|
1 // Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // e32\memmodel\epoc\mmubase\mmubase.cpp |
|
15 // |
|
16 // |
|
17 |
|
18 #include <memmodel/epoc/mmubase/mmubase.h> |
|
19 #include <mmubase.inl> |
|
20 #include <ramcache.h> |
|
21 #include <demand_paging.h> |
|
22 #include "cache_maintenance.h" |
|
23 #include "highrestimer.h" |
|
24 #include <defrag.h> |
|
25 #include <ramalloc.h> |
|
26 |
|
27 |
|
28 __ASSERT_COMPILE(sizeof(SPageInfo)==(1<<KPageInfoShift)); |
|
29 |
|
30 _LIT(KLitRamAlloc,"RamAlloc"); |
|
31 _LIT(KLitHwChunk,"HwChunk"); |
|
32 |
|
33 |
|
34 DMutex* MmuBase::HwChunkMutex; |
|
35 DMutex* MmuBase::RamAllocatorMutex; |
|
36 #ifdef BTRACE_KERNEL_MEMORY |
|
37 TInt Epoc::DriverAllocdPhysRam = 0; |
|
38 TInt Epoc::KernelMiscPages = 0; |
|
39 #endif |
|
40 |
|
41 /****************************************************************************** |
|
42 * Code common to all MMU memory models |
|
43 ******************************************************************************/ |
|
44 |
|
45 const TInt KFreePagesStepSize=16; |
|
46 |
|
47 void MmuBase::Panic(TPanic aPanic) |
|
48 { |
|
49 Kern::Fault("MMUBASE",aPanic); |
|
50 } |
|
51 |
|
52 void SPageInfo::Lock() |
|
53 { |
|
54 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Lock"); |
|
55 ++iLockCount; |
|
56 if(!iLockCount) |
|
57 MmuBase::Panic(MmuBase::EPageLockedTooManyTimes); |
|
58 } |
|
59 |
|
60 TInt SPageInfo::Unlock() |
|
61 { |
|
62 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Unlock"); |
|
63 if(!iLockCount) |
|
64 MmuBase::Panic(MmuBase::EPageUnlockedTooManyTimes); |
|
65 return --iLockCount; |
|
66 } |
|
67 |
|
68 #ifdef _DEBUG |
|
69 void SPageInfo::Set(TType aType, TAny* aOwner, TUint32 aOffset) |
|
70 { |
|
71 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Set"); |
|
72 (TUint16&)iType = aType; // also sets iState to EStateNormal |
|
73 |
|
74 iOwner = aOwner; |
|
75 iOffset = aOffset; |
|
76 iModifier = 0; |
|
77 } |
|
78 |
|
79 void SPageInfo::Change(TType aType,TState aState) |
|
80 { |
|
81 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::Change"); |
|
82 iType = aType; |
|
83 iState = aState; |
|
84 iModifier = 0; |
|
85 } |
|
86 |
|
87 void SPageInfo::SetState(TState aState) |
|
88 { |
|
89 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::SetState"); |
|
90 iState = aState; |
|
91 iModifier = 0; |
|
92 } |
|
93 |
|
94 void SPageInfo::SetModifier(TAny* aModifier) |
|
95 { |
|
96 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::SetModifier"); |
|
97 iModifier = aModifier; |
|
98 } |
|
99 |
|
100 TInt SPageInfo::CheckModified(TAny* aModifier) |
|
101 { |
|
102 CHECK_PRECONDITIONS(MASK_SYSTEM_LOCKED,"SPageInfo::CheckModified"); |
|
103 return iModifier!=aModifier; |
|
104 } |
|
105 |
|
106 void SPageInfo::SetZone(TUint8 aZoneIndex) |
|
107 { |
|
108 __ASSERT_ALWAYS(K::Initialising,Kern::Fault("SPageInfo::SetZone",0)); |
|
109 iZone = aZoneIndex; |
|
110 } |
|
111 |
|
112 |
|
113 #endif |
|
114 |
|
115 MmuBase::MmuBase() |
|
116 : iRamCache(NULL), iDefrag(NULL) |
|
117 { |
|
118 } |
|
119 |
|
120 TUint32 MmuBase::RoundToPageSize(TUint32 aSize) |
|
121 { |
|
122 return (aSize+KPageMask)&~KPageMask; |
|
123 } |
|
124 |
|
125 TUint32 MmuBase::RoundToChunkSize(TUint32 aSize) |
|
126 { |
|
127 TUint32 mask=TheMmu->iChunkMask; |
|
128 return (aSize+mask)&~mask; |
|
129 } |
|
130 |
|
131 TInt MmuBase::RoundUpRangeToPageSize(TUint32& aBase, TUint32& aSize) |
|
132 { |
|
133 TUint32 mask=KPageMask; |
|
134 TUint32 shift=KPageShift; |
|
135 TUint32 offset=aBase&mask; |
|
136 aBase&=~mask; |
|
137 aSize=(aSize+offset+mask)&~mask; |
|
138 return TInt(aSize>>shift); |
|
139 } |
|
140 |
|
141 void MmuBase::Wait() |
|
142 { |
|
143 Kern::MutexWait(*RamAllocatorMutex); |
|
144 if (RamAllocatorMutex->iHoldCount==1) |
|
145 { |
|
146 MmuBase& m=*TheMmu; |
|
147 m.iInitialFreeMemory=Kern::FreeRamInBytes(); |
|
148 m.iAllocFailed=EFalse; |
|
149 } |
|
150 } |
|
151 |
|
152 void MmuBase::Signal() |
|
153 { |
|
154 if (RamAllocatorMutex->iHoldCount>1) |
|
155 { |
|
156 Kern::MutexSignal(*RamAllocatorMutex); |
|
157 return; |
|
158 } |
|
159 MmuBase& m=*TheMmu; |
|
160 TInt initial=m.iInitialFreeMemory; |
|
161 TBool failed=m.iAllocFailed; |
|
162 TInt final=Kern::FreeRamInBytes(); |
|
163 Kern::MutexSignal(*RamAllocatorMutex); |
|
164 K::CheckFreeMemoryLevel(initial,final,failed); |
|
165 } |
|
166 |
|
167 void MmuBase::WaitHwChunk() |
|
168 { |
|
169 Kern::MutexWait(*HwChunkMutex); |
|
170 } |
|
171 |
|
172 void MmuBase::SignalHwChunk() |
|
173 { |
|
174 Kern::MutexSignal(*HwChunkMutex); |
|
175 } |
|
176 |
|
177 |
|
178 void MmuBase::MapRamPage(TLinAddr aAddr, TPhysAddr aPage, TPte aPtePerm) |
|
179 { |
|
180 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MapRamPage %08x@%08x perm %08x", aPage, aAddr, aPtePerm)); |
|
181 TInt ptid=PageTableId(aAddr); |
|
182 NKern::LockSystem(); |
|
183 MapRamPages(ptid,SPageInfo::EInvalid,0,aAddr,&aPage,1,aPtePerm); |
|
184 NKern::UnlockSystem(); |
|
185 } |
|
186 |
|
187 // |
|
188 // Unmap and free pages from a global area |
|
189 // |
|
190 void MmuBase::UnmapAndFree(TLinAddr aAddr, TInt aNumPages) |
|
191 { |
|
192 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::UnmapAndFree(%08x,%d)",aAddr,aNumPages)); |
|
193 while(aNumPages) |
|
194 { |
|
195 TInt pt_np=(iChunkSize-(aAddr&iChunkMask))>>iPageShift; |
|
196 TInt np=Min(aNumPages,pt_np); |
|
197 aNumPages-=np; |
|
198 TInt id=PageTableId(aAddr); |
|
199 if (id>=0) |
|
200 { |
|
201 while(np) |
|
202 { |
|
203 TInt np2=Min(np,KFreePagesStepSize); |
|
204 TPhysAddr phys[KFreePagesStepSize]; |
|
205 TInt nptes; |
|
206 TInt nfree; |
|
207 NKern::LockSystem(); |
|
208 UnmapPages(id,aAddr,np2,phys,true,nptes,nfree,NULL); |
|
209 NKern::UnlockSystem(); |
|
210 if (nfree) |
|
211 { |
|
212 if (iDecommitThreshold) |
|
213 CacheMaintenanceOnDecommit(phys, nfree); |
|
214 iRamPageAllocator->FreeRamPages(phys,nfree,EPageFixed); |
|
215 } |
|
216 np-=np2; |
|
217 aAddr+=(np2<<iPageShift); |
|
218 } |
|
219 } |
|
220 else |
|
221 { |
|
222 aAddr+=(np<<iPageShift); |
|
223 } |
|
224 } |
|
225 } |
|
226 |
|
227 void MmuBase::FreePages(TPhysAddr* aPageList, TInt aCount, TZonePageType aPageType) |
|
228 { |
|
229 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::FreePages(%08x,%d)",aPageList,aCount)); |
|
230 if (!aCount) |
|
231 return; |
|
232 TBool sync_decommit = (TUint(aCount)<iDecommitThreshold); |
|
233 TPhysAddr* ppa=aPageList; |
|
234 TPhysAddr* ppaE=ppa+aCount; |
|
235 NKern::LockSystem(); |
|
236 while (ppa<ppaE) |
|
237 { |
|
238 TPhysAddr pa=*ppa++; |
|
239 SPageInfo* pi=SPageInfo::SafeFromPhysAddr(pa); |
|
240 if (pi) |
|
241 { |
|
242 pi->SetUnused(); |
|
243 if (pi->LockCount()) |
|
244 ppa[-1]=KPhysAddrInvalid; // don't free page if it's locked down |
|
245 else if (sync_decommit) |
|
246 { |
|
247 NKern::UnlockSystem(); |
|
248 CacheMaintenanceOnDecommit(pa); |
|
249 NKern::LockSystem(); |
|
250 } |
|
251 } |
|
252 if (!sync_decommit) |
|
253 NKern::FlashSystem(); |
|
254 } |
|
255 NKern::UnlockSystem(); |
|
256 if (iDecommitThreshold && !sync_decommit) |
|
257 CacheMaintenance::SyncPhysicalCache_All(); |
|
258 iRamPageAllocator->FreeRamPages(aPageList,aCount, aPageType); |
|
259 } |
|
260 |
|
261 TInt MmuBase::InitPageTableInfo(TInt aId) |
|
262 { |
|
263 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::InitPageTableInfo(%x)",aId)); |
|
264 TInt ptb=aId>>iPtBlockShift; |
|
265 if (++iPtBlockCount[ptb]==1) |
|
266 { |
|
267 // expand page table info array |
|
268 TPhysAddr pagePhys; |
|
269 if (AllocRamPages(&pagePhys,1, EPageFixed)!=KErrNone) |
|
270 { |
|
271 __KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page")); |
|
272 iPtBlockCount[ptb]=0; |
|
273 iAllocFailed=ETrue; |
|
274 return KErrNoMemory; |
|
275 } |
|
276 #ifdef BTRACE_KERNEL_MEMORY |
|
277 BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, 1<<KPageShift); |
|
278 ++Epoc::KernelMiscPages; |
|
279 #endif |
|
280 TLinAddr pil=PtInfoBlockLinAddr(ptb); |
|
281 NKern::LockSystem(); |
|
282 SPageInfo::FromPhysAddr(pagePhys)->SetPtInfo(ptb); |
|
283 NKern::UnlockSystem(); |
|
284 MapRamPage(pil, pagePhys, iPtInfoPtePerm); |
|
285 memclr((TAny*)pil, iPageSize); |
|
286 } |
|
287 return KErrNone; |
|
288 } |
|
289 |
|
290 TInt MmuBase::DoAllocPageTable(TPhysAddr& aPhysAddr) |
|
291 // |
|
292 // Allocate a new page table but don't map it. |
|
293 // Return page table id and page number/phys address of new page if any. |
|
294 // |
|
295 { |
|
296 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::DoAllocPageTable()")); |
|
297 #ifdef _DEBUG |
|
298 if(K::CheckForSimulatedAllocFail()) |
|
299 return KErrNoMemory; |
|
300 #endif |
|
301 TInt id=iPageTableAllocator?iPageTableAllocator->Alloc():-1; |
|
302 if (id<0) |
|
303 { |
|
304 // need to allocate a new page |
|
305 if (AllocRamPages(&aPhysAddr,1, EPageFixed)!=KErrNone) |
|
306 { |
|
307 __KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page")); |
|
308 iAllocFailed=ETrue; |
|
309 return KErrNoMemory; |
|
310 } |
|
311 |
|
312 // allocate an ID for the new page |
|
313 id=iPageTableLinearAllocator->Alloc(); |
|
314 if (id>=0) |
|
315 { |
|
316 id<<=iPtClusterShift; |
|
317 __KTRACE_OPT(KMMU,Kern::Printf("Allocated ID %04x",id)); |
|
318 } |
|
319 if (id<0 || InitPageTableInfo(id)!=KErrNone) |
|
320 { |
|
321 __KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page table info")); |
|
322 iPageTableLinearAllocator->Free(id>>iPtClusterShift); |
|
323 if (iDecommitThreshold) |
|
324 CacheMaintenanceOnDecommit(aPhysAddr); |
|
325 |
|
326 iRamPageAllocator->FreeRamPage(aPhysAddr, EPageFixed); |
|
327 iAllocFailed=ETrue; |
|
328 return KErrNoMemory; |
|
329 } |
|
330 |
|
331 // Set up page info for new page |
|
332 NKern::LockSystem(); |
|
333 SPageInfo::FromPhysAddr(aPhysAddr)->SetPageTable(id>>iPtClusterShift); |
|
334 NKern::UnlockSystem(); |
|
335 #ifdef BTRACE_KERNEL_MEMORY |
|
336 BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, 1<<KPageShift); |
|
337 ++Epoc::KernelMiscPages; |
|
338 #endif |
|
339 // mark all subpages other than first as free for use as page tables |
|
340 if (iPtClusterSize>1) |
|
341 iPageTableAllocator->Free(id+1,iPtClusterSize-1); |
|
342 } |
|
343 else |
|
344 aPhysAddr=KPhysAddrInvalid; |
|
345 |
|
346 __KTRACE_OPT(KMMU,Kern::Printf("DoAllocPageTable returns %d (%08x)",id,aPhysAddr)); |
|
347 PtInfo(id).SetUnused(); |
|
348 return id; |
|
349 } |
|
350 |
|
351 TInt MmuBase::MapPageTable(TInt aId, TPhysAddr aPhysAddr, TBool aAllowExpand) |
|
352 { |
|
353 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MapPageTable(%d,%08x)",aId,aPhysAddr)); |
|
354 TLinAddr ptLin=PageTableLinAddr(aId); |
|
355 TInt ptg=aId>>iPtGroupShift; |
|
356 if (++iPtGroupCount[ptg]==1) |
|
357 { |
|
358 // need to allocate a new page table |
|
359 __ASSERT_ALWAYS(aAllowExpand, Panic(EMapPageTableBadExpand)); |
|
360 TPhysAddr xptPhys; |
|
361 TInt xptid=DoAllocPageTable(xptPhys); |
|
362 if (xptid<0) |
|
363 { |
|
364 __KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate extra page table")); |
|
365 iPtGroupCount[ptg]=0; |
|
366 return KErrNoMemory; |
|
367 } |
|
368 if (xptPhys==KPhysAddrInvalid) |
|
369 xptPhys=aPhysAddr + ((xptid-aId)<<iPageTableShift); |
|
370 BootstrapPageTable(xptid, xptPhys, aId, aPhysAddr); // initialise XPT and map it |
|
371 } |
|
372 else |
|
373 MapRamPage(ptLin, aPhysAddr, iPtPtePerm); |
|
374 return KErrNone; |
|
375 } |
|
376 |
|
377 TInt MmuBase::AllocPageTable() |
|
378 // |
|
379 // Allocate a new page table, mapped at the correct linear address. |
|
380 // Clear all entries to Not Present. Return page table id. |
|
381 // |
|
382 { |
|
383 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::AllocPageTable()")); |
|
384 __ASSERT_MUTEX(MmuBase::RamAllocatorMutex); |
|
385 |
|
386 TPhysAddr ptPhys; |
|
387 TInt id=DoAllocPageTable(ptPhys); |
|
388 if (id<0) |
|
389 return KErrNoMemory; |
|
