subtraction
+ _asm shl ebp, 16 // shift left by 16 to align with exponent
+ _asm mov ecx, edi // exponent, sign, rounding flags back into ecx
+ _asm sub ecx, ebp // subtract shift count from exponent
+ _asm jc short subfpundflw // if borrow, underflow
+ _asm cmp ecx, 0x10000 // check if exponent 0
+ _asm jnc roundfp // if not, jump to round result, else underflow
+
+ // come here if underflow
+ subfpundflw:
+ _asm and ecx, 1 // set exponent to zero, leave sign
+ _asm xor edx, edx
+ _asm xor ebx, ebx
+ _asm mov eax, -10 // return KErrUnderflow
+ _asm ret
+
+ // come here to return zero result
+ subfp0:
+ _asm xor ecx, ecx // set exponent to zero, positive sign
+ _asm xor edx, edx
+ _asm xor ebx, ebx
+ addfp0snzd:
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // come here if source=0 - eax=source exponent/sign
+ addfp0s:
+ _asm cmp ecx, 0x10000 // check if dest=0
+ _asm jnc addfp0snzd // if not, return dest unaltered
+ _asm and ecx, eax // else both zero, result negative iff both zeros negative
+ _asm and ecx, 1
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // come here if dest=0, source nonzero
+ addfp0d:
+ _asm mov ebx, [esi] // return source unaltered
+ _asm mov edx, [esi+4]
+ _asm mov ecx, [esi+8]
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // come here if dest=NaN or infinity
+ addfpsd:
+ _asm cmp edx, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebx, ebx
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm mov eax, [esi+8] // eax=second operand exponent
+ _asm cmp eax, 0xFFFF0000 // check second operand for NaN or infinity
+ _asm jae short addfpsd1 // branch if NaN or infinity
+ addfpsd2:
+ _asm mov eax, -9 // else return dest unaltered (infinity) and KErrOverflow
+ _asm ret
+ addfpsd1:
+ _asm mov ebp, [esi] // source mantissa into edi:ebp
+ _asm mov edi, [esi+4]
+ _asm cmp edi, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebp, ebp
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm xor al, cl // both operands are infinity - check signs
+ _asm test al, 1
+ _asm jz short addfpsd2 // if both the same, return KErrOverflow
+ _asm jmp TRealXRealIndefinite // else return 'real indefinite'
+
+ // come here if source=NaN or infinity, dest finite
+ addfpss:
+ _asm mov ebp, [esi] // source mantissa into edi:ebp
+ _asm mov edi, [esi+4]
+ _asm cmp edi, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebp, ebp
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm mov ecx, eax // if source=infinity, return source unaltered
+ _asm mov edx, edi
+ _asm mov ebx, ebp
+ _asm mov eax, -9 // return KErrOverflow
+ _asm ret
+ }
+
+// Subtract TRealX at [esi] - ecx,edx:ebx
+// Result in ecx,edx:ebx
+// Error code in eax
+__NAKED__ LOCAL_C void TRealXSubtract()
+ {
+ _asm xor cl, 1 // negate subtrahend
+ _asm jmp TRealXAdd
+ }
+
+// Multiply TRealX at [esi] * ecx,edx:ebx
+// Result in ecx,edx:ebx
+// Error code in eax
+__NAKED__ LOCAL_C void TRealXMultiply()
+ {
+ _asm xor ch, ch // clear rounding flags
+ _asm mov eax, [esi+8] // fetch sign/exponent of source
+ _asm xor cl, al // xor signs
+ _asm cmp ecx, 0xFFFF0000 // check if dest=NaN or infinity
+ _asm jnc mulfpsd // branch if it is
+ _asm cmp eax, 0xFFFF0000 // check if source=NaN or infinity
+ _asm jnc mulfpss // branch if it is
+ _asm cmp eax, 0x10000 // check if source=0
+ _asm jc mulfp0 // branch if it is
+ _asm cmp ecx, 0x10000 // check if dest=0
+ _asm jc mulfp0 // branch if it is
+ _asm push ecx // save result sign
+ _asm shr ecx, 16 // dest exponent into cx
+ _asm shr eax, 16 // source exponent into ax
+ _asm add eax, ecx // add exponents
+ _asm sub eax, 0x7FFE // eax now contains result exponent
+ _asm push eax // save it
+ _asm mov edi, edx // save dest mantissa high
+ _asm mov eax, ebx // dest mantissa low -> eax
+ _asm mul dword ptr [esi] // dest mantissa low * source mantissa low -> edx:eax
+ _asm xchg ebx, eax // result dword 0 -> ebx, dest mant low -> eax
+ _asm mov ebp, edx // result dword 1 -> ebp
+ _asm mul dword ptr [esi+4] // dest mant low * src mant high -> edx:eax
+ _asm add ebp, eax // add in partial product to dwords 1 and 2
+ _asm adc edx, 0 //
+ _asm mov ecx, edx // result dword 2 -> ecx
+ _asm mov eax, edi // dest mant high -> eax
+ _asm mul dword ptr [esi+4] // dest mant high * src mant high -> edx:eax
+ _asm add ecx, eax // add in partial product to dwords 2, 3
+ _asm adc edx, 0 //
+ _asm mov eax, edi // dest mant high -> eax
+ _asm mov edi, edx // result dword 3 -> edi
+ _asm mul dword ptr [esi] // dest mant high * src mant low -> edx:eax
+ _asm add ebp, eax // add in partial product to dwords 1, 2
+ _asm adc ecx, edx //
+ _asm adc edi, 0 // 128-bit mantissa product is now in edi:ecx:ebp:ebx
+ _asm mov edx, edi // top 64 bits into edx:ebx
+ _asm mov edi, ebx
+ _asm mov ebx, ecx // bottom 64 bits now in ebp:edi
+ _asm pop ecx // recover exponent
+ _asm js short mulfp1 // skip if mantissa normalised
+ _asm add edi, edi // else shift left (only one shift will be needed)
+ _asm adc ebp, ebp
+ _asm adc ebx, ebx
+ _asm adc edx, edx
+ _asm dec ecx // and decrement exponent
+ mulfp1:
+ _asm cmp ebp, 0x80000000 // compare bottom 64 bits with 80000000 00000000 for rounding
+ _asm ja short mulfp2 // branch to round up
+ _asm jb short mulfp3 // branch to round down
+ _asm test edi, edi
+ _asm jnz short mulfp2 // branch to round up
+ _asm test bl, 1 // if exactly half-way, test LSB of result mantissa
+ _asm jz short mulfp4 // if LSB=0, round down (round to even)
+ mulfp2:
+ _asm add ebx, 1 // round up - increment mantissa
+ _asm adc edx, 0
+ _asm jnc short mulfp2a
+ _asm rcr edx, 1
+ _asm inc ecx
+ mulfp2a:
+ _asm mov al, 2 // set rounded-up flag
+ _asm jmp short mulfp5
+ mulfp3: // round down
+ _asm xor al, al // clear rounding flags
+ _asm or ebp, edi // check for exact result
+ _asm jz short mulfp5 // skip if exact
+ mulfp4: // come here to round down when we know result inexact
+ _asm mov al, 1 // else set rounded-down flag
+ mulfp5: // final mantissa now in edx:ebx, exponent in ecx
+ _asm cmp ecx, 0xFFFF // check for overflow
+ _asm jge short mulfp6 // branch if overflow
+ _asm cmp ecx, 0 // check for underflow
+ _asm jle short mulfp7 // branch if underflow
+ _asm shl ecx, 16 // else exponent up to top end of ecx
+ _asm mov ch, al // rounding flags into ch
+ _asm pop eax // recover result sign
+ _asm mov cl, al // into cl
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // come here if overflow
+ mulfp6:
+ _asm pop eax // recover result sign
+ _asm mov ecx, 0xFFFF0000 // exponent=FFFF
+ _asm mov cl, al // sign into cl
+ _asm mov edx, 0x80000000 // set mantissa to 80000000 00000000 for infinity
+ _asm xor ebx, ebx
+ _asm mov eax, -9 // return KErrOverflow
+ _asm ret
+
+ // come here if underflow
+ mulfp7:
+ _asm pop eax // recover result sign
+ _asm xor ecx, ecx // exponent=0
+ _asm mov cl, al // sign into cl
+ _asm xor edx, edx
+ _asm xor ebx, ebx
+ _asm mov eax, -10 // return KErrUnderflow
+ _asm ret
+
+ // come here if either operand zero
+ mulfp0:
+ _asm and ecx, 1 // set exponent=0, keep sign
+ _asm xor edx, edx
+ _asm xor ebx, ebx
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // come here if destination operand NaN or infinity
+ mulfpsd:
+ _asm cmp edx, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebx, ebx
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm cmp eax, 0xFFFF0000 // check second operand for NaN or infinity
+ _asm jae short mulfpsd1 // branch if NaN or infinity
+ _asm cmp eax, 0x10000 // check if second operand zero
+ _ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
+ _asm mov eax, -9 // else return dest (infinity) with xor sign and KErrOverflow
+ _asm ret
+ mulfpsd1:
+ _asm mov ebp, [esi] // source mantissa into edi:ebp
+ _asm mov edi, [esi+4]
+ _asm cmp edi, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebp, ebp
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm mov eax, -9 // both operands infinity - return infinity with xor sign
+ _asm ret // and KErrOverflow
+
+ // come here if source operand NaN or infinity, destination finite
+ mulfpss:
+ _asm mov ebp, [esi] // source mantissa into edi:ebp
+ _asm mov edi, [esi+4]
+ _asm cmp edi, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebp, ebp
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm cmp ecx, 0x10000 // source=infinity, check if dest=0
+ _ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
+ _asm or ecx, 0xFFFF0000 // set exp=FFFF, leave xor sign in cl
+ _asm mov edx, edi // set mantissa for infinity
+ _asm mov ebx, ebp
+ _asm mov eax, -9 // return KErrOverflow
+ _asm ret
+ }
+
+// Divide 96-bit unsigned dividend EDX:EAX:0 by 64-bit unsigned divisor ECX:EBX
+// Assume ECX bit 31 = 1, ie 2^63 <= divisor < 2^64
+// Assume the quotient fits in 32 bits
+// Return 32 bit quotient in EDI
+// Return 64 bit remainder in EBP:ESI
+__NAKED__ LOCAL_C void LongDivide(void)
+ {
+ _asm push edx // save dividend
+ _asm push eax //
+ _asm cmp edx, ecx // check if truncation of divisor will overflow DIV instruction
+ _asm jb short longdiv1 // skip if not
+ _asm xor eax, eax // else return quotient of 0xFFFFFFFF
+ _asm dec eax //
+ _asm jmp short longdiv2 //
+ longdiv1:
+ _asm div ecx // divide EDX:EAX by ECX to give approximate quotient in EAX
+ longdiv2:
+ _asm mov edi, eax // save approx quotient
+ _asm mul ebx // multiply approx quotient by full divisor ECX:EBX
+ _asm mov esi, eax // first partial product into EBP:ESI
+ _asm mov ebp, edx //