390 if (ptPhys!=KPhysAddrInvalid) |
|
391 { |
|
392 TInt r=MapPageTable(id,ptPhys); |
|
393 if (r!=KErrNone) |
|
394 { |
|
395 DoFreePageTable(id); |
|
396 SPageInfo* pi=SPageInfo::FromPhysAddr(ptPhys); |
|
397 NKern::LockSystem(); |
|
398 pi->SetUnused(); |
|
399 NKern::UnlockSystem(); |
|
400 if (iDecommitThreshold) |
|
401 CacheMaintenanceOnDecommit(ptPhys); |
|
402 |
|
403 iRamPageAllocator->FreeRamPage(ptPhys, EPageFixed); |
|
404 return r; |
|
405 } |
|
406 } |
|
407 ClearPageTable(id); |
|
408 __KTRACE_OPT(KMMU,Kern::Printf("AllocPageTable returns %d",id)); |
|
409 return id; |
|
410 } |
|
411 |
|
412 TBool MmuBase::DoFreePageTable(TInt aId) |
|
413 // |
|
414 // Free an empty page table. We assume that all pages mapped by the page table have |
|
415 // already been unmapped and freed. |
|
416 // |
|
417 { |
|
418 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::DoFreePageTable(%d)",aId)); |
|
419 SPageTableInfo& s=PtInfo(aId); |
|
420 __NK_ASSERT_DEBUG(!s.iCount); // shouldn't have any pages mapped |
|
421 s.SetUnused(); |
|
422 |
|
423 TInt id=aId &~ iPtClusterMask; |
|
424 if (iPageTableAllocator) |
|
425 { |
|
426 iPageTableAllocator->Free(aId); |
|
427 if (iPageTableAllocator->NotFree(id,iPtClusterSize)) |
|
428 { |
|
429 // some subpages still in use |
|
430 return ETrue; |
|
431 } |
|
432 __KTRACE_OPT(KMMU,Kern::Printf("Freeing whole page, id=%d",id)); |
|
433 // whole page is now free |
|
434 // remove it from the page table allocator |
|
435 iPageTableAllocator->Alloc(id,iPtClusterSize); |
|
436 } |
|
437 |
|
438 TInt ptb=aId>>iPtBlockShift; |
|
439 if (--iPtBlockCount[ptb]==0) |
|
440 { |
|
441 // shrink page table info array |
|
442 TLinAddr pil=PtInfoBlockLinAddr(ptb); |
|
443 UnmapAndFree(pil,1); // remove PTE, null page info, free page |
|
444 #ifdef BTRACE_KERNEL_MEMORY |
|
445 BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscFree, 1<<KPageShift); |
|
446 --Epoc::KernelMiscPages; |
|
447 #endif |
|
448 } |
|
449 |
|
450 // free the page table linear address |
|
451 iPageTableLinearAllocator->Free(id>>iPtClusterShift); |
|
452 return EFalse; |
|
453 } |
|
454 |
|
455 void MmuBase::FreePageTable(TInt aId) |
|
456 // |
|
457 // Free an empty page table. We assume that all pages mapped by the page table have |
|
458 // already been unmapped and freed. |
|
459 // |
|
460 { |
|
461 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::FreePageTable(%d)",aId)); |
|
462 if (DoFreePageTable(aId)) |
|
463 return; |
|
464 |
|
465 TInt id=aId &~ iPtClusterMask; |
|
466 |
|
467 // calculate linear address of page |
|
468 TLinAddr ptLin=PageTableLinAddr(id); |
|
469 __KTRACE_OPT(KMMU,Kern::Printf("Page lin %08x",ptLin)); |
|
470 |
|
471 // unmap and free the page |
|
472 UnmapAndFree(ptLin,1); |
|
473 #ifdef BTRACE_KERNEL_MEMORY |
|
474 BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscFree, 1<<KPageShift); |
|
475 --Epoc::KernelMiscPages; |
|
476 #endif |
|
477 |
|
478 TInt ptg=aId>>iPtGroupShift; |
|
479 --iPtGroupCount[ptg]; |
|
480 // don't shrink the page table mapping for now |
|
481 } |
|
482 |
|
483 TInt MmuBase::AllocPhysicalRam(TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign) |
|
484 { |
|
485 __KTRACE_OPT(KMMU,Kern::Printf("Mmu::AllocPhysicalRam() size=%x align=%d",aSize,aAlign)); |
|
486 TInt r=AllocContiguousRam(aSize, aPhysAddr, EPageFixed, aAlign); |
|
487 if (r!=KErrNone) |
|
488 { |
|
489 iAllocFailed=ETrue; |
|
490 return r; |
|
491 } |
|
492 TInt n=TInt(TUint32(aSize+iPageMask)>>iPageShift); |
|
493 SPageInfo* pI=SPageInfo::FromPhysAddr(aPhysAddr); |
|
494 SPageInfo* pE=pI+n; |
|
495 for (; pI<pE; ++pI) |
|
496 { |
|
497 NKern::LockSystem(); |
|
498 __NK_ASSERT_DEBUG(pI->Type()==SPageInfo::EUnused); |
|
499 pI->Lock(); |
|
500 NKern::UnlockSystem(); |
|
501 } |
|
502 return KErrNone; |
|
503 } |
|
504 |
|
505 /** Attempt to allocate a contiguous block of RAM from the specified zone. |
|
506 |
|
507 @param aZoneIdList An array of the IDs of the RAM zones to allocate from. |
|
508 @param aZoneIdCount The number of RAM zone IDs listed in aZoneIdList. |
|
509 @param aSize The number of contiguous bytes to allocate |
|
510 @param aPhysAddr The physical address of the start of the contiguous block of |
|
511 memory allocated |
|
512 @param aAlign Required alignment |
|
513 @return KErrNone on success, KErrArgument if zone doesn't exist or aSize is larger than the |
|
514 size of the RAM zone or KErrNoMemory when the RAM zone is too full. |
|
515 */ |
|
516 TInt MmuBase::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign) |
|
517 { |
|
518 __KTRACE_OPT(KMMU,Kern::Printf("Mmu::ZoneAllocPhysicalRam() size=0x%x align=%d", aSize, aAlign)); |
|
519 TInt r = ZoneAllocContiguousRam(aZoneIdList, aZoneIdCount, aSize, aPhysAddr, EPageFixed, aAlign); |
|
520 if (r!=KErrNone) |
|
521 { |
|
522 iAllocFailed=ETrue; |
|
523 return r; |
|
524 } |
|
525 TInt n=TInt(TUint32(aSize+iPageMask)>>iPageShift); |
|
526 SPageInfo* pI=SPageInfo::FromPhysAddr(aPhysAddr); |
|
527 SPageInfo* pE=pI+n; |
|
528 for (; pI<pE; ++pI) |
|
529 { |
|
530 NKern::LockSystem(); |
|
531 __NK_ASSERT_DEBUG(pI->Type()==SPageInfo::EUnused); |
|
532 pI->Lock(); |
|
533 NKern::UnlockSystem(); |
|
534 } |
|
535 return KErrNone; |
|
536 } |
|
537 |
|
538 |
|
539 /** Attempt to allocate discontiguous RAM pages. |
|
540 |
|
541 @param aNumPages The number of pages to allocate. |
|
542 @param aPageList Pointer to an array where each element will be the physical |
|
543 address of each page allocated. |
|
544 @return KErrNone on success, KErrNoMemory otherwise |
|
545 */ |
|
546 TInt MmuBase::AllocPhysicalRam(TInt aNumPages, TPhysAddr* aPageList) |
|
547 { |
|
548 __KTRACE_OPT(KMMU,Kern::Printf("Mmu::AllocPhysicalRam() numpages=%x", aNumPages)); |
|
549 TInt r = AllocRamPages(aPageList, aNumPages, EPageFixed); |
|
550 if (r!=KErrNone) |
|
551 { |
|
552 iAllocFailed=ETrue; |
|
553 return r; |
|
554 } |
|
555 TPhysAddr* pageEnd = aPageList + aNumPages; |
|
556 for (TPhysAddr* page = aPageList; page < pageEnd; page++) |
|
557 { |
|
558 SPageInfo* pageInfo = SPageInfo::FromPhysAddr(*page); |
|
559 NKern::LockSystem(); |
|
560 __NK_ASSERT_DEBUG(pageInfo->Type() == SPageInfo::EUnused); |
|
561 pageInfo->Lock(); |
|
562 NKern::UnlockSystem(); |
|
563 } |
|
564 return KErrNone; |
|
565 } |
|
566 |
|
567 |
|
568 /** Attempt to allocate discontiguous RAM pages from the specified RAM zones. |
|
569 |
|
570 @param aZoneIdList An array of the IDs of the RAM zones to allocate from. |
|
571 @param aZoneIdCount The number of RAM zone IDs listed in aZoneIdList. |
|
572 @param aNumPages The number of pages to allocate. |
|
573 @param aPageList Pointer to an array where each element will be the physical |
|
574 address of each page allocated. |
|
575 @return KErrNone on success, KErrArgument if zone doesn't exist or aNumPages is |
|
576 larger than the total number of pages in the RAM zone or KErrNoMemory when the RAM |
|
577 zone is too full. |
|
578 */ |
|
579 TInt MmuBase::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aNumPages, TPhysAddr* aPageList) |
|
580 { |
|
581 __KTRACE_OPT(KMMU,Kern::Printf("Mmu::ZoneAllocPhysicalRam() numpages 0x%x zones 0x%x", aNumPages, aZoneIdCount)); |
|
582 TInt r = ZoneAllocRamPages(aZoneIdList, aZoneIdCount, aPageList, aNumPages, EPageFixed); |
|
583 if (r!=KErrNone) |
|
584 { |
|
585 iAllocFailed=ETrue; |
|
586 return r; |
|
587 } |
|
588 |
|
589 TPhysAddr* pageEnd = aPageList + aNumPages; |
|
590 for (TPhysAddr* page = aPageList; page < pageEnd; page++) |
|
591 { |
|
592 SPageInfo* pageInfo = SPageInfo::FromPhysAddr(*page); |
|
593 NKern::LockSystem(); |
|
594 __NK_ASSERT_DEBUG(pageInfo->Type() == SPageInfo::EUnused); |
|
595 pageInfo->Lock(); |
|
596 NKern::UnlockSystem(); |
|
597 } |
|
598 return KErrNone; |
|
599 } |
|
600 |
|
601 |
|
602 TInt MmuBase::FreePhysicalRam(TPhysAddr aPhysAddr, TInt aSize) |
|
603 { |
|
604 __KTRACE_OPT(KMMU,Kern::Printf("Mmu::FreePhysicalRam(%08x,%x)",aPhysAddr,aSize)); |
|
605 |
|
606 TInt n=TInt(TUint32(aSize+iPageMask)>>iPageShift); |
|
607 SPageInfo* pI=SPageInfo::FromPhysAddr(aPhysAddr); |
|
608 SPageInfo* pE=pI+n; |
|
609 for (; pI<pE; ++pI) |
|
610 { |
|
611 NKern::LockSystem(); |
|
612 __ASSERT_ALWAYS(pI->Type()==SPageInfo::EUnused && pI->Unlock()==0, Panic(EBadFreePhysicalRam)); |
|
613 NKern::UnlockSystem(); |
|
614 } |
|
615 TInt r=iRamPageAllocator->FreePhysicalRam(aPhysAddr, aSize); |
|
616 return r; |
|
617 } |
|
618 |
|
619 /** Free discontiguous RAM pages that were previously allocated using discontiguous |
|
620 overload of MmuBase::AllocPhysicalRam() or MmuBase::ZoneAllocPhysicalRam(). |
|
621 |
|
622 Specifying one of the following may cause the system to panic: |
|
623 a) an invalid physical RAM address. |
|
624 b) valid physical RAM addresses where some had not been previously allocated. |
|
625 c) an adrress not aligned to a page boundary. |
|
626 |
|
627 @param aNumPages Number of pages to free |
|
628 @param aPageList Array of the physical address of each page to free |
|
629 |
|
630 @return KErrNone if the operation was successful. |
|
631 |
|
632 */ |
|
633 TInt MmuBase::FreePhysicalRam(TInt aNumPages, TPhysAddr* aPageList) |
|
634 { |
|
635 __KTRACE_OPT(KMMU,Kern::Printf("Mmu::FreePhysicalRam(%08x,%08x)", aNumPages, aPageList)); |
|
636 |
|
637 TPhysAddr* pageEnd = aPageList + aNumPages; |
|
638 TInt r = KErrNone; |
|
639 |
|
640 for (TPhysAddr* page = aPageList; page < pageEnd && r == KErrNone; page++) |
|
641 { |
|
642 SPageInfo* pageInfo = SPageInfo::FromPhysAddr(*page); |
|
643 NKern::LockSystem(); |
|
644 __ASSERT_ALWAYS(pageInfo->Type()==SPageInfo::EUnused && pageInfo->Unlock()==0, Panic(EBadFreePhysicalRam)); |
|
645 NKern::UnlockSystem(); |
|
646 |
|
647 // Free the page |
|
648 r = iRamPageAllocator->FreePhysicalRam(*page, KPageSize); |
|
649 } |
|
650 return r; |
|
651 } |
|
652 |
|
653 |
|
654 TInt MmuBase::ClaimPhysicalRam(TPhysAddr aPhysAddr, TInt aSize) |
|
655 { |
|
656 __KTRACE_OPT(KMMU,Kern::Printf("Mmu::ClaimPhysicalRam(%08x,%x)",aPhysAddr,aSize)); |
|
657 TUint32 pa=aPhysAddr; |
|
658 TUint32 size=aSize; |
|
659 TInt n=RoundUpRangeToPageSize(pa,size); |
|
660 TInt r=iRamPageAllocator->ClaimPhysicalRam(pa, size); |
|
661 if (r==KErrNone) |
|
662 { |
|
663 SPageInfo* pI=SPageInfo::FromPhysAddr(pa); |
|
664 SPageInfo* pE=pI+n; |
|
665 for (; pI<pE; ++pI) |
|
666 { |
|
667 NKern::LockSystem(); |
|
668 __NK_ASSERT_DEBUG(pI->Type()==SPageInfo::EUnused && pI->LockCount()==0); |
|
669 pI->Lock(); |
|
670 NKern::UnlockSystem(); |
|
671 } |
|
672 } |
|
673 return r; |
|
674 } |
|
675 |
|
676 /** |
|
677 Allocate a set of discontiguous RAM pages from the specified zone. |
|
678 |
|
679 @param aZoneIdList The array of IDs of the RAM zones to allocate from. |
|
680 @param aZoneIdCount The number of RAM zone IDs in aZoneIdList. |
|
681 @param aPageList Preallocated array of TPhysAddr elements that will receive the |
|
682 physical address of each page allocated. |
|
683 @param aNumPages The number of pages to allocate. |
|
684 @param aPageType The type of the pages being allocated. |
|
685 |
|
686 @return KErrNone on success, KErrArgument if a zone of aZoneIdList doesn't exist, |
|
687 KErrNoMemory if there aren't enough free pages in the zone |
|
688 */ |
|
689 TInt MmuBase::ZoneAllocRamPages(TUint* aZoneIdList, TUint aZoneIdCount, TPhysAddr* aPageList, TInt aNumPages, TZonePageType aPageType) |
|
690 { |
|
691 #ifdef _DEBUG |
|
692 if(K::CheckForSimulatedAllocFail()) |
|
693 return KErrNoMemory; |
|
694 #endif |
|
695 __NK_ASSERT_DEBUG(aPageType == EPageFixed); |
|
696 |
|
697 return iRamPageAllocator->ZoneAllocRamPages(aZoneIdList, aZoneIdCount, aPageList, aNumPages, aPageType); |
|
698 } |
|
699 |
|
700 |
|
701 TInt MmuBase::AllocRamPages(TPhysAddr* aPageList, TInt aNumPages, TZonePageType aPageType, TUint aBlockedZoneId, TBool aBlockRest) |
|
702 { |
|
703 #ifdef _DEBUG |
|
704 if(K::CheckForSimulatedAllocFail()) |