+ _asm mov eax, edi // approx quotient back into eax
+ _asm mul ecx // upper partial product now in EDX:EAX
+ _asm add eax, ebp // add to form 96-bit product in EDX:EAX:ESI
+ _asm adc edx, 0 //
+ _asm neg esi // remainder = dividend - approx quotient * divisor
+ _asm mov ebp, [esp] // fetch dividend bits 32-63
+ _asm sbb ebp, eax //
+ _asm mov eax, [esp+4] // fetch dividend bits 64-95
+ _asm sbb eax, edx // remainder is now in EAX:EBP:ESI
+ _asm jns short longdiv4 // if remainder positive, quotient is correct, so exit
+ longdiv3:
+ _asm dec edi // else quotient is too big, so decrement it
+ _asm add esi, ebx // and add divisor to remainder
+ _asm adc ebp, ecx //
+ _asm adc eax, 0 //
+ _asm js short longdiv3 // if still negative, repeat (requires <4 iterations)
+ longdiv4:
+ _asm add esp, 8 // remove dividend from stack
+ _asm ret // return with quotient in EDI, remainder in EBP:ESI
+ }
+
+// Divide TRealX at [esi] / ecx,edx:ebx
+// Result in ecx,edx:ebx
+// Error code in eax
+__NAKED__ LOCAL_C void TRealXDivide(void)
+ {
+ _asm xor ch, ch // clear rounding flags
+ _asm mov eax, [esi+8] // fetch sign/exponent of dividend
+ _asm xor cl, al // xor signs
+ _asm cmp eax, 0xFFFF0000 // check if dividend=NaN or infinity
+ _asm jnc divfpss // branch if it is
+ _asm cmp ecx, 0xFFFF0000 // check if divisor=NaN or infinity
+ _asm jnc divfpsd // branch if it is
+ _asm cmp ecx, 0x10000 // check if divisor=0
+ _asm jc divfpdv0 // branch if it is
+ _asm cmp eax, 0x10000 // check if dividend=0
+ _asm jc divfpdd0 // branch if it is
+ _asm push esi // save pointer to dividend
+ _asm push ecx // save result sign
+ _asm shr ecx, 16 // divisor exponent into cx
+ _asm shr eax, 16 // dividend exponent into ax
+ _asm sub eax, ecx // subtract exponents
+ _asm add eax, 0x7FFE // eax now contains result exponent
+ _asm push eax // save it
+ _asm mov ecx, edx // divisor mantissa into ecx:ebx
+ _asm mov edx, [esi+4] // dividend mantissa into edx:eax
+ _asm mov eax, [esi]
+ _asm xor edi, edi // clear edi initially
+ _asm cmp edx, ecx // compare EDX:EAX with ECX:EBX
+ _asm jb short divfp1 // if EDX:EAX < ECX:EBX, leave everything as is
+ _asm ja short divfp2 //
+ _asm cmp eax, ebx // if EDX=ECX, then compare ls dwords
+ _asm jb short divfp1 // if dividend mant < divisor mant, leave everything as is
+ divfp2:
+ _asm sub eax, ebx // else dividend mant -= divisor mant
+ _asm sbb edx, ecx //
+ _asm inc edi // and EDI=1 (bit 0 of EDI is the integer part of the result)
+ _asm inc dword ptr [esp] // also increment result exponent
+ divfp1:
+ _asm push edi // save top bit of result
+ _asm call LongDivide // divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
+ _asm push edi // save next 32 bits of result
+ _asm mov edx, ebp // remainder from EBP:ESI into EDX:EAX
+ _asm mov eax, esi //
+ _asm call LongDivide // divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
+ _asm test byte ptr [esp+4], 1 // test integer bit of result
+ _asm jnz short divfp4 // if set, no need to calculate another bit
+ _asm xor eax, eax //
+ _asm add esi, esi // 2*remainder into EAX:EBP:ESI
+ _asm adc ebp, ebp //
+ _asm adc eax, eax //
+ _asm sub esi, ebx // subtract divisor to generate final quotient bit
+ _asm sbb ebp, ecx //
+ _asm sbb eax, 0 //
+ _asm jnc short divfp3 // skip if no borrow - in this case eax=0
+ _asm add esi, ebx // if borrow add back - final remainder now in EBP:ESI
+ _asm adc ebp, ecx //
+ _asm adc eax, 0 // eax will be zero after this and carry will be set
+ divfp3:
+ _asm cmc // final bit = 1-C
+ _asm rcr eax, 1 // shift it into eax bit 31
+ _asm mov ebx, edi // result into EDX:EBX:EAX, remainder in EBP:ESI
+ _asm pop edx
+ _asm add esp, 4 // discard integer bit (zero)
+ _asm jmp short divfp5 // branch to round
+
+ divfp4: // integer bit was set
+ _asm mov ebx, edi // result into EDX:EBX:EAX
+ _asm pop edx //
+ _asm pop eax // integer part of result into eax (=1)
+ _asm stc // shift a 1 into top end of mantissa
+ _asm rcr edx,1 //
+ _asm rcr ebx,1 //
+ _asm rcr eax,1 // bottom bit into eax bit 31
+
+ // when we get to here we have 65 bits of quotient mantissa in
+ // EDX:EBX:EAX (bottom bit in eax bit 31)
+ // and the remainder is in EBP:ESI
+ divfp5:
+ _asm pop ecx // recover result exponent
+ _asm add eax, eax // test rounding bit
+ _asm jnc short divfp6 // branch to round down
+ _asm or ebp, esi // test remainder to see if we are exactly half-way
+ _asm jnz short divfp7 // if not, round up
+ _asm test bl, 1 // exactly halfway - test LSB of mantissa
+ _asm jz short divfp8 // round down if LSB=0 (round to even)
+ divfp7:
+ _asm add ebx, 1 // round up - increment mantissa
+ _asm adc edx, 0
+ _asm jnc short divfp7a
+ _asm rcr edx, 1 // if carry, shift 1 into mantissa MSB
+ _asm inc ecx // and increment exponent
+ divfp7a:
+ _asm mov al, 2 // set rounded-up flag
+ _asm jmp short divfp9
+ divfp6:
+ _asm xor al, al // round down - first clear rounding flags
+ _asm or ebp, esi // test if result exact
+ _asm jz short divfp9 // skip if exact
+ divfp8: // come here to round down when we know result is inexact
+ _asm mov al, 1 // set rounded-down flag
+ divfp9: // final mantissa now in edx:ebx, exponent in ecx
+ _asm cmp ecx, 0xFFFF // check for overflow
+ _asm jge short divfp10 // branch if overflow
+ _asm cmp ecx, 0 // check for underflow
+ _asm jle short divfp11 // branch if underflow
+ _asm shl ecx, 16 // else exponent up to top end of ecx
+ _asm mov ch, al // rounding flags into ch
+ _asm pop eax // recover result sign
+ _asm mov cl, al // into cl
+ _asm pop esi // recover dividend pointer
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // come here if overflow
+ divfp10:
+ _asm pop eax // recover result sign
+ _asm mov ecx, 0xFFFF0000 // exponent=FFFF
+ _asm mov cl, al // sign into cl
+ _asm mov edx, 0x80000000 // set mantissa to 80000000 00000000 for infinity
+ _asm xor ebx, ebx
+ _asm mov eax, -9 // return KErrOverflow
+ _asm pop esi // recover dividend pointer
+ _asm ret
+
+ // come here if underflow
+ divfp11:
+ _asm pop eax // recover result sign
+ _asm xor ecx, ecx // exponent=0
+ _asm mov cl, al // sign into cl
+ _asm xor edx, edx
+ _asm xor ebx, ebx
+ _asm mov eax, -10 // return KErrUnderflow
+ _asm pop esi // recover dividend pointer
+ _asm ret
+
+
+ // come here if divisor=0, dividend finite
+ divfpdv0:
+ _asm cmp eax, 0x10000 // check if dividend also zero
+ _ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
+ _asm or ecx, 0xFFFF0000 // else set exponent=FFFF, leave xor sign in cl
+ _asm mov edx, 0x80000000 // set mantissa for infinity
+ _asm xor ebx, ebx
+ _asm mov eax, -41 // return KErrDivideByZero
+ _asm ret
+
+ // come here if dividend=0, divisor finite and nonzero
+ divfpdd0:
+ _asm and ecx, 1 // exponent=0, leave xor sign in cl
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+
+ // come here if dividend is a NaN or infinity
+ divfpss:
+ _asm mov ebp, [esi] // dividend mantissa into edi:ebp
+ _asm mov edi, [esi+4]
+ _asm cmp edi, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebp, ebp
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm cmp ecx, 0xFFFF0000 // check divisor for NaN or infinity
+ _asm jae short divfpss1 // branch if NaN or infinity
+ _asm or ecx, 0xFFFF0000 // infinity/finite - return infinity with xor sign
+ _asm mov edx, 0x80000000
+ _asm xor ebx, ebx
+ _asm mov eax, -9 // return KErrOverflow
+ _asm ret
+ divfpss1:
+ _asm cmp edx, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebx, ebx
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm jmp TRealXRealIndefinite // if both operands infinite, return 'real indefinite'
+
+ // come here if divisor is a NaN or infinity, dividend finite
+ divfpsd:
+ _asm cmp edx, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebx, ebx
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm and ecx, 1 // dividend is finite, divisor=infinity, so return 0 with xor sign
+ _asm xor edx, edx
+ _asm xor ebx, ebx
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+ }
+
+// TRealX modulo - dividend at [esi], divisor in ecx,edx:ebx
+// Result in ecx,edx:ebx
+// Error code in eax
+__NAKED__ LOCAL_C void TRealXModulo(void)
+ {
+ _asm mov eax, [esi+8] // fetch sign/exponent of dividend
+ _asm mov cl, al // result sign=dividend sign
+ _asm xor ch, ch // clear rounding flags
+ _asm cmp eax, 0xFFFF0000 // check if dividend=NaN or infinity
+ _asm jnc modfpss // branch if it is
+ _asm cmp ecx, 0xFFFF0000 // check if divisor=NaN or infinity
+ _asm jnc modfpsd // branch if it is
+ _asm cmp ecx, 0x10000 // check if divisor=0
+ _ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
+ _asm shr eax, 16 // ax=dividend exponent
+ _asm ror ecx, 16 // cx=divisor exponent
+ _asm sub ax, cx // ax=dividend exponent-divisor exponent
+ _asm jc modfpdd0 // if dividend exponent is smaller, return dividend
+ _asm cmp ax, 64 // check if exponents differ by >= 64 bits
+ _asm jnc modfplp // if so, underflow
+ _asm mov ah, 0 // ah bit 0 acts as 65th accumulator bit
+ _asm mov ebp, [esi] // edi:ebp=dividend mantissa
+ _asm mov edi, [esi+4] //
+ _asm jmp short modfp2 // skip left shift on first iteration
+ modfp1:
+ _asm add ebp, ebp // shift accumulator left (65 bits)
+ _asm adc edi, edi
+ _asm adc ah, ah
+ modfp2:
+ _asm sub ebp, ebx // subtract divisor from dividend
+ _asm sbb edi, edx
+ _asm sbb ah, 0
+ _asm jnc short modfp3 // skip if no borrow
+ _asm add ebp, ebx // else add back
+ _asm adc edi, edx
+ _asm adc ah, 0
+ modfp3:
+ _asm dec al // any more bits to do?
+ _asm jns short modfp1 // loop if there are
+ _asm mov edx, edi // result mantissa (not yet normalised) into edx:ebx
+ _asm mov ebx, ebp
+ _asm or edi, ebx // check for zero
+ _asm jz modfp0 // jump if result zero
+ _asm or edx, edx // check if ms dword zero
+ _asm jnz short modfp4
+ _asm mov edx, ebx // if so, shift left by 32
+ _asm xor ebx, ebx
+ _asm sub cx, 32 // and decrement exponent by 32
+ _asm jbe modfpund // if borrow or exponent zero, underflow
+ modfp4:
+ _asm mov edi, ecx // preserve sign and exponent
+ _asm bsr ecx, edx // position of most significant 1 into ecx
+ _asm neg ecx //
+ _asm add ecx, 31 // cl = 31-position of MS 1 = number of shifts to normalise
+ _asm shld edx, ebx, cl // shift edx:ebx left by cl bits
+ _asm shl ebx, cl //
+ _asm mov ebp, ecx // bit count into ebp for subtraction
+ _asm mov ecx, edi // exponent & sign back into ecx
+ _asm sub cx, bp // subtract shift count from exponent
+ _asm jbe short modfpund // if borrow or exponent 0, underflow
+ _asm rol ecx, 16 // else ecx=exponent:sign
+ _asm xor eax, eax // normal exit, result in ecx,edx:ebx
+ _asm ret
+
+ // dividend=NaN or infinity
+ modfpss:
+ _asm mov ebp, [esi] // dividend mantissa into edi:ebp
+ _asm mov edi, [esi+4]
+ _asm cmp edi, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebp, ebp
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm cmp ecx, 0xFFFF0000 // check divisor for NaN or infinity
+ _ASM_j(b,TRealXRealIndefinite) // infinity%finite - return 'real indefinite'
+ _asm cmp edx, 0x80000000 // check for divisor=infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebx, ebx
+ _ASM_jn(e,TRealXBinOpNaN)
+ _asm jmp TRealXRealIndefinite // if both operands infinite, return 'real indefinite'
+
+ // divisor=NaN or infinity, dividend finite
+ modfpsd:
+ _asm cmp edx, 0x80000000 // check for infinity
+ _ASM_jn(e,TRealXBinOpNaN) // branch if NaN
+ _asm test ebx, ebx
+ _ASM_jn(e,TRealXBinOpNaN)
+ // finite%infinity - return dividend unaltered
+
+ modfpdd0:
+ _asm mov ebx, [esi] // normal exit, return dividend unaltered
+ _asm mov edx, [esi+4]
+ _asm mov ecx, [esi+8]
+ _asm xor eax, eax
+ _asm ret
+
+ modfp0:
+ _asm shr ecx, 16 // normal exit, result 0
+ _asm xor eax, eax
+ _asm ret
+
+ modfpund:
+ _asm shr ecx, 16 // underflow, result 0
+ _asm mov eax, -10 // return KErrUnderflow
+ _asm ret
+
+ modfplp:
+ _asm shr ecx, 16 // loss of precision, result 0
+ _asm mov eax, -7 // return KErrTotalLossOfPrecision
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealX()
+/**
+Constructs a default extended precision object.
+
+This sets the value to zero.
+*/
+ {
+ _asm xor eax, eax
+ _asm mov [ecx], eax // set value to zero
+ _asm mov [ecx+4], eax
+ _asm mov [ecx+8], eax
+ _asm mov eax, ecx // must return this
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aExp*/, TUint /*aMantHi*/, TUint /*aMantLo*/)
+/**
+Constructs an extended precision object from an explicit exponent and
+a 64 bit mantissa.
+
+@param aExp The exponent
+@param aMantHi The high order 32 bits of the 64 bit mantissa
+@param aMantLo The low order 32 bits of the 64 bit mantissa
+*/
+ {
+ _asm mov eax, [esp+4] // eax=aExp
+ _asm mov [ecx+8], eax
+ _asm mov eax, [esp+8] // eax=aMantHi
+ _asm mov [ecx+4], eax
+ _asm mov eax, [esp+12] // eax=aMantLo
+ _asm mov [ecx], eax
+ _asm mov eax, ecx // must return this
+ _asm ret 12
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Set(TInt /*aInt*/)
+/**
+Gives this extended precision object a new value taken
+from a signed integer.
+
+@param aInt The signed integer value.
+
+@return KErrNone, always.
+*/
+ {
+ // on entry ecx=this, [esp+4]=aInt, return code in eax
+ _asm mov edx, [esp+4] // edx=aInt
+ _asm or edx, edx // test sign/zero
+ _asm mov eax, 0x7FFF
+ _asm jz short trealxfromint0 // branch if 0
+ _asm jns short trealxfromint1 // skip if positive
+ _asm neg edx // take absolute value
+ _asm add eax, 0x10000 // sign bit in eax bit 16
+ trealxfromint1:
+ _asm push ecx // save this
+ _asm bsr ecx, edx // bit number of edx MSB into ecx
+ _asm add eax, ecx // add to eax to form result exponent
+ _asm neg cl
+ _asm add cl, 31 // 31-bit number = number of shifts to normalise edx
+ _asm shl edx, cl // normalise edx
+ _asm pop ecx // this back into ecx
+ _asm ror eax, 16 // sign/exponent into normal positions
+ _asm mov [ecx+4], edx // store mantissa high word
+ _asm mov [ecx+8], eax // store sign/exponent
+ _asm xor eax, eax
+ _asm mov [ecx], eax // zero mantissa low word
+ _asm ret 4 // return KErrNone
+ trealxfromint0:
+ _asm mov [ecx], edx
+ _asm mov [ecx+4], edx // store mantissa high word=0
+ _asm mov [ecx+8], edx // store sign/exponent=0
+ _asm xor eax, eax // return KErrNone
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Set(TUint /*aInt*/)
+/**
+Gives this extended precision object a new value taken from
+an unsigned integer.
+
+@param aInt The unsigned integer value.
+
+@return KErrNone, always.
+*/
+ {
+ // on entry ecx=this, [esp+4]=aInt, return code in eax
+ _asm mov edx, [esp+4] // edx=aInt
+ _asm mov eax, 0x7FFF
+ _asm or edx, edx // test for 0
+ _asm jz short trealxfromuint0 // branch if 0
+ _asm push ecx // save this
+ _asm bsr ecx, edx // bit number of edx MSB into ecx
+ _asm add eax, ecx // add to eax to form result exponent
+ _asm neg cl
+ _asm add cl, 31 // 31-bit number = number of shifts to normalise edx
+ _asm shl edx, cl // normalise edx
+ _asm pop ecx // this back into ecx
+ _asm shl eax, 16 // exponent into normal position
+ _asm mov [ecx+4], edx // store mantissa high word
+ _asm mov [ecx+8], eax // store exponent
+ _asm xor eax, eax
+ _asm mov [ecx], eax // zero mantissa low word
+ _asm ret 4 // return KErrNone
+ trealxfromuint0:
+ _asm mov [ecx], edx
+ _asm mov [ecx+4], edx // store mantissa high word=0
+ _asm mov [ecx+8], edx // store sign/exponent=0
+ _asm xor eax, eax // return KErrNone
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ LOCAL_C void TRealXFromTInt64(void)
+ {
+ // Convert TInt64 in edx:ebx to TRealX in ecx,edx:ebx
+ _asm mov eax, 0x7FFF
+ _asm or edx, edx // test sign/zero
+ _asm jz short trealxfromtint64a // branch if top word zero
+ _asm jns short trealxfromtint64b
+ _asm add eax, 0x10000 // sign bit into eax bit 16
+ _asm neg edx // take absolute value
+ _asm neg ebx
+ _asm sbb edx, 0
+ _asm jz short trealxfromtint64d // branch if top word zero
+ trealxfromtint64b:
+ _asm bsr ecx, edx // ecx=bit number of edx MSB
+ _asm add eax, ecx // add to exponent in eax
+ _asm add eax, 32
+ _asm neg cl
+ _asm add cl, 31 // 31-bit number = number of left shifts to normalise
+ _asm shld edx, ebx, cl // shift left to normalise edx:ebx
+ _asm shl ebx, cl
+ _asm mov ecx, eax // sign/exponent into ecx
+ _asm ror ecx, 16 // and into normal positions
+ _asm ret
+ trealxfromtint64a: // come here if top word zero
+ _asm or ebx, ebx // test for bottom word also zero
+ _asm jz short trealxfromtint64c // branch if it is
+ trealxfromtint64d: // come here if top word zero, bottom word not
+ _asm mov edx, ebx // shift edx:ebx left 32
+ _asm xor ebx, ebx
+ _asm bsr ecx, edx // ecx=bit number of edx MSB
+ _asm add eax, ecx // add to exponent in eax
+ _asm neg cl
+ _asm add cl, 31 // 31-bit number = number of left shifts to normalise
+ _asm shl edx, cl // normalise
+ _asm mov ecx, eax // sign/exponent into ecx
+ _asm ror ecx, 16 // and into normal positions
+ _asm ret
+ trealxfromtint64c: // entire number is zero
+ _asm xor ecx, ecx
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Set(const TInt64& /*aInt*/)
+/**
+Gives this extended precision object a new value taken from
+a 64 bit integer.
+
+@param aInt The 64 bit integer value.