|
705 return KErrNoMemory; |
|
706 #endif |
|
707 TInt missing = iRamPageAllocator->AllocRamPages(aPageList, aNumPages, aPageType, aBlockedZoneId, aBlockRest); |
|
708 |
|
709 // If missing some pages, ask the RAM cache to donate some of its pages. |
|
710 // Don't ask it for discardable pages as those are intended for itself. |
|
711 if(missing && aPageType != EPageDiscard && iRamCache->GetFreePages(missing)) |
|
712 missing = iRamPageAllocator->AllocRamPages(aPageList, aNumPages, aPageType, aBlockedZoneId, aBlockRest); |
|
713 return missing ? KErrNoMemory : KErrNone; |
|
714 } |
|
715 |
|
716 |
|
717 TInt MmuBase::AllocContiguousRam(TInt aSize, TPhysAddr& aPhysAddr, TZonePageType aPageType, TInt aAlign, TUint aBlockedZoneId, TBool aBlockRest) |
|
718 { |
|
719 #ifdef _DEBUG |
|
720 if(K::CheckForSimulatedAllocFail()) |
|
721 return KErrNoMemory; |
|
722 #endif |
|
723 __NK_ASSERT_DEBUG(aPageType == EPageFixed); |
|
724 TUint contigPages = (aSize + KPageSize - 1) >> KPageShift; |
|
725 TInt r = iRamPageAllocator->AllocContiguousRam(contigPages, aPhysAddr, aPageType, aAlign, aBlockedZoneId, aBlockRest); |
|
726 if (r == KErrNoMemory && contigPages > KMaxFreeableContiguousPages) |
|
727 {// Allocation failed but as this is a large allocation flush the RAM cache |
|
728 // and reattempt the allocation as large allocation wouldn't discard pages. |
|
729 iRamCache->FlushAll(); |
|
730 r = iRamPageAllocator->AllocContiguousRam(contigPages, aPhysAddr, aPageType, aAlign, aBlockedZoneId, aBlockRest); |
|
731 } |
|
732 return r; |
|
733 } |
|
734 |
|
735 |
|
736 /** |
|
737 Allocate contiguous RAM from the specified RAM zones. |
|
738 @param aZoneIdList An array of IDs of the RAM zones to allocate from |
|
739 @param aZoneIdCount The number of IDs listed in aZoneIdList |
|
740 @param aSize The number of bytes to allocate |
|
741 @param aPhysAddr Will receive the physical base address of the allocated RAM |
|
742 @param aPageType The type of the pages being allocated |
|
743 @param aAlign The log base 2 alginment required |
|
744 */ |
|
745 TInt MmuBase::ZoneAllocContiguousRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aSize, TPhysAddr& aPhysAddr, TZonePageType aPageType, TInt aAlign) |
|
746 { |
|
747 #ifdef _DEBUG |
|
748 if(K::CheckForSimulatedAllocFail()) |
|
749 return KErrNoMemory; |
|
750 #endif |
|
751 return iRamPageAllocator->ZoneAllocContiguousRam(aZoneIdList, aZoneIdCount, aSize, aPhysAddr, aPageType, aAlign); |
|
752 } |
|
753 |
|
754 SPageInfo* SPageInfo::SafeFromPhysAddr(TPhysAddr aAddress) |
|
755 { |
|
756 TUint index = aAddress>>(KPageShift+KPageShift-KPageInfoShift); |
|
757 TUint flags = ((TUint8*)KPageInfoMap)[index>>3]; |
|
758 TUint mask = 1<<(index&7); |
|
759 if(!(flags&mask)) |
|
760 return 0; // no SPageInfo for aAddress |
|
761 SPageInfo* info = FromPhysAddr(aAddress); |
|
762 if(info->Type()==SPageInfo::EInvalid) |
|
763 return 0; |
|
764 return info; |
|
765 } |
|
766 |
|
767 /** HAL Function wrapper for the RAM allocator. |
|
768 */ |
|
769 |
|
770 TInt RamHalFunction(TAny*, TInt aFunction, TAny* a1, TAny* a2) |
|
771 { |
|
772 DRamAllocator *pRamAlloc = MmuBase::TheMmu->iRamPageAllocator; |
|
773 |
|
774 if (pRamAlloc) |
|
775 return pRamAlloc->HalFunction(aFunction, a1, a2); |
|
776 return KErrNotSupported; |
|
777 } |
|
778 |
|
779 |
|
780 /****************************************************************************** |
|
781 * Initialisation |
|
782 ******************************************************************************/ |
|
783 |
|
784 void MmuBase::Init1() |
|
785 { |
|
786 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MmuBase::Init1")); |
|
787 iInitialFreeMemory=0; |
|
788 iAllocFailed=EFalse; |
|
789 } |
|
790 |
|
791 void MmuBase::Init2() |
|
792 { |
|
793 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MmuBase::Init2")); |
|
794 TInt total_ram=TheSuperPage().iTotalRamSize; |
|
795 TInt total_ram_pages=total_ram>>iPageShift; |
|
796 iNumPages = total_ram_pages; |
|
797 const SRamInfo& info=*(const SRamInfo*)TheSuperPage().iRamBootData; |
|
798 iRamPageAllocator=DRamAllocator::New(info, RamZoneConfig, RamZoneCallback); |
|
799 |
|
800 TInt max_pt=total_ram>>iPageTableShift; |
|
801 if (max_pt<iMaxPageTables) |
|
802 iMaxPageTables=max_pt; |
|
803 iMaxPageTables &= ~iPtClusterMask; |
|
804 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iMaxPageTables=%d",iMaxPageTables)); |
|
805 TInt max_ptpg=iMaxPageTables>>iPtClusterShift; |
|
806 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("max_ptpg=%d",max_ptpg)); |
|
807 iPageTableLinearAllocator=TBitMapAllocator::New(max_ptpg,ETrue); |
|
808 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPageTableLinearAllocator=%08x",iPageTableLinearAllocator)); |
|
809 __ASSERT_ALWAYS(iPageTableLinearAllocator,Panic(EPtLinAllocCreateFailed)); |
|
810 if (iPtClusterShift) // if more than one page table per page |
|
811 { |
|
812 iPageTableAllocator=TBitMapAllocator::New(iMaxPageTables,EFalse); |
|
813 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPageTableAllocator=%08x",iPageTableAllocator)); |
|
814 __ASSERT_ALWAYS(iPageTableAllocator,Panic(EPtAllocCreateFailed)); |
|
815 } |
|
816 TInt max_ptb=(iMaxPageTables+iPtBlockMask)>>iPtBlockShift; |
|
817 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("max_ptb=%d",max_ptb)); |
|
818 iPtBlockCount=(TInt*)Kern::AllocZ(max_ptb*sizeof(TInt)); |
|
819 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPtBlockCount=%08x",iPtBlockCount)); |
|
820 __ASSERT_ALWAYS(iPtBlockCount,Panic(EPtBlockCountCreateFailed)); |
|
821 TInt max_ptg=(iMaxPageTables+iPtGroupMask)>>iPtGroupShift; |
|
822 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("ptg_shift=%d, max_ptg=%d",iPtGroupShift,max_ptg)); |
|
823 iPtGroupCount=(TInt*)Kern::AllocZ(max_ptg*sizeof(TInt)); |
|
824 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iPtGroupCount=%08x",iPtGroupCount)); |
|
825 __ASSERT_ALWAYS(iPtGroupCount,Panic(EPtGroupCountCreateFailed)); |
|
826 |
|
827 |
|
828 // Clear the inital (and only so far) page table info page so all unused |
|
829 // page tables will be marked as unused. |
|
830 memclr((TAny*)KPageTableInfoBase, KPageSize); |
|
831 |
|
832 // look for page tables - assume first page table (id=0) maps page tables |
|
833 TPte* pPte=(TPte*)iPageTableLinBase; |
|
834 TInt i; |
|
835 for (i=0; i<iChunkSize/iPageSize; ++i) |
|
836 { |
|
837 TPte pte=*pPte++; |
|
838 if (!PteIsPresent(pte)) // after boot, page tables are contiguous |
|
839 break; |
|
840 iPageTableLinearAllocator->Alloc(i,1); |
|
841 TPhysAddr ptpgPhys=PtePhysAddr(pte, i); |
|
842 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(ptpgPhys); |
|
843 __ASSERT_ALWAYS(pi, Panic(EInvalidPageTableAtBoot)); |
|
844 pi->SetPageTable(i); |
|
845 pi->Lock(); |
|
846 TInt id=i<<iPtClusterShift; |
|
847 TInt ptb=id>>iPtBlockShift; |
|
848 ++iPtBlockCount[ptb]; |
|
849 TInt ptg=id>>iPtGroupShift; |
|
850 ++iPtGroupCount[ptg]; |
|
851 } |
|
852 |
|
853 // look for mapped pages |
|
854 TInt npdes=1<<(32-iChunkShift); |
|
855 TInt npt=0; |
|
856 for (i=0; i<npdes; ++i) |
|
857 { |
|
858 TLinAddr cAddr=TLinAddr(i<<iChunkShift); |
|
859 if (cAddr>=PP::RamDriveStartAddress && TUint32(cAddr-PP::RamDriveStartAddress)<TUint32(PP::RamDriveRange)) |
|
860 continue; // leave RAM drive for now |
|
861 TInt ptid=PageTableId(cAddr); |
|
862 TPhysAddr pdePhys = PdePhysAddr(cAddr); // check for whole PDE mapping |
|
863 pPte = NULL; |
|
864 if (ptid>=0) |
|
865 { |
|
866 ++npt; |
|
867 __KTRACE_OPT(KMMU,Kern::Printf("Addr %08x -> page table %d", cAddr, ptid)); |
|
868 pPte=(TPte*)PageTableLinAddr(ptid); |
|
869 } |
|
870 #ifdef KMMU |
|
871 if (pdePhys != KPhysAddrInvalid) |
|
872 { |
|
873 __KTRACE_OPT(KMMU,Kern::Printf("Addr %08x -> Whole PDE Phys %08x", cAddr, pdePhys)); |
|
874 } |
|
875 #endif |
|
876 if (ptid>=0 || pdePhys != KPhysAddrInvalid) |
|
877 { |
|
878 TInt j; |
|
879 TInt np=0; |
|
880 for (j=0; j<iChunkSize/iPageSize; ++j) |
|
881 { |
|
882 TBool present = ETrue; // all pages present if whole PDE mapping |
|
883 TPte pte = 0; |
|
884 if (pPte) |
|
885 { |
|
886 pte = pPte[j]; |
|
887 present = PteIsPresent(pte); |
|
888 } |
|
889 if (present) |
|
890 { |
|
891 ++np; |
|
892 TPhysAddr pa = pPte ? PtePhysAddr(pte, j) : (pdePhys + (j<<iPageShift)); |
|
893 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pa); |
|
894 __KTRACE_OPT(KMMU,Kern::Printf("Addr: %08x PA=%08x", |
|
895 cAddr+(j<<iPageShift), pa)); |
|
896 if (pi) // ignore non-RAM mappings |
|
897 {//these pages will never be freed and can't be moved |
|
898 TInt r = iRamPageAllocator->MarkPageAllocated(pa, EPageFixed); |
|
899 // allow KErrAlreadyExists since it's possible that a page is doubly mapped |
|
900 __ASSERT_ALWAYS(r==KErrNone || r==KErrAlreadyExists, Panic(EBadMappedPageAfterBoot)); |
|
901 SetupInitialPageInfo(pi,cAddr,j); |
|
902 #ifdef BTRACE_KERNEL_MEMORY |
|
903 if(r==KErrNone) |
|
904 ++Epoc::KernelMiscPages; |
|
905 #endif |
|
906 } |
|
907 } |
|
908 } |
|
909 __KTRACE_OPT(KMMU,Kern::Printf("Addr: %08x #PTEs=%d",cAddr,np)); |
|
910 if (ptid>=0) |
|
911 SetupInitialPageTableInfo(ptid,cAddr,np); |
|
912 } |
|
913 } |
|
914 |
|
915 TInt oddpt=npt & iPtClusterMask; |
|
916 if (oddpt) |
|
917 oddpt=iPtClusterSize-oddpt; |
|
918 __KTRACE_OPT(KBOOT,Kern::Printf("Total page tables %d, left over subpages %d",npt,oddpt)); |
|
919 if (oddpt) |
|
920 iPageTableAllocator->Free(npt,oddpt); |
|
921 |
|
922 DoInit2(); |
|
923 |
|
924 // Save current free RAM size - there can never be more free RAM than this |
|
925 TInt max_free = Kern::FreeRamInBytes(); |
|
926 K::MaxFreeRam = max_free; |
|
927 if (max_free < PP::RamDriveMaxSize) |
|
928 PP::RamDriveMaxSize = max_free; |
|
929 |
|
930 if (K::ColdStart) |
|
931 ClearRamDrive(PP::RamDriveStartAddress); |
|
932 else |
|
933 RecoverRamDrive(); |
|
934 |
|
935 TInt r=K::MutexCreate((DMutex*&)RamAllocatorMutex, KLitRamAlloc, NULL, EFalse, KMutexOrdRamAlloc); |
|
936 if (r!=KErrNone) |
|
937 Panic(ERamAllocMutexCreateFailed); |
|
938 r=K::MutexCreate((DMutex*&)HwChunkMutex, KLitHwChunk, NULL, EFalse, KMutexOrdHwChunk); |
|
939 if (r!=KErrNone) |
|
940 Panic(EHwChunkMutexCreateFailed); |
|
941 |
|
942 #ifdef __DEMAND_PAGING__ |
|
943 if (DemandPaging::RomPagingRequested() || DemandPaging::CodePagingRequested()) |
|
944 iRamCache = DemandPaging::New(); |
|
945 else |
|
946 iRamCache = new RamCache; |
|
947 #else |
|
948 iRamCache = new RamCache; |
|
949 #endif |
|
950 if (!iRamCache) |
|
951 Panic(ERamCacheAllocFailed); |
|
952 iRamCache->Init2(); |
|
953 RamCacheBase::TheRamCache = iRamCache; |
|
954 |
|
955 // Get the allocator to signal to the variant which RAM zones are in use so far |
|
956 iRamPageAllocator->InitialCallback(); |
|
957 } |
|
958 |
|
959 void MmuBase::Init3() |
|
960 { |
|
961 __KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("MmuBase::Init3")); |
|
962 |
|
963 // Initialise demand paging |
|
964 #ifdef __DEMAND_PAGING__ |
|
965 M::DemandPagingInit(); |
|
966 #endif |
|
967 |
|
968 // Register a HAL Function for the Ram allocator. |
|
969 TInt r = Kern::AddHalEntry(EHalGroupRam, RamHalFunction, 0); |
|
970 __NK_ASSERT_ALWAYS(r==KErrNone); |
|
971 |
|
972 // |
|
973 // Perform the intialisation for page moving and RAM defrag object. |
|
974 // |
|
975 |
|
976 // allocate a page to use as an alt stack |
|
977 MmuBase::Wait(); |
|
978 TPhysAddr stackpage; |
|
979 r = AllocPhysicalRam(KPageSize, stackpage); |
|
980 MmuBase::Signal(); |
|
981 if (r!=KErrNone) |
|
982 Panic(EDefragStackAllocFailed); |
|
983 |
|
984 // map it at a predetermined address |
|
985 TInt ptid = PageTableId(KDefragAltStackAddr); |
|
986 TPte perm = PtePermissions(EKernelStack); |
|
987 NKern::LockSystem(); |
|
988 MapRamPages(ptid, SPageInfo::EFixed, NULL, KDefragAltStackAddr, &stackpage, 1, perm); |
|
989 NKern::UnlockSystem(); |
|
990 iAltStackBase = KDefragAltStackAddr + KPageSize; |
|
991 |
|