+
+@return KErrNone, always.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aInt, return code in eax
+ _asm push ebx
+ _asm push ecx
+ _asm mov edx, [esp+12] // edx=address of aInt
+ _asm mov ebx, [edx]
+ _asm mov edx, [edx+4] // edx:ebx=aInt
+ _asm call TRealXFromTInt64 // convert to TRealX in ecx,edx:ebx
+ _asm pop eax // eax=this
+ _asm mov [eax], ebx // store result
+ _asm mov [eax+4], edx
+ _asm mov [eax+8], ecx
+ _asm xor eax, eax // return KErrNone
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ LOCAL_C void __6TRealXi()
+ {
+ // common function for int to TRealX
+ _asm mov edx, [esp+4] // edx=aInt
+ _asm or edx, edx // test sign/zero
+ _asm mov eax, 0x7FFF
+ _asm jz short trealxfromint0 // branch if 0
+ _asm jns short trealxfromint1 // skip if positive
+ _asm neg edx // take absolute value
+ _asm add eax, 0x10000 // sign bit in eax bit 16
+ trealxfromint1:
+ _asm push ecx // save this
+ _asm bsr ecx, edx // bit number of edx MSB into ecx
+ _asm add eax, ecx // add to eax to form result exponent
+ _asm neg cl
+ _asm add cl, 31 // 31-bit number = number of shifts to normalise edx
+ _asm shl edx, cl // normalise edx
+ _asm pop ecx // this back into ecx
+ _asm ror eax, 16 // sign/exponent into normal positions
+ _asm mov [ecx+4], edx // store mantissa high word
+ _asm mov [ecx+8], eax // store sign/exponent
+ _asm xor eax, eax
+ _asm mov [ecx], eax // zero mantissa low word
+ _asm mov eax, ecx // return eax=this
+ _asm ret 4
+ trealxfromint0:
+ _asm mov [ecx], edx
+ _asm mov [ecx+4], edx // store mantissa high word=0
+ _asm mov [ecx+8], edx // store sign/exponent=0
+ _asm mov eax, ecx // return eax=this
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealX(TInt /*aInt*/)
+/**
+Constructs an extended precision object from a signed integer value.
+
+@param aInt The signed integer value.
+*/
+ {
+ // on entry ecx=this, [esp+4]=aInt, return eax=this
+ _asm jmp __6TRealXi
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX& TRealX::operator=(TInt /*aInt*/)
+/**
+Assigns the specified signed integer value to this extended precision object.
+
+@param aInt The signed integer value.
+
+@return A reference to this extended precision object.
+*/
+ {
+ // on entry ecx=this, [esp+4]=aInt, return eax=this
+ _asm jmp __6TRealXi
+ }
+
+
+
+
+__NAKED__ LOCAL_C void __6TRealXui()
+ {
+ // common function for unsigned int to TRealX
+ _asm mov edx, [esp+4] // edx=aInt
+ _asm mov eax, 0x7FFF
+ _asm or edx, edx // test for zero
+ _asm jz short trealxfromuint0 // branch if 0
+ _asm push ecx // save this
+ _asm bsr ecx, edx // bit number of edx MSB into ecx
+ _asm add eax, ecx // add to eax to form result exponent
+ _asm neg cl
+ _asm add cl, 31 // 31-bit number = number of shifts to normalise edx
+ _asm shl edx, cl // normalise edx
+ _asm pop ecx // this back into ecx
+ _asm shl eax, 16 // exponent into normal position
+ _asm mov [ecx+4], edx // store mantissa high word
+ _asm mov [ecx+8], eax // store exponent
+ _asm xor eax, eax
+ _asm mov [ecx], eax // zero mantissa low word
+ _asm mov eax, ecx // return eax=this
+ _asm ret 4
+ trealxfromuint0:
+ _asm mov [ecx], edx
+ _asm mov [ecx+4], edx // store mantissa high word=0
+ _asm mov [ecx+8], edx // store sign/exponent=0
+ _asm mov eax, ecx // return eax=this
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aInt*/)
+/**
+Constructs an extended precision object from an unsigned integer value.
+
+@param aInt The unsigned integer value.
+*/
+ {
+ // on entry ecx=this, [esp+4]=aInt, return eax=this
+ _asm jmp __6TRealXui
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX& TRealX::operator=(TUint /*aInt*/)
+/**
+Assigns the specified unsigned integer value to this extended precision object.
+
+@param aInt The unsigned integer value.
+
+@return A reference to this extended precision object.
+*/
+ {
+ // on entry ecx=this, [esp+4]=aInt, return eax=this
+ _asm jmp __6TRealXui
+ }
+
+
+
+
+__NAKED__ LOCAL_C void __6TRealXRC6TInt64()
+ {
+ // common function for TInt64 to TRealX
+ _asm push ebx // preserve ebx
+ _asm push ecx // save this
+ _asm mov edx, [esp+12] // edx=address of aInt
+ _asm mov ebx, [edx]
+ _asm mov edx, [edx+4] // edx:ebx=aInt
+ _asm call TRealXFromTInt64 // convert to TRealX in ecx,edx:ebx
+ _asm pop eax // eax=this
+ _asm mov [eax], ebx // store result
+ _asm mov [eax+4], edx
+ _asm mov [eax+8], ecx
+ _asm pop ebx // restore ebx
+ _asm ret 4 // return this in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealX(const TInt64& /*aInt*/)
+/**
+Constructs an extended precision object from a 64 bit integer.
+
+@param aInt A reference to a 64 bit integer.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aInt, return eax=this
+ _asm jmp __6TRealXRC6TInt64
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX& TRealX::operator=(const TInt64& /*aInt*/)
+/**
+Assigns the specified 64 bit integer value to this extended precision object.
+
+@param aInt A reference to a 64 bit integer.
+
+@return A reference to this extended precision object.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aInt, return eax=this
+ _asm jmp __6TRealXRC6TInt64
+ }
+
+
+
+
+__NAKED__ LOCAL_C void ConvertTReal32ToTRealX(void)
+ {
+ // Convert TReal32 in edx to TRealX in ecx:edx,ebx
+ _asm xor ebx, ebx // mant low always zero
+ _asm mov eax, edx
+ _asm shr eax, 23 // exponent now in al, sign in ah bit 0
+ _asm test al, al // check for denormal/zero
+ _asm jz short treal32totrealx2 // branch if denormal/zero
+ _asm xor ecx, ecx
+ _asm mov cl, al
+ _asm add ecx, 0x7F80 // bias exponent correctly for TRealX
+ _asm cmp al, 0xFF // check for infinity/NaN
+ _asm jnz short treal32totrealx1 // skip if neither
+ _asm mov cl, al // else set TRealX exponent to FFFF
+ _asm mov ch, al
+ treal32totrealx1:
+ _asm shl edx, 8 // left-justify mantissa in edx
+ _asm or edx, 0x80000000 // put in implied integer bit
+ _asm shl ecx, 16 // exponent into ecx bits 16-31
+ _asm mov cl, ah // sign into ecx bit 0
+ _asm ret
+ treal32totrealx2: // come here if exponent 0
+ _asm shl edx, 9 // left-justify mantissa in edx (shift out integer bit as well)
+ _asm jnz short treal32totrealx3 // jump if denormal
+ _asm xor ecx, ecx // else return 0
+ _asm mov cl, ah // with same sign as input value
+ _asm ret
+ treal32totrealx3: // come here if denormal
+ _asm bsr ecx, edx // ecx=bit number of MSB of edx
+ _asm neg ecx
+ _asm add ecx, 31 // ecx=number of left shifts to normalise edx
+ _asm shl edx, cl // normalise
+ _asm neg ecx
+ _asm add ecx, 0x7F80 // exponent=7F80-number of shifts
+ _asm shl ecx, 16 // exponent into ecx bits 16-31
+ _asm mov cl, ah // sign into ecx bit 0
+ _asm ret
+ }
+
+__NAKED__ LOCAL_C void ConvertTReal64ToTRealX(void)
+ {
+ // Convert TReal64 in edx:ebx to TRealX in ecx:edx,ebx
+ _asm mov eax, edx
+ _asm shr eax, 20
+ _asm mov ecx, 0x7FF
+ _asm and ecx, eax // ecx=exponent
+ _asm jz short treal64totrealx1 // branch if zero/denormal
+ _asm add ecx, 0x7C00 // else bias exponent correctly for TRealX
+ _asm cmp ecx, 0x83FF // check for infinity/NaN
+ _asm jnz short treal64totrealx2
+ _asm mov ch, cl // if so, set exponent to FFFF
+ treal64totrealx2:
+ _asm shl ecx, 16 // exponent into ecx bits 16-31
+ _asm mov cl, 11 // number of shifts needed to justify mantissa correctly
+ _asm shld edx, ebx, cl // shift mantissa left
+ _asm shl ebx, cl
+ _asm or edx, 0x80000000 // put in implied integer bit
+ _asm shr eax, 11 // sign bit into al bit 0
+ _asm mov cl, al // into ecx bit 0
+ _asm ret
+ treal64totrealx1: // come here if zero/denormal
+ _asm mov cl, 12 // number of shifts needed to justify mantissa correctly
+ _asm shld edx, ebx, cl // shift mantissa left
+ _asm shl ebx, cl
+ _asm test edx, edx // check for zero
+ _asm jnz short treal64totrealx3
+ _asm test ebx, ebx
+ _asm jnz short treal64totrealx4
+ _asm shr eax, 11 // sign bit into eax bit 0, rest of eax=0
+ _asm mov ecx, eax // return 0 result with correct sign
+ _asm ret
+ treal64totrealx4: // come here if denormal, edx=0
+ _asm mov edx, ebx // shift mantissa left 32
+ _asm xor ebx, ebx
+ _asm bsr ecx, edx // ecx=bit number of MSB of edx
+ _asm neg ecx
+ _asm add ecx, 31 // ecx=number of left shifts to normalise edx
+ _asm shl edx, cl // normalise
+ _asm neg ecx
+ _asm add ecx, 0x7BE0 // exponent=7BE0-number of shifts
+ _asm shl ecx, 16 // exponent into bits 16-31 of ecx
+ _asm shr eax, 11
+ _asm mov cl, al // sign into bit 0 of ecx
+ _asm ret
+ treal64totrealx3: // come here if denormal, edx nonzero
+ _asm bsr ecx, edx // ecx=bit number of MSB of edx
+ _asm neg ecx
+ _asm add ecx, 31 // ecx=number of left shifts to normalise edx:ebx
+ _asm shld edx, ebx, cl // normalise
+ _asm shl ebx, cl
+ _asm neg ecx
+ _asm add ecx, 0x7C00 // exponent=7C00-number of shifts
+ _asm shl ecx, 16 // exponent into bits 16-31 of ecx
+ _asm shr eax, 11
+ _asm mov cl, al // sign into bit 0 of ecx
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Set(TReal32 /*aReal*/)
+/**
+Gives this extended precision object a new value taken from
+a single precision floating point number.
+
+@param aReal The single precision floating point value.
+
+@return KErrNone, if a valid number;
+ KErrOverflow, if the number is infinite;
+ KErrArgument, if not a number.
+*/
+ {
+ // on entry, ecx=this and aReal is in [esp+4]
+ // on exit, error code in eax
+ _asm push ebx // save ebx
+ _asm push ecx // save this
+ _asm mov edx, [esp+12] // aReal into edx
+ _asm call ConvertTReal32ToTRealX
+ _asm pop eax // eax=this
+ _asm mov [eax], ebx // store result
+ _asm mov [eax+4], edx
+ _asm mov [eax+8], ecx
+ _asm xor eax, eax // error code=KErrNone initially
+ _asm cmp ecx, 0xFFFF0000 // check for infinity/NaN
+ _asm jb short trealxsettreal32a // if neither, return KErrNone
+ _asm mov eax, -9 // eax=KErrOverflow
+ _asm cmp edx, 0x80000000 // check for infinity
+ _asm je short trealxsettreal32a // if infinity, return KErrOverflow
+ _asm mov eax, -6 // if NaN, return KErrArgument
+ trealxsettreal32a:
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Set(TReal64 /*aReal*/)
+/**
+Gives this extended precision object a new value taken from
+a double precision floating point number.
+
+@param aReal The double precision floating point value.
+
+@return KErrNone, if a valid number;
+ KErrOverflow, if the number is infinite;
+ KErrArgument, if not a number.
+*/
+ {
+ // on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
+ // on exit, error code in eax
+ _asm push ebx // save ebx
+ _asm push ecx // save this
+ _asm mov ebx, [esp+12] // aReal into edx:ebx
+ _asm mov edx, [esp+16]
+ _asm call ConvertTReal64ToTRealX
+ _asm pop eax // eax=this
+ _asm mov [eax], ebx // store result
+ _asm mov [eax+4], edx
+ _asm mov [eax+8], ecx
+ _asm xor eax, eax // error code=KErrNone initially
+ _asm cmp ecx, 0xFFFF0000 // check for infinity/NaN
+ _asm jb short trealxsettreal64a // if neither, return KErrNone
+ _asm mov eax, -9 // eax=KErrOverflow
+ _asm cmp edx, 0x80000000 // check for infinity
+ _asm jne short trealxsettreal64b // branch if NaN
+ _asm test ebx, ebx
+ _asm je short trealxsettreal64a // if infinity, return KErrOverflow
+ trealxsettreal64b:
+ _asm mov eax, -6 // if NaN, return KErrArgument
+ trealxsettreal64a:
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ LOCAL_C void __6TRealXf()
+ {
+ // common function for float to TRealX
+ _asm push ebx // save ebx
+ _asm push ecx // save this
+ _asm mov edx, [esp+12] // aReal into edx
+ _asm call ConvertTReal32ToTRealX
+ _asm pop eax // eax=this
+ _asm mov [eax], ebx // store result
+ _asm mov [eax+4], edx
+ _asm mov [eax+8], ecx
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealX(TReal32 /*aReal*/)
+/**
+Constructs an extended precision object from
+a single precision floating point number.
+
+@param aReal The single precision floating point value.
+*/
+ {
+ // on entry, ecx=this and aReal is in [esp+4]
+ // on exit, eax=this
+ _asm jmp __6TRealXf
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal32 /*aReal*/)
+/**
+Assigns the specified single precision floating point number to
+this extended precision object.
+
+@param aReal The single precision floating point value.
+
+@return A reference to this extended precision object.
+*/
+ {
+ // on entry, ecx=this and aReal is in [esp+4]
+ // on exit, eax=this
+ _asm jmp __6TRealXf
+ }
+
+
+
+
+__NAKED__ LOCAL_C void __6TRealXd()
+ {
+ // common function for double to TRealX
+ _asm push ebx // save ebx
+ _asm push ecx // save this
+ _asm mov ebx, [esp+12] // aReal into edx:ebx
+ _asm mov edx, [esp+16]
+ _asm call ConvertTReal64ToTRealX
+ _asm pop eax // eax=this
+ _asm mov [eax], ebx // store result
+ _asm mov [eax+4], edx
+ _asm mov [eax+8], ecx
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealX(TReal64 /*aReal*/)
+/**
+Constructs an extended precision object from
+a double precision floating point number.
+
+@param aReal The double precision floating point value.
+*/
+ {
+ // on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
+ // on exit, eax=this
+ _asm jmp __6TRealXd
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal64 /*aReal*/)
+/**
+Assigns the specified double precision floating point number to
+this extended precision object.
+
+@param aReal The double precision floating point value.
+
+@return A reference to this extended precision object.
+*/
+ {
+ // on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
+ // on exit, eax=this
+ _asm jmp __6TRealXd
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::operator TInt() const
+/**
+Gets the extended precision value as a signed integer value.
+
+The operator returns:
+
+1. zero , if the extended precision value is not a number
+
+2. 0x7FFFFFFF, if the value is positive and too big to fit into a TInt.
+
+3. 0x80000000, if the value is negative and too big to fit into a TInt.
+*/
+ {
+ // on entry ecx=this, return value in eax
+ _asm mov edx, [ecx] // edx=mantissa low
+ _asm mov eax, [ecx+4] // eax=mantissa high
+ _asm mov ecx, [ecx+8] // ecx=exponent/sign
+ _asm ror ecx, 16 // exponent into cx
+ _asm cmp cx, 0xFFFF
+ _asm jz short trealxtoint1 // branch if exp=FFFF
+ _asm mov dx, cx
+ _asm mov cx, 0x801E
+ _asm sub cx, dx // cx=number of right shifts needed to convert mantissa to int
+ _asm jbe short trealxtoint2 // if exp>=801E, saturate result
+ _asm cmp cx, 31 // more than 31 shifts needed?
+ _asm ja short trealxtoint0 // if so, underflow to zero
+ _asm shr eax, cl // else ABS(result)=eax>>cl
+ _asm test ecx, 0x10000 // test sign
+ _asm jz short trealxtoint3 // skip if +
+ _asm neg eax
+ trealxtoint3:
+ _asm ret
+ trealxtoint1: // come here if exponent=FFFF
+ _asm cmp eax, 0x80000000 // check for infinity
+ _asm jnz short trealxtoint0 // if NaN, return 0
+ _asm test edx, edx
+ _asm jnz short trealxtoint0 // if NaN, return 0
+ trealxtoint2: // come here if argument too big for 32-bit integer
+ _asm mov eax, 0x7FFFFFFF
+ _asm shr ecx, 17 // sign bit into carry flag
+ _asm adc eax, 0 // eax=7FFFFFFF if +, 80000000 if -
+ _asm ret // return saturated value
+ trealxtoint0: // come here if INT(argument)=0 or NaN
+ _asm xor eax, eax // return 0
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::operator TUint() const
+/**
+Returns the extended precision value as an unsigned signed integer value.
+
+The operator returns:
+
+1. zero, if the extended precision value is not a number
+
+2. 0xFFFFFFFF, if the value is positive and too big to fit into a TUint.
+
+3. zero, if the value is negative and too big to fit into a TUint.
+*/
+ {
+ // on entry ecx=this, return value in eax
+ _asm mov edx, [ecx] // edx=mantissa low
+ _asm mov eax, [ecx+4] // eax=mantissa high
+ _asm mov ecx, [ecx+8] // ecx=exponent/sign
+ _asm ror ecx, 16 // exponent into cx
+ _asm cmp cx, 0xFFFF
+ _asm jz short trealxtouint1 // branch if exp=FFFF
+ _asm mov dx, cx
+ _asm mov cx, 0x801E
+ _asm sub cx, dx // cx=number of right shifts needed to convert mantissa to int
+ _asm jb short trealxtouint2 // if exp>801E, saturate result
+ _asm cmp cx, 31 // more than 31 shifts needed?
+ _asm ja short trealxtouint0 // if so, underflow to zero
+ _asm test ecx, 0x10000 // test sign
+ _asm jnz short trealxtouint0 // if -, return 0
+ _asm shr eax, cl // else result=eax>>cl
+ _asm ret
+ trealxtouint1: // come here if exponent=FFFF
+ _asm cmp eax, 0x80000000 // check for infinity
+ _asm jnz short trealxtouint0 // if NaN, return 0
+ _asm test edx, edx
+ _asm jnz short trealxtouint0 // if NaN, return 0
+ trealxtouint2: // come here if argument too big for 32-bit integer
+ _asm mov eax, 0xFFFFFFFF
+ _asm shr ecx, 17 // sign bit into carry flag
+ _asm adc eax, 0 // eax=FFFFFFFF if +, 0 if -
+ _asm ret // return saturated value
+ trealxtouint0: // come here if INT(argument)=0 or NaN
+ _asm xor eax, eax // return 0
+ _asm ret
+ }
+
+
+
+
+__NAKED__ LOCAL_C void ConvertTRealXToTInt64(void)
+ {
+ // Convert TRealX in ecx,edx:ebx to TInt64 in edx:ebx
+ _asm ror ecx, 16 // exponent into cx
+ _asm cmp cx, 0xFFFF
+ _asm jz short trealxtoint64a // branch if exp=FFFF
+ _asm mov ax, cx
+ _asm mov cx, 0x803E
+ _asm sub cx, ax // cx=number of right shifts needed to convert mantissa to int
+ _asm jbe short trealxtoint64b // if exp>=803E, saturate result
+ _asm cmp cx, 63 // more than 63 shifts needed?
+ _asm ja short trealxtoint64z // if so, underflow to zero
+ _asm cmp cl, 31 // more than 31 shifts needed?
+ _asm jbe short trealxtoint64d // branch if not
+ _asm sub cl, 32 // cl=shift count - 32
+ _asm mov ebx, edx // shift right by 32
+ _asm xor edx, edx
+ trealxtoint64d:
+ _asm shrd ebx, edx, cl // shift edx:ebx right by cl to give ABS(result)
+ _asm shr edx, cl
+ _asm test ecx, 0x10000 // test sign
+ _asm jz short trealxtoint64c // skip if +
+ _asm neg edx // if -, negate
+ _asm neg ebx
+ _asm sbb edx, 0
+ trealxtoint64c:
+ _asm ret
+ trealxtoint64a: // come here if exponent=FFFF
+ _asm cmp edx, 0x80000000 // check for infinity
+ _asm jnz short trealxtoint64z // if NaN, return 0
+ _asm test ebx, ebx
+ _asm jnz short trealxtoint64z // if NaN, return 0
+ trealxtoint64b: // come here if argument too big for 32-bit integer
+ _asm mov edx, 0x7FFFFFFF
+ _asm mov ebx, 0xFFFFFFFF
+ _asm shr ecx, 17 // sign bit into carry flag
+ _asm adc ebx, 0 // edx:ebx=7FFFFFFF FFFFFFFF if +,
+ _asm adc edx, 0 // or 80000000 00000000 if -
+ _asm ret // return saturated value
+ trealxtoint64z: // come here if INT(argument)=0 or NaN
+ _asm xor edx, edx // return 0
+ _asm xor ebx, ebx
+ _asm ret
+ }
+
+
+
+
+/**
+Returns the extended precision value as a 64 bit integer value.