992 __KTRACE_OPT(KMMU,Kern::Printf("Allocated defrag alt stack page at %08x, mapped to %08x, base is now %08x", stackpage, KDefragAltStackAddr, iAltStackBase)); |
|
993 |
|
994 // Create the actual defrag object and initialise it. |
|
995 iDefrag = new Defrag; |
|
996 if (!iDefrag) |
|
997 Panic(EDefragAllocFailed); |
|
998 iDefrag->Init3(iRamPageAllocator); |
|
999 } |
|
1000 |
|
1001 void MmuBase::CreateKernelSection(TLinAddr aEnd, TInt aHwChunkAlign) |
|
1002 { |
|
1003 TLinAddr base=(TLinAddr)TheRomHeader().iKernelLimit; |
|
1004 iKernelSection=TLinearSection::New(base, aEnd); |
|
1005 __ASSERT_ALWAYS(iKernelSection!=NULL, Panic(ECreateKernelSectionFailed)); |
|
1006 iHwChunkAllocator=THwChunkAddressAllocator::New(aHwChunkAlign, iKernelSection); |
|
1007 __ASSERT_ALWAYS(iHwChunkAllocator!=NULL, Panic(ECreateHwChunkAllocFailed)); |
|
1008 } |
|
1009 |
|
1010 // Recover RAM drive contents after a reset |
|
1011 TInt MmuBase::RecoverRamDrive() |
|
1012 { |
|
1013 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::RecoverRamDrive()")); |
|
1014 TLinAddr ptlin; |
|
1015 TLinAddr chunk = PP::RamDriveStartAddress; |
|
1016 TLinAddr end = chunk + (TLinAddr)PP::RamDriveRange; |
|
1017 TInt size = 0; |
|
1018 TInt limit = RoundToPageSize(TheSuperPage().iRamDriveSize); |
|
1019 for( ; chunk<end; chunk+=iChunkSize) |
|
1020 { |
|
1021 if (size==limit) // have reached end of ram drive |
|
1022 break; |
|
1023 TPhysAddr ptphys = 0; |
|
1024 TInt ptid = BootPageTableId(chunk, ptphys); // ret KErrNotFound if PDE not present, KErrUnknown if present but as yet unknown page table |
|
1025 __KTRACE_OPT(KMMU,Kern::Printf("Addr %08x: PTID=%d PTPHYS=%08x", chunk, ptid, ptphys)); |
|
1026 if (ptid==KErrNotFound) |
|
1027 break; // no page table so stop here and clear to end of range |
|
1028 TPhysAddr ptpgphys = ptphys & ~iPageMask; |
|
1029 TInt r = iRamPageAllocator->MarkPageAllocated(ptpgphys, EPageMovable); |
|
1030 __KTRACE_OPT(KMMU,Kern::Printf("MPA: r=%d",r)); |
|
1031 if (r==KErrArgument) |
|
1032 break; // page table address was invalid - stop here and clear to end of range |
|
1033 if (r==KErrNone) |
|
1034 { |
|
1035 // this page was currently unallocated |
|
1036 if (ptid>=0) |
|
1037 break; // ID has been allocated - bad news - bail here |
|
1038 ptid = iPageTableLinearAllocator->Alloc(); |
|
1039 __ASSERT_ALWAYS(ptid>=0, Panic(ERecoverRamDriveAllocPTIDFailed)); |
|
1040 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(ptpgphys); |
|
1041 __ASSERT_ALWAYS(pi, Panic(ERecoverRamDriveBadPageTable)); |
|
1042 pi->SetPageTable(ptid); // id = cluster number here |
|
1043 ptid <<= iPtClusterShift; |
|
1044 MapPageTable(ptid, ptpgphys, EFalse); |
|
1045 if (iPageTableAllocator) |
|
1046 iPageTableAllocator->Free(ptid, iPtClusterSize); |
|
1047 ptid |= ((ptphys>>iPageTableShift)&iPtClusterMask); |
|
1048 ptlin = PageTableLinAddr(ptid); |
|
1049 __KTRACE_OPT(KMMU,Kern::Printf("Page table ID %d lin %08x", ptid, ptlin)); |
|
1050 if (iPageTableAllocator) |
|
1051 iPageTableAllocator->Alloc(ptid, 1); |
|
1052 } |
|
1053 else |
|
1054 { |
|
1055 // this page was already allocated |
|
1056 if (ptid<0) |
|
1057 break; // ID not allocated - bad news - bail here |
|
1058 ptlin = PageTableLinAddr(ptid); |
|
1059 __KTRACE_OPT(KMMU,Kern::Printf("Page table lin %08x", ptlin)); |
|
1060 if (iPageTableAllocator) |
|
1061 iPageTableAllocator->Alloc(ptid, 1); |
|
1062 } |
|
1063 TInt pte_index; |
|
1064 TBool chunk_inc = 0; |
|
1065 TPte* page_table = (TPte*)ptlin; |
|
1066 for (pte_index=0; pte_index<(iChunkSize>>iPageSize); ++pte_index) |
|
1067 { |
|
1068 if (size==limit) // have reached end of ram drive |
|
1069 break; |
|
1070 TPte pte = page_table[pte_index]; |
|
1071 if (PteIsPresent(pte)) |
|
1072 { |
|
1073 TPhysAddr pa=PtePhysAddr(pte, pte_index); |
|
1074 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pa); |
|
1075 if (!pi) |
|
1076 break; |
|
1077 TInt r = iRamPageAllocator->MarkPageAllocated(pa, EPageMovable); |
|
1078 __ASSERT_ALWAYS(r==KErrNone, Panic(ERecoverRamDriveBadPage)); |
|
1079 size+=iPageSize; |
|
1080 chunk_inc = iChunkSize; |
|
1081 } |
|
1082 } |
|
1083 if (pte_index < (iChunkSize>>iPageSize) ) |
|
1084 { |
|
1085 // if we recovered pages in this page table, leave it in place |
|
1086 chunk += chunk_inc; |
|
1087 |
|
1088 // clear from here on |
|
1089 ClearPageTable(ptid, pte_index); |
|
1090 break; |
|
1091 } |
|
1092 } |
|
1093 if (chunk < end) |
|
1094 ClearRamDrive(chunk); |
|
1095 __KTRACE_OPT(KMMU,Kern::Printf("Recovered RAM drive size %08x",size)); |
|
1096 if (size<TheSuperPage().iRamDriveSize) |
|
1097 { |
|
1098 __KTRACE_OPT(KMMU,Kern::Printf("Truncating RAM drive from %08x to %08x", TheSuperPage().iRamDriveSize, size)); |
|
1099 TheSuperPage().iRamDriveSize=size; |
|
1100 } |
|
1101 return KErrNone; |
|
1102 } |
|
1103 |
|
1104 TInt MmuBase::AllocShadowPage(TLinAddr aRomAddr) |
|
1105 { |
|
1106 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase:AllocShadowPage(%08x)", aRomAddr)); |
|
1107 aRomAddr &= ~iPageMask; |
|
1108 TPhysAddr orig_phys = KPhysAddrInvalid; |
|
1109 if (aRomAddr>=iRomLinearBase && aRomAddr<=(iRomLinearEnd-iPageSize)) |
|
1110 orig_phys = LinearToPhysical(aRomAddr); |
|
1111 __KTRACE_OPT(KMMU,Kern::Printf("OrigPhys = %08x",orig_phys)); |
|
1112 if (orig_phys == KPhysAddrInvalid) |
|
1113 { |
|
1114 __KTRACE_OPT(KMMU,Kern::Printf("Invalid ROM address")); |
|
1115 return KErrArgument; |
|
1116 } |
|
1117 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(orig_phys); |
|
1118 if (pi && pi->Type()==SPageInfo::EShadow) |
|
1119 { |
|
1120 __KTRACE_OPT(KMMU,Kern::Printf("ROM address already shadowed")); |
|
1121 return KErrAlreadyExists; |
|
1122 } |
|
1123 TInt ptid = PageTableId(aRomAddr); |
|
1124 __KTRACE_OPT(KMMU, Kern::Printf("Shadow PTID %d", ptid)); |
|
1125 TInt newptid = -1; |
|
1126 if (ptid<0) |
|
1127 { |
|
1128 newptid = AllocPageTable(); |
|
1129 __KTRACE_OPT(KMMU, Kern::Printf("New shadow PTID %d", newptid)); |
|
1130 if (newptid<0) |
|
1131 return KErrNoMemory; |
|
1132 ptid = newptid; |
|
1133 PtInfo(ptid).SetShadow( (aRomAddr-iRomLinearBase)>>iChunkShift ); |
|
1134 InitShadowPageTable(ptid, aRomAddr, orig_phys); |
|
1135 } |
|
1136 TPhysAddr shadow_phys; |
|
1137 |
|
1138 if (AllocRamPages(&shadow_phys, 1, EPageFixed) != KErrNone) |
|
1139 { |
|
1140 __KTRACE_OPT(KMMU,Kern::Printf("Unable to allocate page")); |
|
1141 iAllocFailed=ETrue; |
|
1142 if (newptid>=0) |
|
1143 { |
|
1144 FreePageTable(newptid); |
|
1145 } |
|
1146 return KErrNoMemory; |
|
1147 } |
|
1148 #ifdef BTRACE_KERNEL_MEMORY |
|
1149 BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, 1<<KPageShift); |
|
1150 ++Epoc::KernelMiscPages; |
|
1151 #endif |
|
1152 InitShadowPage(shadow_phys, aRomAddr); // copy original ROM contents |
|
1153 NKern::LockSystem(); |
|
1154 Pagify(ptid, aRomAddr); |
|
1155 MapRamPages(ptid, SPageInfo::EShadow, (TAny*)orig_phys, (aRomAddr-iRomLinearBase), &shadow_phys, 1, iShadowPtePerm); |
|
1156 NKern::UnlockSystem(); |
|
1157 if (newptid>=0) |
|
1158 { |
|
1159 NKern::LockSystem(); |
|
1160 AssignShadowPageTable(newptid, aRomAddr); |
|
1161 NKern::UnlockSystem(); |
|
1162 } |
|
1163 FlushShadow(aRomAddr); |
|
1164 __KTRACE_OPT(KMMU,Kern::Printf("AllocShadowPage successful")); |
|
1165 return KErrNone; |
|
1166 } |
|
1167 |
|
1168 TInt MmuBase::FreeShadowPage(TLinAddr aRomAddr) |
|
1169 { |
|
1170 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase:FreeShadowPage(%08x)", aRomAddr)); |
|
1171 aRomAddr &= ~iPageMask; |
|
1172 TPhysAddr shadow_phys = KPhysAddrInvalid; |
|
1173 if (aRomAddr>=iRomLinearBase || aRomAddr<=(iRomLinearEnd-iPageSize)) |
|
1174 shadow_phys = LinearToPhysical(aRomAddr); |
|
1175 __KTRACE_OPT(KMMU,Kern::Printf("ShadowPhys = %08x",shadow_phys)); |
|
1176 if (shadow_phys == KPhysAddrInvalid) |
|
1177 { |
|
1178 __KTRACE_OPT(KMMU,Kern::Printf("Invalid ROM address")); |
|
1179 return KErrArgument; |
|
1180 } |
|
1181 TInt ptid = PageTableId(aRomAddr); |
|
1182 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(shadow_phys); |
|
1183 if (ptid<0 || !pi || pi->Type()!=SPageInfo::EShadow) |
|
1184 { |
|
1185 __KTRACE_OPT(KMMU,Kern::Printf("No shadow page at this address")); |
|
1186 return KErrGeneral; |
|
1187 } |
|
1188 TPhysAddr orig_phys = (TPhysAddr)pi->Owner(); |
|
1189 DoUnmapShadowPage(ptid, aRomAddr, orig_phys); |
|
1190 SPageTableInfo& pti = PtInfo(ptid); |
|
1191 if (pti.Attribs()==SPageTableInfo::EShadow && --pti.iCount==0) |
|
1192 { |
|
1193 TInt r = UnassignShadowPageTable(aRomAddr, orig_phys); |
|
1194 if (r==KErrNone) |
|
1195 FreePageTable(ptid); |
|
1196 else |
|
1197 pti.SetGlobal(aRomAddr>>iChunkShift); |
|
1198 } |
|
1199 |
|
1200 FreePages(&shadow_phys, 1, EPageFixed); |
|
1201 __KTRACE_OPT(KMMU,Kern::Printf("FreeShadowPage successful")); |
|
1202 #ifdef BTRACE_KERNEL_MEMORY |
|
1203 BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscFree, 1<<KPageShift); |
|
1204 --Epoc::KernelMiscPages; |
|
1205 #endif |
|
1206 return KErrNone; |
|
1207 } |
|
1208 |
|
1209 TInt MmuBase::FreezeShadowPage(TLinAddr aRomAddr) |
|
1210 { |
|
1211 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase:FreezeShadowPage(%08x)", aRomAddr)); |
|
1212 aRomAddr &= ~iPageMask; |
|
1213 TPhysAddr shadow_phys = KPhysAddrInvalid; |
|
1214 if (aRomAddr>=iRomLinearBase || aRomAddr<=(iRomLinearEnd-iPageSize)) |
|
1215 shadow_phys = LinearToPhysical(aRomAddr); |
|
1216 __KTRACE_OPT(KMMU,Kern::Printf("ShadowPhys = %08x",shadow_phys)); |
|
1217 if (shadow_phys == KPhysAddrInvalid) |
|
1218 { |
|
1219 __KTRACE_OPT(KMMU,Kern::Printf("Invalid ROM address")); |
|
1220 return KErrArgument; |
|
1221 } |
|
1222 TInt ptid = PageTableId(aRomAddr); |
|
1223 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(shadow_phys); |
|
1224 if (ptid<0 || pi==0) |
|
1225 { |
|
1226 __KTRACE_OPT(KMMU,Kern::Printf("No shadow page at this address")); |
|
1227 return KErrGeneral; |
|
1228 } |
|
1229 DoFreezeShadowPage(ptid, aRomAddr); |
|
1230 __KTRACE_OPT(KMMU,Kern::Printf("FreezeShadowPage successful")); |
|
1231 return KErrNone; |
|
1232 } |
|
1233 |
|
1234 TInt MmuBase::CopyToShadowMemory(TLinAddr aDest, TLinAddr aSrc, TUint32 aLength) |
|
1235 { |
|
1236 memcpy ((TAny*)aDest, (const TAny*)aSrc, aLength); |
|
1237 return KErrNone; |
|
1238 } |
|
1239 |
|
1240 void M::BTracePrime(TUint aCategory) |
|
1241 { |
|
1242 (void)aCategory; |
|
1243 |
|
1244 #ifdef BTRACE_KERNEL_MEMORY |
|
1245 // Must check for -1 as that is the default value of aCategory for |
|
1246 // BTrace::Prime() which is intended to prime all categories that are |
|
1247 // currently enabled via a single invocation of BTrace::Prime(). |
|
1248 if(aCategory==BTrace::EKernelMemory || (TInt)aCategory == -1) |
|
1249 { |
|
1250 NKern::ThreadEnterCS(); |
|
1251 Mmu::Wait(); |
|
1252 BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryInitialFree,TheSuperPage().iTotalRamSize); |
|
1253 BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryCurrentFree,Kern::FreeRamInBytes()); |
|
1254 BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, Epoc::KernelMiscPages<<KPageShift); |
|
1255 #ifdef __DEMAND_PAGING__ |
|
1256 if (DemandPaging::ThePager) |
|
1257 BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryDemandPagingCache,DemandPaging::ThePager->iMinimumPageCount << KPageShift); |
|
1258 #endif |
|
1259 BTrace8(BTrace::EKernelMemory,BTrace::EKernelMemoryDrvPhysAlloc, Epoc::DriverAllocdPhysRam, -1); |
|
1260 Mmu::Signal(); |
|
1261 NKern::ThreadLeaveCS(); |
|
1262 } |
|
1263 #endif |
|
1264 |
|
1265 #ifdef BTRACE_RAM_ALLOCATOR |
|
1266 // Must check for -1 as that is the default value of aCategroy for |
|
1267 // BTrace::Prime() which is intended to prime all categories that are |
|
1268 // currently enabled via a single invocation of BTrace::Prime(). |
|
1269 if(aCategory==BTrace::ERamAllocator || (TInt)aCategory == -1) |
|
1270 { |
|
1271 NKern::ThreadEnterCS(); |
|