+
+The operator returns:
+
+1. zero, if the extended precision value is not a number
+
+2. 0x7FFFFFFF FFFFFFFF, if the value is positive and too big to fit
+ into a TInt64
+
+3. 0x80000000 00000000, if the value is negative and too big to fit
+ into a TInt64.
+*/
+__NAKED__ EXPORT_C TRealX::operator TInt64() const
+ {
+ // on entry, ecx=this, return value in edx:eax
+ _asm push ebx
+ _asm mov ebx, [ecx] // get TRealX value into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call ConvertTRealXToTInt64
+ _asm mov eax, ebx // store low result into eax
+ _asm pop ebx
+ _asm ret
+ }
+
+
+
+
+__NAKED__ LOCAL_C void TRealXGetTReal32(void)
+ {
+ // Convert TRealX in ecx,edx:ebx to TReal32 in edx
+ // Return error code in eax
+ _asm cmp ecx, 0xFFFF0000 // check for infinity/NaN
+ _asm jnc short trealxgettreal32a
+ _asm xor eax, eax
+ _asm ror ecx, 16 // exponent into cx
+ _asm sub cx, 0x7F80 // cx=result exponent if normalised
+ _asm jbe short trealxgettreal32b // jump if denormal, zero or underflow
+ _asm cmp cx, 0xFF // check if overflow
+ _asm jb short trealxgettreal32c // jump if not
+ trealxgettreal32d: // come here if overflow
+ _asm xor edx, edx // set mantissa=0 to generate infinity
+ _asm ror ecx, 16 // ecx back to normal format
+ trealxgettreal32a: // come here if infinity or NaN
+ _asm shr edx, 7
+ _asm or edx, 0xFF000000 // set exponent to FF
+ _asm shr ecx, 1 // sign bit -> carry
+ _asm rcr edx, 1 // sign bit -> MSB of result
+ _asm mov eax, edx
+ _asm shl eax, 9 // test for infinity or NaN
+ _asm mov eax, -9 // eax=KErrOverflow
+ _asm jz short trealxgettreal32e
+ _asm mov eax, -6 // if NaN, eax=KErrArgument
+ trealxgettreal32e:
+ _asm ret
+ trealxgettreal32b: // come here if exponent<=7F80
+ _asm cmp cx, -24 // check for zero or total underflow
+ _asm jle short trealxgettreal32z
+ _asm neg cl
+ _asm inc cl // cl=number of right shifts to form denormal mantissa
+ _asm shrd eax, ebx, cl // shift mantissa right into eax
+ _asm shrd ebx, edx, cl
+ _asm shr edx, cl
+ _asm or edx, 0x80000000 // set top bit to ensure correct rounding up
+ _asm xor cl, cl // cl=result exponent=0
+ trealxgettreal32c: // come here if result normalised
+ _asm cmp dl, 0x80 // check rounding bits
+ _asm ja short trealxgettreal32f // branch to round up
+ _asm jb short trealxgettreal32g // branch to round down
+ _asm test ebx, ebx
+ _asm jnz short trealxgettreal32f // branch to round up
+ _asm test eax, eax
+ _asm jnz short trealxgettreal32f // branch to round up
+ _asm test ecx, 0x01000000 // check rounded-down flag
+ _asm jnz short trealxgettreal32f // branch to round up
+ _asm test ecx, 0x02000000 // check rounded-up flag
+ _asm jnz short trealxgettreal32g // branch to round down
+ _asm test dh, 1 // else round to even
+ _asm jz short trealxgettreal32g // branch to round down if LSB=0
+ trealxgettreal32f: // come here to round up
+ _asm add edx, 0x100 // increment mantissa
+ _asm jnc short trealxgettreal32g
+ _asm rcr edx, 1
+ _asm inc cl // if carry, increment exponent
+ _asm cmp cl, 0xFF // and check for overflow
+ _asm jz short trealxgettreal32d // branch out if overflow
+ trealxgettreal32g: // come here to round down
+ _asm xor dl, dl
+ _asm add edx, edx // shift out integer bit
+ _asm mov dl, cl
+ _asm ror edx, 8 // exponent->edx bits 24-31, mantissa in 23-1
+ _asm test edx, edx // check if underflow
+ _asm jz short trealxgettreal32h // branch out if underflow
+ _asm shr ecx, 17 // sign bit->carry
+ _asm rcr edx, 1 // ->edx bit 31, exp->edx bits 23-30, mant->edx bits 22-0
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+ trealxgettreal32z: // come here if zero or underflow
+ _asm xor eax, eax
+ _asm cmp cx, 0x8080 // check for zero
+ _asm jz short trealxgettreal32y // if zero, return KErrNone
+ trealxgettreal32h: // come here if underflow after rounding
+ _asm mov eax, -10 // eax=KErrUnderflow
+ trealxgettreal32y:
+ _asm xor edx, edx
+ _asm shr ecx, 17
+ _asm rcr edx, 1 // sign bit into edx bit 31, rest of edx=0
+ _asm ret
+ }
+
+
+
+
+__NAKED__ LOCAL_C void TRealXGetTReal64(void)
+ {
+ // Convert TRealX in ecx,edx:ebx to TReal64 in edx:ebx
+ // Return error code in eax
+ // edi, esi also modified
+ _asm ror ecx, 16 // exponent into cx
+ _asm cmp cx, 0xFFFF // check for infinity/NaN
+ _asm jnc short trealxgettreal64a
+ _asm xor eax, eax
+ _asm xor edi, edi
+ _asm sub cx, 0x7C00 // cx=result exponent if normalised
+ _asm jbe short trealxgettreal64b // jump if denormal, zero or underflow
+ _asm cmp cx, 0x07FF // check if overflow
+ _asm jb short trealxgettreal64c // jump if not
+ trealxgettreal64d: // come here if overflow
+ _asm xor edx, edx // set mantissa=0 to generate infinity
+ _asm xor ebx, ebx
+ trealxgettreal64a: // come here if infinity or NaN
+ _asm mov cl, 10
+ _asm shrd ebx, edx, cl
+ _asm shr edx, cl
+ _asm or edx, 0xFFE00000 // set exponent to 7FF
+ _asm shr ecx, 17 // sign bit -> carry
+ _asm rcr edx, 1 // sign bit -> MSB of result
+ _asm rcr ebx, 1
+ _asm mov eax, edx
+ _asm shl eax, 12 // test for infinity or NaN
+ _asm mov eax, -9 // eax=KErrOverflow
+ _asm jnz short trealxgettreal64n
+ _asm test ebx, ebx
+ _asm jz short trealxgettreal64e
+ trealxgettreal64n:
+ _asm mov eax, -6 // if NaN, eax=KErrArgument
+ trealxgettreal64e:
+ _asm ret
+ trealxgettreal64b: // come here if exponent<=7C00
+ _asm cmp cx, -53 // check for zero or total underflow
+ _asm jle trealxgettreal64z
+ _asm neg cl
+ _asm inc cl // cl=number of right shifts to form denormal mantissa
+ _asm cmp cl, 32
+ _asm jb trealxgettreal64x
+ _asm mov eax, ebx // if >=32 shifts, do 32 shifts and decrement count by 32
+ _asm mov ebx, edx
+ _asm xor edx, edx
+ trealxgettreal64x:
+ _asm shrd edi, eax, cl
+ _asm shrd eax, ebx, cl // shift mantissa right into eax
+ _asm shrd ebx, edx, cl
+ _asm shr edx, cl
+ _asm or edx, 0x80000000 // set top bit to ensure correct rounding up
+ _asm xor cx, cx // cx=result exponent=0
+ trealxgettreal64c: // come here if result normalised
+ _asm mov esi, ebx
+ _asm and esi, 0x7FF // esi=rounding bits
+ _asm cmp esi, 0x400 // check rounding bits
+ _asm ja short trealxgettreal64f // branch to round up
+ _asm jb short trealxgettreal64g // branch to round down
+ _asm test eax, eax
+ _asm jnz short trealxgettreal64f // branch to round up
+ _asm test edi, edi
+ _asm jnz short trealxgettreal64f // branch to round up
+ _asm test ecx, 0x01000000 // check rounded-down flag
+ _asm jnz short trealxgettreal64f // branch to round up
+ _asm test ecx, 0x02000000 // check rounded-up flag
+ _asm jnz short trealxgettreal64g // branch to round down
+ _asm test ebx, 0x800 // else round to even
+ _asm jz short trealxgettreal64g // branch to round down if LSB=0
+ trealxgettreal64f: // come here to round up
+ _asm add ebx, 0x800 // increment mantissa
+ _asm adc edx, 0
+ _asm jnc short trealxgettreal64g
+ _asm rcr edx, 1
+ _asm inc cx // if carry, increment exponent
+ _asm cmp cx, 0x7FF // and check for overflow
+ _asm jz trealxgettreal64d // branch out if overflow
+ trealxgettreal64g: // come here to round down
+ _asm xor bl, bl // clear rounding bits
+ _asm and bh, 0xF8
+ _asm mov di, cx // save exponent
+ _asm mov cl, 10
+ _asm and edx, 0x7FFFFFFF // clear integer bit
+ _asm shrd ebx, edx, cl // shift mantissa right by 10
+ _asm shr edx, cl
+ _asm shl edi, 21 // exponent into edi bits 21-31
+ _asm or edx, edi // into edx bits 21-31
+ _asm test edx, edx // check if underflow
+ _asm jnz short trealxgettreal64i
+ _asm test ebx, ebx
+ _asm jz short trealxgettreal64h // branch out if underflow
+ trealxgettreal64i:
+ _asm shr ecx, 17 // sign bit->carry
+ _asm rcr edx, 1 // ->edx bit 31, exp->edx bits 20-30, mant->edx bits 20-0
+ _asm rcr ebx, 1
+ _asm xor eax, eax // return KErrNone
+ _asm ret
+ trealxgettreal64z: // come here if zero or underflow
+ _asm xor eax, eax
+ _asm cmp cx, 0x8400 // check for zero
+ _asm jz short trealxgettreal64y // if zero, return KErrNone
+ trealxgettreal64h: // come here if underflow after rounding
+ _asm mov eax, -10 // eax=KErrUnderflow
+ trealxgettreal64y:
+ _asm xor edx, edx
+ _asm xor ebx, ebx
+ _asm shr ecx, 17
+ _asm rcr edx, 1 // sign bit into edx bit 31, rest of edx=0, ebx=0
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::operator TReal32() const
+/**
+Returns the extended precision value as
+a single precision floating point value.
+*/
+ {
+ // On entry, ecx=this
+ // On exit, TReal32 value on top of FPU stack
+ _asm push ebx
+ _asm mov ebx, [ecx] // *this into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXGetTReal32 // Convert to TReal32 in edx
+ _asm push edx // push TReal32 onto stack
+ _asm fld dword ptr [esp] // push TReal32 onto FPU stack
+ _asm pop edx
+ _asm pop ebx
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::operator TReal64() const
+/**
+Returns the extended precision value as
+a double precision floating point value.
+*/
+ {
+ // On entry, ecx=this
+ // On exit, TReal64 value on top of FPU stack
+ _asm push ebx
+ _asm push esi
+ _asm push edi
+ _asm mov ebx, [ecx] // *this into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXGetTReal64 // Convert to TReal32 in edx:ebx
+ _asm push edx // push TReal64 onto stack
+ _asm push ebx
+ _asm fld qword ptr [esp] // push TReal64 onto FPU stack
+ _asm add esp, 8
+ _asm pop edi
+ _asm pop esi
+ _asm pop ebx
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal32& /*aVal*/) const
+/**
+Extracts the extended precision value as
+a single precision floating point value.
+
+@param aVal A reference to a single precision object which contains
+ the result of the operation.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // On entry, ecx=this, [esp+4]=address of aVal
+ // On exit, eax=return code
+ _asm push ebx
+ _asm mov ebx, [ecx] // *this into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXGetTReal32
+ _asm mov ecx, [esp+8] // ecx=address of aVal
+ _asm mov [ecx], edx // store result
+ _asm pop ebx
+ _asm ret 4 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal64& /*aVal*/) const
+/**
+Extracts the extended precision value as
+a double precision floating point value.
+
+@param aVal A reference to a double precision object which
+ contains the result of the operation.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // On entry, ecx=this, [esp+4]=address of aVal
+ // On exit, eax=return code
+ _asm push ebx
+ _asm push esi
+ _asm push edi
+ _asm mov ebx, [ecx] // *this into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXGetTReal64
+ _asm mov ecx, [esp+16] // ecx=address of aVal
+ _asm mov [ecx], ebx // store result
+ _asm mov [ecx+4], edx
+ _asm pop edi
+ _asm pop esi
+ _asm pop ebx
+ _asm ret 4 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C void TRealX::SetZero(TBool /*aNegative*/)
+/**
+Sets the value of this extended precision object to zero.
+
+@param aNegative ETrue, the value is a negative zero;
+ EFalse, the value is a positive zero, this is the default.
+*/
+ {
+ _asm mov edx, [esp+4] // aNegative into edx
+ _asm xor eax, eax // eax=0
+ _asm mov [ecx], eax
+ _asm mov [ecx+4], eax
+ _asm test edx, edx
+ _asm jz short setzero1
+ _asm inc eax // eax=1 if aNegative!=0
+ setzero1:
+ _asm mov [ecx+8], eax // generate positive or negative zero
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C void TRealX::SetNaN()
+/**
+Sets the value of this extended precision object to 'not a number'.
+*/
+ {
+ _asm xor eax, eax // set *this to 'real indefinite'
+ _asm mov [ecx], eax
+ _asm mov eax, 0xC0000000
+ _asm mov [ecx+4], eax
+ _asm mov eax, 0xFFFF0001
+ _asm mov [ecx+8], eax
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C void TRealX::SetInfinite(TBool /*aNegative*/)
+/**
+Sets the value of this extended precision object to infinity.
+
+@param aNegative ETrue, the value is a negative zero;
+ EFalse, the value is a positive zero.
+*/
+ {
+ _asm mov edx, [esp+4] // aNegative into edx
+ _asm mov eax, 0xFFFF0000 // exponent=FFFF, sign=0 initially
+ _asm test edx, edx
+ _asm jz short setinf1
+ _asm inc eax // sign=1 if aNegative!=0
+ setinf1:
+ _asm mov [ecx+8], eax // generate positive or negative infinity
+ _asm mov eax, 0x80000000
+ _asm mov [ecx+4], eax
+ _asm xor eax, eax
+ _asm mov [ecx], eax
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C TBool TRealX::IsZero() const
+/**
+Determines whether the extended precision value is zero.
+
+@return True, if the extended precision value is zero, false, otherwise.
+*/
+ {
+ _asm mov eax, [ecx+8] // check exponent
+ _asm shr eax, 16 // move exponent into ax
+ _asm jz short iszero1 // branch if zero
+ _asm xor eax, eax // else return 0
+ _asm ret
+ iszero1:
+ _asm inc eax // if zero, return 1
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TBool TRealX::IsNaN() const
+/**
+Determines whether the extended precision value is 'not a number'.
+
+@return True, if the extended precision value is 'not a number',
+ false, otherwise.
+*/
+ {
+ _asm mov eax, [ecx+8] // check exponent
+ _asm cmp eax, 0xFFFF0000
+ _asm jc short isnan0 // branch if not FFFF
+ _asm mov eax, [ecx+4]
+ _asm cmp eax, 0x80000000 // check for infinity
+ _asm jne short isnan1
+ _asm mov eax, [ecx]
+ _asm test eax, eax
+ _asm jne short isnan1
+ isnan0:
+ _asm xor eax, eax // return 0 if not NaN
+ _asm ret
+ isnan1:
+ _asm mov eax, 1 // return 1 if NaN
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TBool TRealX::IsInfinite() const
+/**
+Determines whether the extended precision value has a finite value.
+
+@return True, if the extended precision value is finite,
+ false, if the value is 'not a number' or is infinite,
+*/
+ {
+ _asm mov eax, [ecx+8] // check exponent
+ _asm cmp eax, 0xFFFF0000
+ _asm jc short isinf0 // branch if not FFFF
+ _asm mov eax, [ecx+4]
+ _asm cmp eax, 0x80000000 // check for infinity
+ _asm jne short isinf0
+ _asm mov eax, [ecx]
+ _asm test eax, eax
+ _asm jne short isinf0
+ _asm inc eax // return 1 if infinity
+ _asm ret
+ isinf0:
+ _asm xor eax, eax // return 0 if not infinity
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TBool TRealX::IsFinite() const
+/**
+Determines whether the extended precision value has a finite value.
+
+@return True, if the extended precision value is finite,
+ false, if the value is 'not a number' or is infinite,
+*/
+ {
+ _asm mov eax, [ecx+8] // check exponent
+ _asm cmp eax, 0xFFFF0000 // check for NaN or infinity
+ _asm jnc short isfinite0 // branch if NaN or infinity
+ _asm mov eax, 1 // return 1 if finite
+ _asm ret
+ isfinite0:
+ _asm xor eax, eax // return 0 if NaN or infinity
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C const TRealX& TRealX::operator+=(const TRealX& /*aVal*/)
+/**
+Adds an extended precision value to this extended precision number.
+
+@param aVal The extended precision value to be added.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXAdd // do addition, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result in *this
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return this in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C const TRealX& TRealX::operator-=(const TRealX& /*aVal*/)
+/**
+Subtracts an extended precision value from this extended precision number.
+
+@param aVal The extended precision value to be subtracted.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXSubtract // do subtraction, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result in *this
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return this in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C const TRealX& TRealX::operator*=(const TRealX& /*aVal*/)
+/**
+Multiplies this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be subtracted.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXMultiply // do multiplication, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result in *this
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return this in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C const TRealX& TRealX::operator/=(const TRealX& /*aVal*/)
+/**
+Divides this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the divisor.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+@panic MATHX KErrDivideByZero if the divisor is zero.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXDivide // do division, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result in *this
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return this in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C const TRealX& TRealX::operator%=(const TRealX& /*aVal*/)
+/**
+Modulo-divides this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the divisor.
+
+@return A reference to this object.
+
+@panic MATHX KErrTotalLossOfPrecision panic if precision is lost.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXModulo // do modulo, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result in *this
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return this in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::AddEq(const TRealX& /*aVal*/)
+/**
+Adds an extended precision value to this extended precision number.
+
+@param aVal The extended precision value to be added.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow,if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXAdd // do addition, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::SubEq(const TRealX& /*aVal*/)
+/**
+Subtracts an extended precision value from this extended precision number.
+
+@param aVal The extended precision value to be subtracted.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXSubtract // do subtraction, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::MultEq(const TRealX& /*aVal*/)
+/**
+Multiplies this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the multiplier.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXMultiply // do multiplication, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::DivEq(const TRealX& /*aVal*/)
+/**
+Divides this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the divisor.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow;
+ KErrDivideByZero, if the divisor is zero.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXDivide // do division, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::ModEq(const TRealX& /*aVal*/)
+/**
+Modulo-divides this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the divisor.
+
+@return KErrNone, if the operation is successful;
+ KErrTotalLossOfPrecision, if precision is lost;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+20] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXModulo // do modulo, result in ecx,edx:ebx, error code in eax
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator+() const
+/**
+Returns this extended precision number unchanged.
+
+Note that this may also be referred to as a unary plus operator.
+
+@return The extended precision number.
+*/
+ {
+ _asm mov eax, [esp+4] // eax=address to write return value
+ _asm mov edx, [ecx]
+ _asm mov [eax], edx
+ _asm mov edx, [ecx+4]
+ _asm mov [eax+4], edx
+ _asm mov edx, [ecx+8]
+ _asm mov [eax+8], edx
+ _asm ret 4 // return address of return value in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator-() const
+/**
+Negates this extended precision number.
+
+This may also be referred to as a unary minus operator.
+
+@return The negative of the extended precision number.
+*/
+ {
+ _asm mov eax, [esp+4] // eax=address to write return value
+ _asm mov edx, [ecx]
+ _asm mov [eax], edx
+ _asm mov edx, [ecx+4]
+ _asm mov [eax+4], edx
+ _asm mov edx, [ecx+8]
+ _asm xor dl, 1 // change sign bit
+ _asm mov [eax+8], edx
+ _asm ret 4 // return address of return value in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX& TRealX::operator++()
+/**
+Increments this extended precision number by one,
+and then returns a reference to it.
+
+This is also referred to as a prefix operator.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // pre-increment
+ // on entry ecx=this, return this in eax
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, 0x7FFF0000 // set ecx,edx:ebx to 1.0
+ _asm mov edx, 0x80000000
+ _asm xor ebx, ebx
+ _asm call TRealXAdd // add 1 to *this
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax // check error code
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // else return this in eax
+ _asm pop edi
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator++(TInt)
+/**
+Returns this extended precision number before incrementing it by one.