1272 Mmu::Wait(); |
|
1273 Mmu::Get().iRamPageAllocator->SendInitialBtraceLogs(); |
|
1274 Mmu::Signal(); |
|
1275 NKern::ThreadLeaveCS(); |
|
1276 } |
|
1277 #endif |
|
1278 } |
|
1279 |
|
1280 |
|
1281 /****************************************************************************** |
|
1282 * Code common to all virtual memory models |
|
1283 ******************************************************************************/ |
|
1284 |
|
1285 void RHeapK::Mutate(TInt aOffset, TInt aMaxLength) |
|
1286 // |
|
1287 // Used by the kernel to mutate a fixed heap into a chunk heap. |
|
1288 // |
|
1289 { |
|
1290 iMinLength += aOffset; |
|
1291 iMaxLength = aMaxLength + aOffset; |
|
1292 iOffset = aOffset; |
|
1293 iChunkHandle = (TInt)K::HeapInfo.iChunk; |
|
1294 iPageSize = M::PageSizeInBytes(); |
|
1295 iGrowBy = iPageSize; |
|
1296 iFlags = 0; |
|
1297 } |
|
1298 |
|
1299 TInt M::PageSizeInBytes() |
|
1300 { |
|
1301 return KPageSize; |
|
1302 } |
|
1303 |
|
1304 TInt MmuBase::FreeRamInBytes() |
|
1305 { |
|
1306 TInt free = iRamPageAllocator->FreeRamInBytes(); |
|
1307 if(iRamCache) |
|
1308 free += iRamCache->NumberOfFreePages()<<iPageShift; |
|
1309 return free; |
|
1310 } |
|
1311 |
|
1312 /** Returns the amount of free RAM currently available. |
|
1313 |
|
1314 @return The number of bytes of free RAM currently available. |
|
1315 @pre any context |
|
1316 */ |
|
1317 EXPORT_C TInt Kern::FreeRamInBytes() |
|
1318 { |
|
1319 return MmuBase::TheMmu->FreeRamInBytes(); |
|
1320 } |
|
1321 |
|
1322 |
|
1323 /** Rounds up the argument to the size of a MMU page. |
|
1324 |
|
1325 To find out the size of a MMU page: |
|
1326 @code |
|
1327 size = Kern::RoundToPageSize(1); |
|
1328 @endcode |
|
1329 |
|
1330 @param aSize Value to round up |
|
1331 @pre any context |
|
1332 */ |
|
1333 EXPORT_C TUint32 Kern::RoundToPageSize(TUint32 aSize) |
|
1334 { |
|
1335 return MmuBase::RoundToPageSize(aSize); |
|
1336 } |
|
1337 |
|
1338 |
|
1339 /** Rounds up the argument to the amount of memory mapped by a MMU page |
|
1340 directory entry. |
|
1341 |
|
1342 Chunks occupy one or more consecutive page directory entries (PDE) and |
|
1343 therefore the amount of linear and physical memory allocated to a chunk is |
|
1344 always a multiple of the amount of memory mapped by a page directory entry. |
|
1345 */ |
|
1346 EXPORT_C TUint32 Kern::RoundToChunkSize(TUint32 aSize) |
|
1347 { |
|
1348 return MmuBase::RoundToChunkSize(aSize); |
|
1349 } |
|
1350 |
|
1351 |
|
1352 /** |
|
1353 Allows the variant to specify the details of the RAM zones. This should be invoked |
|
1354 by the variant in its implementation of the pure virtual function Asic::Init1(). |
|
1355 |
|
1356 There are some limitations to how the RAM zones can be specified: |
|
1357 - Each RAM zone's address space must be distinct and not overlap with any |
|
1358 other RAM zone's address space |
|
1359 - Each RAM zone's address space must have a size that is multiples of the |
|
1360 ASIC's MMU small page size and be aligned to the ASIC's MMU small page size, |
|
1361 usually 4KB on ARM MMUs. |
|
1362 - When taken together all of the RAM zones must cover the whole of the physical RAM |
|
1363 address space as specified by the bootstrap in the SuperPage members iTotalRamSize |
|
1364 and iRamBootData;. |
|
1365 - There can be no more than KMaxRamZones RAM zones specified by the base port |
|
1366 |
|
1367 Note the verification of the RAM zone data is not performed here but by the ram |
|
1368 allocator later in the boot up sequence. This is because it is only possible to |
|
1369 verify the zone data once the physical RAM configuration has been read from |
|
1370 the super page. Any verification errors result in a "RAM-ALLOC" panic |
|
1371 faulting the kernel during initialisation. |
|
1372 |
|
1373 @param aZones Pointer to an array of SRamZone structs containing the details for all |
|
1374 the zones. The end of the array is specified by an element with an iSize of zero. The array must |
|
1375 remain in memory at least until the kernel has successfully booted. |
|
1376 |
|
1377 @param aCallback Pointer to a call back function that the kernel may invoke to request |
|
1378 one of the operations specified by TRamZoneOp. |
|
1379 |
|
1380 @return KErrNone if successful, otherwise one of the system wide error codes |
|
1381 |
|
1382 @see TRamZoneOp |
|
1383 @see SRamZone |
|
1384 @see TRamZoneCallback |
|
1385 */ |
|
1386 EXPORT_C TInt Epoc::SetRamZoneConfig(const SRamZone* aZones, TRamZoneCallback aCallback) |
|
1387 { |
|
1388 // Ensure this is only called once and only while we are initialising the kernel |
|
1389 if (!K::Initialising || MmuBase::RamZoneConfig != NULL) |
|
1390 {// fault kernel, won't return |
|
1391 K::Fault(K::EBadSetRamZoneConfig); |
|
1392 } |
|
1393 |
|
1394 if (NULL == aZones) |
|
1395 { |
|
1396 return KErrArgument; |
|
1397 } |
|
1398 MmuBase::RamZoneConfig=aZones; |
|
1399 MmuBase::RamZoneCallback=aCallback; |
|
1400 return KErrNone; |
|
1401 } |
|
1402 |
|
1403 |
|
1404 /** |
|
1405 Modify the specified RAM zone's flags. |
|
1406 |
|
1407 This allows the BSP or device driver to configure which type of pages, if any, |
|
1408 can be allocated into a RAM zone by the system. |
|
1409 |
|
1410 Note: updating a RAM zone's flags can result in |
|
1411 1 - memory allocations failing despite there being enough free RAM in the system. |
|
1412 2 - the methods TRamDefragRequest::EmptyRamZone(), TRamDefragRequest::ClaimRamZone() |
|
1413 or TRamDefragRequest::DefragRam() never succeeding. |
|
1414 |
|
1415 The flag masks KRamZoneFlagDiscardOnly, KRamZoneFlagMovAndDisOnly and KRamZoneFlagNoAlloc |
|
1416 are intended to be used with this method. |
|
1417 |
|
1418 @param aId The ID of the RAM zone to modify. |
|
1419 @param aClearMask The bit mask to clear, each flag of which must already be set on the RAM zone. |
|
1420 @param aSetMask The bit mask to set. |
|
1421 |
|
1422 @return KErrNone on success, KErrArgument if the RAM zone of aId not found or if |
|
1423 aSetMask contains invalid flag bits. |
|
1424 |
|
1425 @see TRamDefragRequest::EmptyRamZone() |
|
1426 @see TRamDefragRequest::ClaimRamZone() |
|
1427 @see TRamDefragRequest::DefragRam() |
|
1428 |
|
1429 @see KRamZoneFlagDiscardOnly |
|
1430 @see KRamZoneFlagMovAndDisOnly |
|
1431 @see KRamZoneFlagNoAlloc |
|
1432 */ |
|
1433 EXPORT_C TInt Epoc::ModifyRamZoneFlags(TUint aId, TUint aClearMask, TUint aSetMask) |
|
1434 { |
|
1435 MmuBase& m = *MmuBase::TheMmu; |
|
1436 MmuBase::Wait(); |
|
1437 |
|
1438 TInt ret = m.ModifyRamZoneFlags(aId, aClearMask, aSetMask); |
|
1439 |
|
1440 MmuBase::Signal(); |
|
1441 return ret; |
|
1442 } |
|
1443 |
|
1444 TInt MmuBase::ModifyRamZoneFlags(TUint aId, TUint aClearMask, TUint aSetMask) |
|
1445 { |
|
1446 return iRamPageAllocator->ModifyZoneFlags(aId, aClearMask, aSetMask); |
|
1447 } |
|
1448 |
|
1449 |
|
1450 /** |
|
1451 Gets the current count of a particular RAM zone's pages by type. |
|
1452 |
|
1453 @param aId The ID of the RAM zone to enquire about |
|
1454 @param aPageData If successful, on return this contains the page count |
|
1455 |
|
1456 @return KErrNone if successful, KErrArgument if a RAM zone of aId is not found or |
|
1457 one of the system wide error codes |
|
1458 |
|
1459 @pre Calling thread must be in a critical section. |
|
1460 @pre Interrupts must be enabled. |
|
1461 @pre Kernel must be unlocked. |
|
1462 @pre No fast mutex can be held. |
|
1463 @pre Call in a thread context. |
|
1464 |
|
1465 @see SRamZonePageCount |
|
1466 */ |
|
1467 EXPORT_C TInt Epoc::GetRamZonePageCount(TUint aId, SRamZonePageCount& aPageData) |
|
1468 { |
|
1469 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::GetRamZonePageCount"); |
|
1470 |
|
1471 MmuBase& m = *MmuBase::TheMmu; |
|
1472 MmuBase::Wait(); // Gets RAM alloc mutex |
|
1473 |
|
1474 TInt r = m.GetRamZonePageCount(aId, aPageData); |
|
1475 |
|
1476 MmuBase::Signal(); |
|
1477 |
|
1478 return r; |
|
1479 } |
|
1480 |
|
1481 TInt MmuBase::GetRamZonePageCount(TUint aId, SRamZonePageCount& aPageData) |
|
1482 { |
|
1483 return iRamPageAllocator->GetZonePageCount(aId, aPageData); |
|
1484 } |
|
1485 |
|
1486 /** |
|
1487 Replace a page of the system's execute-in-place (XIP) ROM image with a page of |
|
1488 RAM having the same contents. This RAM can subsequently be written to in order |
|
1489 to apply patches to the XIP ROM or to insert software breakpoints for debugging |
|
1490 purposes. |
|
1491 Call Epoc::FreeShadowPage() when you wish to revert to the original ROM page. |
|
1492 |
|
1493 @param aRomAddr The virtual address of the ROM page to be replaced. |
|
1494 @return KErrNone if the operation completed successfully. |
|
1495 KErrArgument if the specified address is not a valid XIP ROM address. |
|
1496 KErrNoMemory if the operation failed due to insufficient free RAM. |
|
1497 KErrAlreadyExists if the XIP ROM page at the specified address has |
|
1498 already been shadowed by a RAM page. |
|
1499 |
|
1500 @pre Calling thread must be in a critical section. |
|
1501 @pre Interrupts must be enabled. |
|
1502 @pre Kernel must be unlocked. |
|
1503 @pre No fast mutex can be held. |
|
1504 @pre Call in a thread context. |
|
1505 */ |
|
1506 EXPORT_C TInt Epoc::AllocShadowPage(TLinAddr aRomAddr) |
|
1507 { |
|
1508 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::AllocShadowPage"); |
|
1509 |
|
1510 TInt r; |
|
1511 r=M::LockRegion(aRomAddr,1); |
|
1512 if(r!=KErrNone && r!=KErrNotFound) |
|
1513 return r; |
|
1514 MmuBase& m=*MmuBase::TheMmu; |
|
1515 MmuBase::Wait(); |
|
1516 r=m.AllocShadowPage(aRomAddr); |
|
1517 MmuBase::Signal(); |
|
1518 if(r!=KErrNone) |
|
1519 M::UnlockRegion(aRomAddr,1); |
|
1520 return r; |
|
1521 } |
|
1522 |
|
1523 /** |
|
1524 Copies data into shadow memory. Source data is presumed to be in Kernel memory. |
|
1525 |
|
1526 @param aSrc Data to copy from. |
|
1527 @param aDest Address to copy into. |
|
1528 @param aLength Number of bytes to copy. Maximum of 32 bytes of data can be copied. |
|
1529 . |
|
1530 @return KErrNone if the operation completed successfully. |
|
1531 KErrArgument if any part of destination region is not shadow page or |
|
1532 if aLength is greater then 32 bytes. |
|
1533 |
|
1534 @pre Calling thread must be in a critical section. |
|
1535 @pre Interrupts must be enabled. |
|
1536 @pre Kernel must be unlocked. |
|
1537 @pre No fast mutex can be held. |
|
1538 @pre Call in a thread context. |
|
1539 */ |
|
1540 EXPORT_C TInt Epoc::CopyToShadowMemory(TLinAddr aDest, TLinAddr aSrc, TUint32 aLength) |
|
1541 { |
|
1542 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::CopyToShadowMemory"); |
|
1543 |
|
1544 if (aLength>32) |
|
1545 return KErrArgument; |
|
1546 MmuBase& m=*MmuBase::TheMmu; |
|
1547 // This is a simple copy operation except on platforms with __CPU_MEMORY_TYPE_REMAPPING defined, |
|
1548 // where shadow page is read-only and it has to be remapped before it is written into. |
|
1549 return m.CopyToShadowMemory(aDest, aSrc, aLength); |
|
1550 } |
|
1551 /** |
|
1552 Revert an XIP ROM address which has previously been shadowed to the original |
|
1553 page of ROM. |
|
1554 |
|
1555 @param aRomAddr The virtual address of the ROM page to be reverted. |
|
1556 @return KErrNone if the operation completed successfully. |
|
1557 KErrArgument if the specified address is not a valid XIP ROM address. |
|
1558 KErrGeneral if the specified address has not previously been shadowed |
|
1559 using Epoc::AllocShadowPage(). |
|
1560 |
|
1561 @pre Calling thread must be in a critical section. |
|
1562 @pre Interrupts must be enabled. |
|
1563 @pre Kernel must be unlocked. |
|
1564 @pre No fast mutex can be held. |
|
1565 @pre Call in a thread context. |
|
1566 */ |
|
1567 EXPORT_C TInt Epoc::FreeShadowPage(TLinAddr aRomAddr) |
|
1568 { |
|
1569 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreeShadowPage"); |
|
1570 MmuBase& m=*MmuBase::TheMmu; |