+
+This is also referred to as a postfix operator.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // post-increment
+ // on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov edi, [esp+20] // address of return value into edi
+ _asm mov eax, [ecx] // copy initial value of *this into [edi]
+ _asm mov [edi], eax
+ _asm mov eax, [ecx+4]
+ _asm mov [edi+4], eax
+ _asm mov eax, [ecx+8]
+ _asm mov [edi+8], eax
+ _asm mov ecx, 0x7FFF0000 // set ecx,edx:ebx to 1.0
+ _asm mov edx, 0x80000000
+ _asm xor ebx, ebx
+ _asm call TRealXAdd // add 1 to *this
+ _asm mov [esi], ebx // store result in *this
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax // check error code
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, [esp+20] // address of return value into eax
+ _asm pop edi
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX& TRealX::operator--()
+/**
+Decrements this extended precision number by one,
+and then returns a reference to it.
+
+This is also referred to as a prefix operator.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // pre-decrement
+ // on entry ecx=this, return this in eax
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, 0x7FFF0001 // set ecx,edx:ebx to -1.0
+ _asm mov edx, 0x80000000
+ _asm xor ebx, ebx
+ _asm call TRealXAdd // add -1 to *this
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax // check error code
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // else return this in eax
+ _asm pop edi
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator--(TInt)
+/**
+Returns this extended precision number before decrementing it by one.
+
+This is also referred to as a postfix operator.
+
+@return A reference to this object.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // post-decrement
+ // on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov edi, [esp+20] // address of return value into edi
+ _asm mov eax, [ecx] // copy initial value of *this into [edi]
+ _asm mov [edi], eax
+ _asm mov eax, [ecx+4]
+ _asm mov [edi+4], eax
+ _asm mov eax, [ecx+8]
+ _asm mov [edi+8], eax
+ _asm mov ecx, 0x7FFF0001 // set ecx,edx:ebx to -1.0
+ _asm mov edx, 0x80000000
+ _asm xor ebx, ebx
+ _asm call TRealXAdd // add -1 to *this
+ _asm mov [esi], ebx // store result in *this
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax // check error code
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, [esp+20] // address of return value into eax
+ _asm pop edi
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator+(const TRealX& /*aVal*/) const
+/**
+Adds an extended precision value to this extended precision number.
+
+@param aVal The extended precision value to be added.
+
+@return An extended precision object containing the result.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXAdd // do addition, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of return value
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return address of return value in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator-(const TRealX& /*aVal*/) const
+/**
+Subtracts an extended precision value from this extended precision number.
+
+@param aVal The extended precision value to be subtracted.
+
+@return An extended precision object containing the result.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXSubtract // do subtraction, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of return value
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return address of return value in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator*(const TRealX& /*aVal*/) const
+/**
+Multiplies this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the multiplier.
+
+@return An extended precision object containing the result.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXMultiply // do multiplication, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of return value
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return address of return value in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator/(const TRealX& /*aVal*/) const
+/**
+Divides this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the divisor.
+
+@return An extended precision object containing the result.
+
+@panic MATHX KErrOverflow if the operation results in overflow.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+@panic MATHX KErrDivideByZero if the divisor is zero.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXDivide // do division, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of return value
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return address of return value in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX TRealX::operator%(const TRealX& /*aVal*/) const
+/**
+Modulo-divides this extended precision number by an extended precision value.
+
+@param aVal The extended precision value to be used as the divisor.
+
+@return An extended precision object containing the result.
+
+@panic MATHX KErrTotalLossOfPrecision if precision is lost.
+@panic MATHX KErrUnderflow if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXModulo // do modulo, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of return value
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm test eax, eax
+ _ASM_jn(z,TRealXPanicEax) // panic if error
+ _asm mov eax, esi // return address of return value in eax
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Add(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
+/**
+Adds an extended precision value to this extended precision number.
+
+@param aResult On return, a reference to an extended precision object
+ containing the result of the operation.
+@param aVal The extended precision value to be added.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXAdd // do addition, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of aResult
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Sub(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
+/**
+Subtracts an extended precision value from this extended precision number.
+
+@param aResult On return, a reference to an extended precision object
+ containing the result of the operation.
+@param aVal The extended precision value to be subtracted.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXSubtract // do subtraction, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of aResult
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Mult(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
+/**
+Multiplies this extended precision number by an extended precision value.
+
+@param aResult On return, a reference to an extended precision object
+ containing the result of the operation.
+@param aVal The extended precision value to be used as the multiplier.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXMultiply // do multiplication, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of aResult
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Div(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
+/**
+Divides this extended precision number by an extended precision value.
+
+@param aResult On return, a reference to an extended precision object
+ containing the result of the operation.
+@param aVal The extended precision value to be used as the divisor.
+
+@return KErrNone, if the operation is successful;
+ KErrOverflow, if the operation results in overflow;
+ KErrUnderflow, if the operation results in underflow;
+ KErrDivideByZero, if the divisor is zero.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXDivide // do division, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of aResult
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8 // return with error code in eax
+ }
+
+
+
+
+__NAKED__ EXPORT_C TInt TRealX::Mod(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
+/**
+Modulo-divides this extended precision number by an extended precision value.
+
+@param aResult On return, a reference to an extended precision object
+ containing the result of the operation.
+
+@param aVal The extended precision value to be used as the divisor.
+
+@return KErrNone, if the operation is successful;
+ KErrTotalLossOfPrecision, if precision is lost;
+ KErrUnderflow, if the operation results in underflow.
+*/
+ {
+ // on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, ecx // this into esi
+ _asm mov ecx, [esp+24] // address of aVal into ecx
+ _asm mov ebx, [ecx] // aVal into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXModulo // do modulo, result in ecx,edx:ebx, error code in eax
+ _asm mov esi, [esp+20] // esi=address of aResult
+ _asm mov [esi], ebx // store result
+ _asm mov [esi+4], edx
+ _asm mov [esi+8], ecx
+ _asm pop edi // restore registers
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 8 // return with error code in eax
+ }
+
+// Compare TRealX in ecx,edx:ebx (op1) to TRealX at [esi] (op2)
+// Return 1 if op1<op2
+// Return 2 if op1=op2
+// Return 4 if op1>op2
+// Return 8 if unordered
+// Return value in eax
+__NAKED__ LOCAL_C void TRealXCompare(void)
+ {
+ _asm cmp ecx, 0xFFFF0000 // check if op1=NaN or infinity
+ _asm jc short fpcmp1 // branch if not
+ _asm cmp edx, 0x80000000 // check for infinity
+ _asm jnz short fpcmpunord // branch if NaN
+ _asm test ebx, ebx
+ _asm jz short fpcmp1 // if infinity, process normally
+ fpcmpunord: // come here if unordered
+ _asm mov eax, 8 // return 8
+ _asm ret
+ fpcmp1: // op1 is not a NaN
+ _asm mov eax, [esi+8] // get op2 into eax,edi:ebp
+ _asm mov edi, [esi+4]
+ _asm mov ebp, [esi]
+ _asm cmp eax, 0xFFFF0000 // check for NaN or infinity
+ _asm jc short fpcmp2 // branch if neither
+ _asm cmp edi, 0x80000000 // check for infinity
+ _asm jnz short fpcmpunord // branch if NaN
+ _asm test ebp, ebp
+ _asm jnz short fpcmpunord
+ fpcmp2: // neither operand is a NaN
+ _asm cmp ecx, 0x10000 // check if op1=0
+ _asm jc short fpcmpop1z // branch if it is
+ _asm cmp eax, 0x10000 // check if op2=0
+ _asm jc short fpcmp4 // branch if it is
+ _asm xor al, cl // check if signs the same
+ _asm test al, 1
+ _asm jnz short fpcmp4 // branch if different
+ _asm push ecx
+ _asm shr ecx, 16 // op1 exponent into cx
+ _asm shr eax, 16 // op2 exponent into ax
+ _asm cmp ecx, eax // compare exponents
+ _asm pop ecx
+ _asm ja short fpcmp4 // if op1 exp > op2 exp op1>op2 if +ve
+ _asm jb short fpcmp5 // if op1 exp < op2 exp op1<op2 if +ve
+ _asm cmp edx, edi // else compare mantissa high words
+ _asm ja short fpcmp4
+ _asm jb short fpcmp5
+ _asm cmp ebx, ebp // if equal compare mantissa low words
+ _asm ja short fpcmp4
+ _asm jb short fpcmp5
+ fpcmp0:
+ _asm mov eax, 2 // numbers exactly equal
+ _asm ret
+ fpcmp4: // come here if ABS(op1)>ABS(op2) or if signs different
+ // or if op2 zero, op1 nonzero
+ _asm mov eax, 4 // return 4 if +ve
+ _asm test cl, 1 // check sign
+ _asm jz short fpcmp4a // skip if +
+ _asm mov al, 1 // return 1 if -ve
+ fpcmp4a:
+ _asm ret
+ fpcmp5: // come here if ABS(op1)<ABS(op2)
+ _asm mov eax, 1 // return 1 if +ve
+ _asm test cl, 1 // check sign
+ _asm jz short fpcmp5a // skip if +
+ _asm mov al, 4 // return 4 if -ve
+ fpcmp5a:
+ _asm ret
+ fpcmpop1z: // come here if op1=0
+ _asm cmp eax, 0x10000 // check if op2 also zero
+ _asm jc short fpcmp0 // if so, they are equal
+ _asm test al, 1 // test sign of op 2
+ _asm mov eax, 4 // if -, return 4
+ _asm jnz short fpcmpop1z2n // skip if -
+ _asm mov al, 1 // else return 1
+ fpcmpop1z2n:
+ _asm ret
+ }
+
+
+
+
+__NAKED__ EXPORT_C TRealX::TRealXOrder TRealX::Compare(const TRealX& /*aVal*/) const
+/**
+*/
+ {
+ // On entry ecx=this, [esp+4]=address of aVal
+ _asm push ebx // save registers
+ _asm push ebp
+ _asm push esi
+ _asm push edi
+ _asm mov esi, [esp+20] // address of aVal into esi
+ _asm mov ebx, [ecx] // *this into ecx,edx:ebx
+ _asm mov edx, [ecx+4]
+ _asm mov ecx, [ecx+8]
+ _asm call TRealXCompare // result in eax
+ _asm pop edi
+ _asm pop esi
+ _asm pop ebp
+ _asm pop ebx
+ _asm ret 4
+ }
+
+
+
+
+#pragma warning (default : 4100) // unreferenced formal parameter
+#pragma warning (default : 4414) // short jump converted to near
+#pragma warning (default : 4700) // local variable 'this' used without having been initialised
+