|
1571 MmuBase::Wait(); |
|
1572 TInt r=m.FreeShadowPage(aRomAddr); |
|
1573 MmuBase::Signal(); |
|
1574 if(r==KErrNone) |
|
1575 M::UnlockRegion(aRomAddr,1); |
|
1576 return r; |
|
1577 } |
|
1578 |
|
1579 |
|
1580 /** |
|
1581 Change the permissions on an XIP ROM address which has previously been shadowed |
|
1582 by a RAM page so that the RAM page may no longer be written to. |
|
1583 |
|
1584 Note: Shadow page on the latest platforms (that use the reduced set of access permissions: |
|
1585 arm11mpcore, arm1176, cortex) is implemented with read only permissions. Therefore, calling |
|
1586 this function in not necessary, as shadow page is already created as 'frozen'. |
|
1587 |
|
1588 @param aRomAddr The virtual address of the shadow RAM page to be frozen. |
|
1589 @return KErrNone if the operation completed successfully. |
|
1590 KErrArgument if the specified address is not a valid XIP ROM address. |
|
1591 KErrGeneral if the specified address has not previously been shadowed |
|
1592 using Epoc::AllocShadowPage(). |
|
1593 |
|
1594 @pre Calling thread must be in a critical section. |
|
1595 @pre Interrupts must be enabled. |
|
1596 @pre Kernel must be unlocked. |
|
1597 @pre No fast mutex can be held. |
|
1598 @pre Call in a thread context. |
|
1599 */ |
|
1600 EXPORT_C TInt Epoc::FreezeShadowPage(TLinAddr aRomAddr) |
|
1601 { |
|
1602 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreezeShadowPage"); |
|
1603 MmuBase& m=*MmuBase::TheMmu; |
|
1604 MmuBase::Wait(); |
|
1605 TInt r=m.FreezeShadowPage(aRomAddr); |
|
1606 MmuBase::Signal(); |
|
1607 return r; |
|
1608 } |
|
1609 |
|
1610 |
|
1611 /** |
|
1612 Allocate a block of physically contiguous RAM with a physical address aligned |
|
1613 to a specified power of 2 boundary. |
|
1614 When the RAM is no longer required it should be freed using |
|
1615 Epoc::FreePhysicalRam() |
|
1616 |
|
1617 @param aSize The size in bytes of the required block. The specified size |
|
1618 is rounded up to the page size, since only whole pages of |
|
1619 physical RAM can be allocated. |
|
1620 @param aPhysAddr Receives the physical address of the base of the block on |
|
1621 successful allocation. |
|
1622 @param aAlign Specifies the number of least significant bits of the |
|
1623 physical address which are required to be zero. If a value |
|
1624 less than log2(page size) is specified, page alignment is |
|
1625 assumed. Pass 0 for aAlign if there are no special alignment |
|
1626 constraints (other than page alignment). |
|
1627 @return KErrNone if the allocation was successful. |
|
1628 KErrNoMemory if a sufficiently large physically contiguous block of free |
|
1629 RAM with the specified alignment could not be found. |
|
1630 @pre Calling thread must be in a critical section. |
|
1631 @pre Interrupts must be enabled. |
|
1632 @pre Kernel must be unlocked. |
|
1633 @pre No fast mutex can be held. |
|
1634 @pre Call in a thread context. |
|
1635 @pre Can be used in a device driver. |
|
1636 */ |
|
1637 EXPORT_C TInt Epoc::AllocPhysicalRam(TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign) |
|
1638 { |
|
1639 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::AllocPhysicalRam"); |
|
1640 MmuBase& m=*MmuBase::TheMmu; |
|
1641 MmuBase::Wait(); |
|
1642 TInt r=m.AllocPhysicalRam(aSize,aPhysAddr,aAlign); |
|
1643 if (r == KErrNone) |
|
1644 { |
|
1645 // For the sake of platform security we have to clear the memory. E.g. the driver |
|
1646 // could assign it to a chunk visible to user side. |
|
1647 m.ClearPages(Kern::RoundToPageSize(aSize)>>m.iPageShift, (TPhysAddr*)(aPhysAddr|1)); |
|
1648 #ifdef BTRACE_KERNEL_MEMORY |
|
1649 TUint size = Kern::RoundToPageSize(aSize); |
|
1650 BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, size, aPhysAddr); |
|
1651 Epoc::DriverAllocdPhysRam += size; |
|
1652 #endif |
|
1653 } |
|
1654 MmuBase::Signal(); |
|
1655 return r; |
|
1656 } |
|
1657 |
|
1658 /** |
|
1659 Allocate a block of physically contiguous RAM with a physical address aligned |
|
1660 to a specified power of 2 boundary from the specified zone. |
|
1661 When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam(). |
|
1662 |
|
1663 Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt |
|
1664 to allocate regardless of whether the other flags are set for the specified RAM zones |
|
1665 or not. |
|
1666 |
|
1667 When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam(). |
|
1668 |
|
1669 @param aZoneId The ID of the zone to attempt to allocate from. |
|
1670 @param aSize The size in bytes of the required block. The specified size |
|
1671 is rounded up to the page size, since only whole pages of |
|
1672 physical RAM can be allocated. |
|
1673 @param aPhysAddr Receives the physical address of the base of the block on |
|
1674 successful allocation. |
|
1675 @param aAlign Specifies the number of least significant bits of the |
|
1676 physical address which are required to be zero. If a value |
|
1677 less than log2(page size) is specified, page alignment is |
|
1678 assumed. Pass 0 for aAlign if there are no special alignment |
|
1679 constraints (other than page alignment). |
|
1680 @return KErrNone if the allocation was successful. |
|
1681 KErrNoMemory if a sufficiently large physically contiguous block of free |
|
1682 RAM with the specified alignment could not be found within the specified |
|
1683 zone. |
|
1684 KErrArgument if a RAM zone of the specified ID can't be found or if the |
|
1685 RAM zone has a total number of physical pages which is less than those |
|
1686 requested for the allocation. |
|
1687 |
|
1688 @pre Calling thread must be in a critical section. |
|
1689 @pre Interrupts must be enabled. |
|
1690 @pre Kernel must be unlocked. |
|
1691 @pre No fast mutex can be held. |
|
1692 @pre Call in a thread context. |
|
1693 @pre Can be used in a device driver. |
|
1694 */ |
|
1695 EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint aZoneId, TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign) |
|
1696 { |
|
1697 return ZoneAllocPhysicalRam(&aZoneId, 1, aSize, aPhysAddr, aAlign); |
|
1698 } |
|
1699 |
|
1700 |
|
1701 /** |
|
1702 Allocate a block of physically contiguous RAM with a physical address aligned |
|
1703 to a specified power of 2 boundary from the specified RAM zones. |
|
1704 When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam(). |
|
1705 |
|
1706 RAM will be allocated into the RAM zones in the order they are specified in the |
|
1707 aZoneIdList parameter. If the contiguous allocations are intended to span RAM zones |
|
1708 when required then aZoneIdList should be listed with the RAM zones in ascending |
|
1709 physical address order. |
|
1710 |
|
1711 Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt |
|
1712 to allocate regardless of whether the other flags are set for the specified RAM zones |
|
1713 or not. |
|
1714 |
|
1715 When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam(). |
|
1716 |
|
1717 @param aZoneIdList A pointer to an array of RAM zone IDs of the RAM zones to |
|
1718 attempt to allocate from. |
|
1719 @param aZoneIdCount The number of RAM zone IDs contained in aZoneIdList. |
|
1720 @param aSize The size in bytes of the required block. The specified size |
|
1721 is rounded up to the page size, since only whole pages of |
|
1722 physical RAM can be allocated. |
|
1723 @param aPhysAddr Receives the physical address of the base of the block on |
|
1724 successful allocation. |
|
1725 @param aAlign Specifies the number of least significant bits of the |
|
1726 physical address which are required to be zero. If a value |
|
1727 less than log2(page size) is specified, page alignment is |
|
1728 assumed. Pass 0 for aAlign if there are no special alignment |
|
1729 constraints (other than page alignment). |
|
1730 @return KErrNone if the allocation was successful. |
|
1731 KErrNoMemory if a sufficiently large physically contiguous block of free |
|
1732 RAM with the specified alignment could not be found within the specified |
|
1733 zone. |
|
1734 KErrArgument if a RAM zone of a specified ID can't be found or if the |
|
1735 RAM zones have a total number of physical pages which is less than those |
|
1736 requested for the allocation. |
|
1737 |
|
1738 @pre Calling thread must be in a critical section. |
|
1739 @pre Interrupts must be enabled. |
|
1740 @pre Kernel must be unlocked. |
|
1741 @pre No fast mutex can be held. |
|
1742 @pre Call in a thread context. |
|
1743 @pre Can be used in a device driver. |
|
1744 */ |
|
1745 EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aSize, TPhysAddr& aPhysAddr, TInt aAlign) |
|
1746 { |
|
1747 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::ZoneAllocPhysicalRam"); |
|
1748 MmuBase& m=*MmuBase::TheMmu; |
|
1749 MmuBase::Wait(); |
|
1750 TInt r = m.ZoneAllocPhysicalRam(aZoneIdList, aZoneIdCount, aSize, aPhysAddr, aAlign); |
|
1751 if (r == KErrNone) |
|
1752 { |
|
1753 // For the sake of platform security we have to clear the memory. E.g. the driver |
|
1754 // could assign it to a chunk visible to user side. |
|
1755 m.ClearPages(Kern::RoundToPageSize(aSize)>>m.iPageShift, (TPhysAddr*)(aPhysAddr|1)); |
|
1756 #ifdef BTRACE_KERNEL_MEMORY |
|
1757 TUint size = Kern::RoundToPageSize(aSize); |
|
1758 BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, size, aPhysAddr); |
|
1759 Epoc::DriverAllocdPhysRam += size; |
|
1760 #endif |
|
1761 } |
|
1762 MmuBase::Signal(); |
|
1763 return r; |
|
1764 } |
|
1765 |
|
1766 |
|
1767 /** |
|
1768 Attempt to allocate discontiguous RAM pages. |
|
1769 |
|
1770 When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam(). |
|
1771 |
|
1772 @param aNumPages The number of discontiguous pages required to be allocated |
|
1773 @param aPageList This should be a pointer to a previously allocated array of |
|
1774 aNumPages TPhysAddr elements. On a succesful allocation it |
|
1775 will receive the physical addresses of each page allocated. |
|
1776 |
|
1777 @return KErrNone if the allocation was successful. |
|
1778 KErrNoMemory if the requested number of pages can't be allocated |
|
1779 |
|
1780 @pre Calling thread must be in a critical section. |
|
1781 @pre Interrupts must be enabled. |
|
1782 @pre Kernel must be unlocked. |
|
1783 @pre No fast mutex can be held. |
|
1784 @pre Call in a thread context. |
|
1785 @pre Can be used in a device driver. |
|
1786 */ |
|
1787 EXPORT_C TInt Epoc::AllocPhysicalRam(TInt aNumPages, TPhysAddr* aPageList) |
|
1788 { |
|
1789 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL, "Epoc::AllocPhysicalRam"); |
|
1790 MmuBase& m = *MmuBase::TheMmu; |
|
1791 MmuBase::Wait(); |
|
1792 TInt r = m.AllocPhysicalRam(aNumPages, aPageList); |
|
1793 if (r == KErrNone) |
|
1794 { |
|
1795 // For the sake of platform security we have to clear the memory. E.g. the driver |
|
1796 // could assign it to a chunk visible to user side. |
|
1797 m.ClearPages(aNumPages, aPageList); |
|
1798 |
|
1799 #ifdef BTRACE_KERNEL_MEMORY |
|
1800 if (BTrace::CheckFilter(BTrace::EKernelMemory)) |
|
1801 {// Only loop round each page if EKernelMemory tracing is enabled |
|
1802 TPhysAddr* pAddr = aPageList; |
|
1803 TPhysAddr* pAddrEnd = aPageList + aNumPages; |
|
1804 while (pAddr < pAddrEnd) |
|
1805 { |
|
1806 BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, KPageSize, *pAddr++); |
|
1807 Epoc::DriverAllocdPhysRam += KPageSize; |
|
1808 } |
|
1809 } |
|
1810 #endif |
|
1811 } |
|
1812 MmuBase::Signal(); |
|
1813 return r; |
|
1814 } |
|
1815 |
|
1816 |
|
1817 /** |
|
1818 Attempt to allocate discontiguous RAM pages from the specified zone. |
|
1819 |
|
1820 Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt |
|
1821 to allocate regardless of whether the other flags are set for the specified RAM zones |
|
1822 or not. |
|
1823 |
|
1824 When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam(). |
|
1825 |
|
1826 @param aZoneId The ID of the zone to attempt to allocate from. |
|
1827 @param aNumPages The number of discontiguous pages required to be allocated |
|
1828 from the specified zone. |
|
1829 @param aPageList This should be a pointer to a previously allocated array of |
|
1830 aNumPages TPhysAddr elements. On a succesful |
|
1831 allocation it will receive the physical addresses of each |
|
1832 page allocated. |
|
1833 @return KErrNone if the allocation was successful. |
|
1834 KErrNoMemory if the requested number of pages can't be allocated from the |
|
1835 specified zone. |
|
1836 KErrArgument if a RAM zone of the specified ID can't be found or if the |
|
1837 RAM zone has a total number of physical pages which is less than those |
|
1838 requested for the allocation. |
|
1839 |
|
1840 @pre Calling thread must be in a critical section. |
|
1841 @pre Interrupts must be enabled. |
|
1842 @pre Kernel must be unlocked. |
|
1843 @pre No fast mutex can be held. |
|
1844 @pre Call in a thread context. |
|
1845 @pre Can be used in a device driver. |
|
1846 */ |
|
1847 EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint aZoneId, TInt aNumPages, TPhysAddr* aPageList) |
|
1848 { |
|
1849 return ZoneAllocPhysicalRam(&aZoneId, 1, aNumPages, aPageList); |
|
1850 } |
|
1851 |
|
1852 |
|
1853 /** |
|
1854 Attempt to allocate discontiguous RAM pages from the specified RAM zones. |
|
1855 The RAM pages will be allocated into the RAM zones in the order that they are specified |
|
1856 in the aZoneIdList parameter, the RAM zone preferences will be ignored. |
|
1857 |
|
1858 Note that this method only repsects the KRamZoneFlagNoAlloc flag and will always attempt |
|
1859 to allocate regardless of whether the other flags are set for the specified RAM zones |
|
1860 or not. |
|
1861 |
|
1862 When the RAM is no longer required it should be freed using Epoc::FreePhysicalRam(). |
|
1863 |
|
1864 @param aZoneIdList A pointer to an array of RAM zone IDs of the RAM zones to |
|
1865 attempt to allocate from. |
|
1866 @param aZoneIdCount The number of RAM zone IDs pointed to by aZoneIdList. |
|
1867 @param aNumPages The number of discontiguous pages required to be allocated |
|
1868 from the specified zone. |
|
1869 @param aPageList This should be a pointer to a previously allocated array of |
|
1870 aNumPages TPhysAddr elements. On a succesful |
|
1871 allocation it will receive the physical addresses of each |
|
1872 page allocated. |
|
1873 @return KErrNone if the allocation was successful. |
|
1874 KErrNoMemory if the requested number of pages can't be allocated from the |
|
1875 specified zone. |
|
1876 KErrArgument if a RAM zone of a specified ID can't be found or if the |
|
1877 RAM zones have a total number of physical pages which is less than those |
|
1878 requested for the allocation. |
|
1879 |
|
1880 @pre Calling thread must be in a critical section. |
|
1881 @pre Interrupts must be enabled. |
|
1882 @pre Kernel must be unlocked. |
|
1883 @pre No fast mutex can be held. |
|
1884 @pre Call in a thread context. |
|
1885 @pre Can be used in a device driver. |
|
1886 */ |
|
1887 EXPORT_C TInt Epoc::ZoneAllocPhysicalRam(TUint* aZoneIdList, TUint aZoneIdCount, TInt aNumPages, TPhysAddr* aPageList) |
|
1888 { |
|
1889 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL, "Epoc::ZoneAllocPhysicalRam"); |
|
1890 MmuBase& m = *MmuBase::TheMmu; |
|
1891 MmuBase::Wait(); |
|
1892 TInt r = m.ZoneAllocPhysicalRam(aZoneIdList, aZoneIdCount, aNumPages, aPageList); |
|
1893 if (r == KErrNone) |
|
1894 { |
|
1895 // For the sake of platform security we have to clear the memory. E.g. the driver |
|
1896 // could assign it to a chunk visible to user side. |
|
1897 m.ClearPages(aNumPages, aPageList); |
|
1898 |
|
1899 #ifdef BTRACE_KERNEL_MEMORY |
|
1900 if (BTrace::CheckFilter(BTrace::EKernelMemory)) |
|
1901 {// Only loop round each page if EKernelMemory tracing is enabled |
|
1902 TPhysAddr* pAddr = aPageList; |
|
1903 TPhysAddr* pAddrEnd = aPageList + aNumPages; |
|
1904 while (pAddr < pAddrEnd) |
|
1905 { |
|
1906 BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, KPageSize, *pAddr++); |
|
1907 Epoc::DriverAllocdPhysRam += KPageSize; |
|
1908 } |
|
1909 } |
|
1910 #endif |
|
1911 } |
|
1912 MmuBase::Signal(); |
|
1913 return r; |
|
1914 } |
|
1915 |
|
1916 /** |
|
1917 Free a previously-allocated block of physically contiguous RAM. |
|
1918 |
|
1919 Specifying one of the following may cause the system to panic: |
|
1920 a) an invalid physical RAM address. |
|
1921 b) valid physical RAM addresses where some had not been previously allocated. |
|
1922 c) an adrress not aligned to a page boundary. |
|
1923 |
|
1924 @param aPhysAddr The physical address of the base of the block to be freed. |
|
1925 This must be the address returned by a previous call to |
|
1926 Epoc::AllocPhysicalRam(), Epoc::ZoneAllocPhysicalRam(), |
|
1927 Epoc::ClaimPhysicalRam() or Epoc::ClaimRamZone(). |
|
1928 @param aSize The size in bytes of the required block. The specified size |
|
1929 is rounded up to the page size, since only whole pages of |
|
1930 physical RAM can be allocated. |
|
1931 @return KErrNone if the operation was successful. |
|
1932 |
|
1933 |
|
1934 |
|
1935 @pre Calling thread must be in a critical section. |
|
1936 @pre Interrupts must be enabled. |
|
1937 @pre Kernel must be unlocked. |
|
1938 @pre No fast mutex can be held. |
|
1939 @pre Call in a thread context. |
|
1940 @pre Can be used in a device driver. |
|
1941 */ |
|
1942 EXPORT_C TInt Epoc::FreePhysicalRam(TPhysAddr aPhysAddr, TInt aSize) |
|
1943 { |
|
1944 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreePhysicalRam"); |
|
1945 MmuBase& m=*MmuBase::TheMmu; |
|
1946 MmuBase::Wait(); |
|
1947 TInt r=m.FreePhysicalRam(aPhysAddr,aSize); |
|
1948 #ifdef BTRACE_KERNEL_MEMORY |
|
1949 if (r == KErrNone) |
|
1950 { |
|
1951 TUint size = Kern::RoundToPageSize(aSize); |
|
1952 BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysFree, size, aPhysAddr); |
|
1953 Epoc::DriverAllocdPhysRam -= size; |
|
1954 } |
|
1955 #endif |
|
1956 MmuBase::Signal(); |
|
1957 return r; |
|
1958 } |
|
1959 |
|
1960 |
|
1961 /** |
|
1962 Free a number of physical RAM pages that were previously allocated using |
|
1963 Epoc::AllocPhysicalRam() or Epoc::ZoneAllocPhysicalRam(). |
|
1964 |
|
1965 Specifying one of the following may cause the system to panic: |
|
1966 a) an invalid physical RAM address. |
|
1967 b) valid physical RAM addresses where some had not been previously allocated. |
|
1968 c) an adrress not aligned to a page boundary. |
|
1969 |
|
1970 @param aNumPages The number of pages to be freed. |
|
1971 @param aPhysAddr An array of aNumPages TPhysAddr elements. Where each element |
|
1972 should contain the physical address of each page to be freed. |
|
1973 This must be the same set of addresses as those returned by a |
|
1974 previous call to Epoc::AllocPhysicalRam() or |
|
1975 Epoc::ZoneAllocPhysicalRam(). |
|
1976 @return KErrNone if the operation was successful. |
|
1977 |
|
1978 @pre Calling thread must be in a critical section. |
|
1979 @pre Interrupts must be enabled. |
|
1980 @pre Kernel must be unlocked. |
|
1981 @pre No fast mutex can be held. |
|
1982 @pre Call in a thread context. |
|
1983 @pre Can be used in a device driver. |
|
1984 |
|
1985 */ |
|
1986 EXPORT_C TInt Epoc::FreePhysicalRam(TInt aNumPages, TPhysAddr* aPageList) |
|
1987 { |
|
1988 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::FreePhysicalRam"); |
|
1989 MmuBase& m=*MmuBase::TheMmu; |
|
1990 MmuBase::Wait(); |
|
1991 TInt r=m.FreePhysicalRam(aNumPages, aPageList); |
|
1992 #ifdef BTRACE_KERNEL_MEMORY |
|
1993 if (r == KErrNone && BTrace::CheckFilter(BTrace::EKernelMemory)) |
|
1994 {// Only loop round each page if EKernelMemory tracing is enabled |
|
1995 TPhysAddr* pAddr = aPageList; |
|
1996 TPhysAddr* pAddrEnd = aPageList + aNumPages; |
|
1997 while (pAddr < pAddrEnd) |
|
1998 { |
|
1999 BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysFree, KPageSize, *pAddr++); |
|
2000 Epoc::DriverAllocdPhysRam -= KPageSize; |
|
2001 } |
|
2002 } |
|
2003 #endif |
|
2004 MmuBase::Signal(); |
|
2005 return r; |
|
2006 } |
|
2007 |
|
2008 |
|
2009 /** |
|
2010 Allocate a specific block of physically contiguous RAM, specified by physical |
|
2011 base address and size. |
|
2012 If and when the RAM is no longer required it should be freed using |
|
2013 Epoc::FreePhysicalRam() |
|
2014 |
|
2015 @param aPhysAddr The physical address of the base of the required block. |
|
2016 @param aSize The size in bytes of the required block. The specified size |
|
2017 is rounded up to the page size, since only whole pages of |
|
2018 physical RAM can be allocated. |
|
2019 @return KErrNone if the operation was successful. |
|
2020 KErrArgument if the range of physical addresses specified included some |
|
2021 which are not valid physical RAM addresses. |
|
2022 KErrInUse if the range of physical addresses specified are all valid |
|
2023 physical RAM addresses but some of them have already been |
|
2024 allocated for other purposes. |
|
2025 @pre Calling thread must be in a critical section. |
|
2026 @pre Interrupts must be enabled. |
|
2027 @pre Kernel must be unlocked. |
|
2028 @pre No fast mutex can be held. |
|
2029 @pre Call in a thread context. |
|
2030 @pre Can be used in a device driver. |
|
2031 */ |
|
2032 EXPORT_C TInt Epoc::ClaimPhysicalRam(TPhysAddr aPhysAddr, TInt aSize) |
|
2033 { |
|
2034 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::ClaimPhysicalRam"); |
|
2035 MmuBase& m=*MmuBase::TheMmu; |
|
2036 MmuBase::Wait(); |
|
2037 TInt r=m.ClaimPhysicalRam(aPhysAddr,aSize); |
|
2038 #ifdef BTRACE_KERNEL_MEMORY |
|
2039 if(r==KErrNone) |
|
2040 { |
|
2041 TUint32 pa=aPhysAddr; |
|
2042 TUint32 size=aSize; |
|
2043 m.RoundUpRangeToPageSize(pa,size); |
|
2044 BTrace8(BTrace::EKernelMemory, BTrace::EKernelMemoryDrvPhysAlloc, size, pa); |
|
2045 Epoc::DriverAllocdPhysRam += size; |
|
2046 } |
|
2047 #endif |
|
2048 MmuBase::Signal(); |
|
2049 return r; |
|
2050 } |
|
2051 |
|
2052 |
|
2053 /** |
|
2054 Translate a virtual address to the corresponding physical address. |
|
2055 |
|
2056 @param aLinAddr The virtual address to be translated. |
|
2057 @return The physical address corresponding to the given virtual address, or |
|
2058 KPhysAddrInvalid if the specified virtual address is unmapped. |
|
2059 @pre Interrupts must be enabled. |
|
2060 @pre Kernel must be unlocked. |
|
2061 @pre Call in a thread context. |
|
2062 @pre Can be used in a device driver. |
|
2063 @pre Hold system lock if there is any possibility that the virtual address is |
|
2064 unmapped, may become unmapped, or may be remapped during the operation. |
|
2065 This will potentially be the case unless the virtual address refers to a |
|
2066 hardware chunk or shared chunk under the control of the driver calling this |
|
2067 function. |
|
2068 */ |
|
2069 EXPORT_C TPhysAddr Epoc::LinearToPhysical(TLinAddr aLinAddr) |
|
2070 { |
|
2071 // This precondition is violated by various parts of the system under some conditions, |
|
2072 // e.g. when __FLUSH_PT_INTO_RAM__ is defined. This function might also be called by |
|
2073 // a higher-level RTOS for which these conditions are meaningless. Thus, it's been |
|
2074 // disabled for now. |
|
2075 // CHECK_PRECONDITIONS(MASK_KERNEL_UNLOCKED|MASK_INTERRUPTS_ENABLED|MASK_NOT_ISR|MASK_NOT_IDFC,"Epoc::LinearToPhysical"); |
|
2076 MmuBase& m=*MmuBase::TheMmu; |
|
2077 TPhysAddr pa=m.LinearToPhysical(aLinAddr); |
|
2078 return pa; |
|
2079 } |
|
2080 |
|
2081 |
|
2082 EXPORT_C TInt TInternalRamDrive::MaxSize() |
|
2083 { |
|
2084 return TheSuperPage().iRamDriveSize+Kern::FreeRamInBytes(); |
|
2085 } |
|
2086 |
|
2087 |
|
2088 /****************************************************************************** |
|
2089 * Address allocator |
|
2090 ******************************************************************************/ |
|
2091 TLinearSection* TLinearSection::New(TLinAddr aBase, TLinAddr aEnd) |
|
2092 { |
|
2093 __KTRACE_OPT(KMMU,Kern::Printf("TLinearSection::New(%08x,%08x)", aBase, aEnd)); |
|
2094 MmuBase& m=*MmuBase::TheMmu; |
|
2095 TUint npdes=(aEnd-aBase)>>m.iChunkShift; |
|
2096 TInt nmapw=(npdes+31)>>5; |
|
2097 TInt memsz=sizeof(TLinearSection)+(nmapw-1)*sizeof(TUint32); |
|
2098 TLinearSection* p=(TLinearSection*)Kern::Alloc(memsz); |
|
2099 if (p) |
|
2100 { |
|
2101 new(&p->iAllocator) TBitMapAllocator(npdes, ETrue); |
|
2102 p->iBase=aBase; |
|
2103 p->iEnd=aEnd; |
|
2104 } |
|
2105 __KTRACE_OPT(KMMU,Kern::Printf("TLinearSection at %08x", p)); |
|
2106 return p; |
|
2107 } |
|
2108 |
|
2109 /****************************************************************************** |
|
2110 * Address allocator for HW chunks |
|
2111 ******************************************************************************/ |
|
2112 THwChunkPageTable::THwChunkPageTable(TInt aIndex, TInt aSize, TPde aPdePerm) |
|
2113 : THwChunkRegion(aIndex, 0, aPdePerm), |
|
2114 iAllocator(aSize, ETrue) |
|
2115 { |
|
2116 } |
|
2117 |
|
2118 THwChunkPageTable* THwChunkPageTable::New(TInt aIndex, TPde aPdePerm) |
|
2119 { |
|
2120 __KTRACE_OPT(KMMU, Kern::Printf("THwChunkPageTable::New(%03x,%08x)",aIndex,aPdePerm)); |
|
2121 MmuBase& m=*MmuBase::TheMmu; |
|
2122 TInt pdepages=m.iChunkSize>>m.iPageShift; |
|
2123 TInt nmapw=(pdepages+31)>>5; |
|
2124 TInt memsz=sizeof(THwChunkPageTable)+(nmapw-1)*sizeof(TUint32); |
|
2125 THwChunkPageTable* p=(THwChunkPageTable*)Kern::Alloc(memsz); |
|
2126 if (p) |
|
2127 new (p) THwChunkPageTable(aIndex, pdepages, aPdePerm); |
|
2128 __KTRACE_OPT(KMMU, Kern::Printf("THwChunkPageTable at %08x",p)); |
|
2129 return p; |
|
2130 } |
|
2131 |
|
2132 THwChunkAddressAllocator::THwChunkAddressAllocator() |
|
2133 { |
|
2134 } |
|
2135 |
|
2136 THwChunkAddressAllocator* THwChunkAddressAllocator::New(TInt aAlign, TLinearSection* aSection) |
|
2137 { |
|
2138 __KTRACE_OPT(KMMU, Kern::Printf("THwChunkAddressAllocator::New(%d,%08x)",aAlign,aSection)); |
|
2139 THwChunkAddressAllocator* p=new THwChunkAddressAllocator; |
|
2140 if (p) |
|
2141 { |
|
2142 p->iAlign=aAlign; |
|
2143 p->iSection=aSection; |
|
2144 } |
|
2145 __KTRACE_OPT(KMMU, Kern::Printf("THwChunkAddressAllocator at %08x",p)); |
|
2146 return p; |
|
2147 } |
|
2148 |
|
2149 THwChunkRegion* THwChunkAddressAllocator::NewRegion(TInt aIndex, TInt aSize, TPde aPdePerm) |
|
2150 { |
|
2151 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewRegion(index=%x, size=%x, pde=%08x)",aIndex,aSize,aPdePerm)); |
|
2152 THwChunkRegion* p=new THwChunkRegion(aIndex, aSize, aPdePerm); |
|
2153 if (p) |
|
2154 { |
|
2155 TInt r=InsertInOrder(p, Order); |
|
2156 __KTRACE_OPT(KMMU, Kern::Printf("p=%08x, insert ret %d",p,r)); |
|
2157 if (r<0) |
|
2158 delete p, p=NULL; |
|
2159 } |
|
2160 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewRegion ret %08x)",p)); |
|
2161 return p; |
|
2162 } |
|
2163 |
|
2164 THwChunkPageTable* THwChunkAddressAllocator::NewPageTable(TInt aIndex, TPde aPdePerm, TInt aInitB, TInt aInitC) |
|
2165 { |
|
2166 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewPageTable(index=%x, pde=%08x, iB=%d, iC=%d)",aIndex,aPdePerm,aInitB,aInitC)); |
|
2167 THwChunkPageTable* p=THwChunkPageTable::New(aIndex, aPdePerm); |
|
2168 if (p) |
|
2169 { |
|
2170 TInt r=InsertInOrder(p, Order); |
|
2171 __KTRACE_OPT(KMMU, Kern::Printf("p=%08x, insert ret %d",p,r)); |
|
2172 if (r<0) |
|
2173 delete p, p=NULL; |
|
2174 else |
|
2175 p->iAllocator.Alloc(aInitB, aInitC); |
|
2176 } |
|
2177 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::NewPageTable ret %08x)",p)); |
|
2178 return p; |
|
2179 } |
|
2180 |
|
2181 TLinAddr THwChunkAddressAllocator::SearchExisting(TInt aNumPages, TInt aPageAlign, TInt aPageOffset, TPde aPdePerm) |
|
2182 { |
|
2183 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::SrchEx np=%03x align=%d offset=%03x pdeperm=%08x", |
|
2184 aNumPages, aPageAlign, aPageOffset, aPdePerm)); |
|
2185 TInt c=Count(); |
|
2186 if (c==0) |
|
2187 return 0; // don't try to access [0] if array empty! |
|
2188 THwChunkPageTable** pp=(THwChunkPageTable**)&(*this)[0]; |
|
2189 THwChunkPageTable** ppE=pp+c; |
|
2190 while(pp<ppE) |
|
2191 { |
|
2192 THwChunkPageTable* p=*pp++; |
|
2193 if (p->iRegionSize!=0 || p->iPdePerm!=aPdePerm) |
|
2194 continue; // if not page table or PDE permissions wrong, we can't use it |
|
2195 TInt r=p->iAllocator.AllocAligned(aNumPages, aPageAlign, -aPageOffset, EFalse); |
|
2196 __KTRACE_OPT(KMMU, Kern::Printf("r=%d", r)); |
|
2197 if (r<0) |
|
2198 continue; // not enough space in this page table |
|
2199 |
|
2200 // got enough space in existing page table, so use it |
|
2201 p->iAllocator.Alloc(r, aNumPages); |
|
2202 MmuBase& m=*MmuBase::TheMmu; |
|
2203 TLinAddr a = iSection->iBase + (TLinAddr(p->iIndex)<<m.iChunkShift) + (r<<m.iPageShift); |
|
2204 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::SrchEx OK, returning %08x", a)); |
|
2205 return a; |
|
2206 } |
|
2207 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::SrchEx not found")); |
|
2208 return 0; |
|
2209 } |
|
2210 |
|
2211 TLinAddr THwChunkAddressAllocator::Alloc(TInt aSize, TInt aAlign, TInt aOffset, TPde aPdePerm) |
|
2212 { |
|
2213 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Alloc size=%08x align=%d offset=%08x pdeperm=%08x", |
|
2214 aSize, aAlign, aOffset, aPdePerm)); |
|
2215 MmuBase& m=*MmuBase::TheMmu; |
|
2216 TInt npages=(aSize+m.iPageMask)>>m.iPageShift; |
|
2217 TInt align=Max(aAlign,iAlign); |
|
2218 if (align>m.iChunkShift) |
|
2219 return 0; |
|
2220 TInt aligns=1<<align; |
|
2221 TInt alignm=aligns-1; |
|
2222 TInt offset=(aOffset&alignm)>>m.iPageShift; |
|
2223 TInt pdepages=m.iChunkSize>>m.iPageShift; |
|
2224 TInt pdepageshift=m.iChunkShift-m.iPageShift; |
|
2225 MmuBase::WaitHwChunk(); |
|
2226 if (npages<pdepages) |
|
2227 { |
|
2228 // for small regions, first try to share an existing page table |
|
2229 TLinAddr a=SearchExisting(npages, align-m.iPageShift, offset, aPdePerm); |
|
2230 if (a) |
|
2231 { |
|
2232 MmuBase::SignalHwChunk(); |
|
2233 return a; |
|
2234 } |
|
2235 } |
|
2236 |
|
2237 // large region or no free space in existing page tables - allocate whole PDEs |
|
2238 TInt npdes=(npages+offset+pdepages-1)>>pdepageshift; |
|
2239 __KTRACE_OPT(KMMU, Kern::Printf("Allocate %d PDEs", npdes)); |
|
2240 MmuBase::Wait(); |
|
2241 TInt ix=iSection->iAllocator.AllocConsecutive(npdes, EFalse); |
|
2242 if (ix>=0) |
|
2243 iSection->iAllocator.Alloc(ix, npdes); |
|
2244 MmuBase::Signal(); |
|
2245 TLinAddr a=0; |
|
2246 if (ix>=0) |
|
2247 a = iSection->iBase + (TLinAddr(ix)<<m.iChunkShift) + (TLinAddr(offset)<<m.iPageShift); |
|
2248 |
|
2249 // Create bitmaps for each page table and placeholders for section blocks. |
|
2250 // We only create a bitmap for the first and last PDE and then only if they are not |
|
2251 // fully occupied by this request |
|
2252 THwChunkPageTable* first=NULL; |
|
2253 THwChunkRegion* middle=NULL; |
|
2254 TInt remain=npages; |
|
2255 TInt nix=ix; |
|
2256 if (a && (offset || npages<pdepages)) |
|
2257 { |
|
2258 // first PDE is bitmap |
|
2259 TInt first_count = Min(remain, pdepages-offset); |
|
2260 first=NewPageTable(nix, aPdePerm, offset, first_count); |
|
2261 ++nix; |
|
2262 remain -= first_count; |
|
2263 if (!first) |
|
2264 a=0; |
|
2265 } |
|
2266 if (a && remain>=pdepages) |
|
2267 { |
|
2268 // next need whole-PDE-block placeholder |
|
2269 TInt whole_pdes=remain>>pdepageshift; |
|
2270 middle=NewRegion(nix, whole_pdes, aPdePerm); |
|
2271 nix+=whole_pdes; |
|
2272 remain-=(whole_pdes<<pdepageshift); |
|
2273 if (!middle) |
|
2274 a=0; |
|
2275 } |
|
2276 if (a && remain) |
|
2277 { |
|
2278 // need final bitmap section |
|
2279 if (!NewPageTable(nix, aPdePerm, 0, remain)) |
|
2280 a=0; |
|
2281 } |
|
2282 if (!a) |
|
2283 { |
|
2284 // alloc failed somewhere - free anything we did create |
|
2285 if (middle) |
|
2286 Discard(middle); |
|
2287 if (first) |
|
2288 Discard(first); |
|
2289 if (ix>=0) |
|
2290 { |
|
2291 MmuBase::Wait(); |
|
2292 iSection->iAllocator.Free(ix, npdes); |
|
2293 MmuBase::Signal(); |
|
2294 } |
|
2295 } |
|
2296 MmuBase::SignalHwChunk(); |
|
2297 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Alloc returns %08x", a)); |
|
2298 return a; |
|
2299 } |
|
2300 |
|
2301 void THwChunkAddressAllocator::Discard(THwChunkRegion* aRegion) |
|
2302 { |
|
2303 // remove a region from the array and destroy it |
|
2304 TInt r=FindInOrder(aRegion, Order); |
|
2305 if (r>=0) |
|
2306 Remove(r); |
|
2307 Kern::Free(aRegion); |
|
2308 } |
|
2309 |
|
2310 TInt THwChunkAddressAllocator::Order(const THwChunkRegion& a1, const THwChunkRegion& a2) |
|
2311 { |
|
2312 // order two regions by address |
|
2313 return a1.iIndex-a2.iIndex; |
|
2314 } |
|
2315 |
|
2316 THwChunkRegion* THwChunkAddressAllocator::Free(TLinAddr aAddr, TInt aSize) |
|
2317 { |
|
2318 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Free addr=%08x size=%08x", aAddr, aSize)); |
|
2319 __ASSERT_ALWAYS(aAddr>=iSection->iBase && (aAddr+aSize)<=iSection->iEnd, |
|
2320 MmuBase::Panic(MmuBase::EFreeHwChunkAddrInvalid)); |
|
2321 THwChunkRegion* list=NULL; |
|
2322 MmuBase& m=*MmuBase::TheMmu; |
|
2323 TInt ix=(aAddr - iSection->iBase)>>m.iChunkShift; |
|
2324 TInt remain=(aSize+m.iPageMask)>>m.iPageShift; |
|
2325 TInt pdepageshift=m.iChunkShift-m.iPageShift; |
|
2326 TInt offset=(aAddr&m.iChunkMask)>>m.iPageShift; |
|
2327 THwChunkRegion find(ix, 0, 0); |
|
2328 MmuBase::WaitHwChunk(); |
|
2329 TInt r=FindInOrder(&find, Order); |
|
2330 __ASSERT_ALWAYS(r>=0, MmuBase::Panic(MmuBase::EFreeHwChunkAddrInvalid)); |
|
2331 while (remain) |
|
2332 { |
|
2333 THwChunkPageTable* p=(THwChunkPageTable*)(*this)[r]; |
|
2334 __ASSERT_ALWAYS(p->iIndex==ix, MmuBase::Panic(MmuBase::EFreeHwChunkIndexInvalid)); |
|
2335 if (p->iRegionSize) |
|
2336 { |
|
2337 // multiple-whole-PDE region |
|
2338 TInt rsz=p->iRegionSize; |
|
2339 remain-=(rsz<<pdepageshift); |
|
2340 Remove(r); // r now indexes following array entry |
|
2341 ix+=rsz; |
|
2342 } |
|
2343 else |
|
2344 { |
|
2345 // bitmap region |
|
2346 TInt n=Min(remain, (1<<pdepageshift)-offset); |
|
2347 p->iAllocator.Free(offset, n); |
|
2348 remain-=n; |
|
2349 ++ix; |
|
2350 if (p->iAllocator.iAvail < p->iAllocator.iSize) |
|
2351 { |
|
2352 // bitmap still in use |
|
2353 offset=0; |
|
2354 ++r; // r indexes following array entry |
|
2355 continue; |
|
2356 } |
|
2357 Remove(r); // r now indexes following array entry |
|
2358 } |
|
2359 offset=0; |
|
2360 p->iNext=list; |
|
2361 list=p; // chain free region descriptors together |
|
2362 } |
|
2363 MmuBase::SignalHwChunk(); |
|
2364 __KTRACE_OPT(KMMU, Kern::Printf("THwChAA::Free returns %08x", list)); |
|
2365 return list; |
|
2366 } |
|
2367 |
|
2368 /******************************************** |
|
2369 * Hardware chunk abstraction |
|
2370 ********************************************/ |
|
2371 THwChunkAddressAllocator* MmuBase::MappingRegion(TUint) |
|
2372 { |
|
2373 return iHwChunkAllocator; |
|
2374 } |
|
2375 |
|
2376 TInt MmuBase::AllocateAllPageTables(TLinAddr aLinAddr, TInt aSize, TPde aPdePerm, TInt aMapShift, SPageTableInfo::TAttribs aAttrib) |
|
2377 { |
|
2378 __KTRACE_OPT(KMMU,Kern::Printf("AllocateAllPageTables lin=%08x, size=%x, pde=%08x, mapshift=%d attribs=%d", |
|
2379 aLinAddr, aSize, aPdePerm, aMapShift, aAttrib)); |
|
2380 TInt offset=aLinAddr&iChunkMask; |
|
2381 TInt remain=aSize; |
|
2382 TLinAddr a=aLinAddr&~iChunkMask; |
|
2383 TInt newpts=0; |
|
2384 for (; remain>0; a+=iChunkSize) |
|
2385 { |
|
2386 // don't need page table if a whole PDE mapping is permitted here |
|
2387 if (aMapShift<iChunkShift || offset || remain<iChunkSize) |
|
2388 { |
|
2389 // need to check for a page table at a |
|
2390 TInt id=PageTableId(a); |
|
2391 if (id<0) |
|
2392 { |
|
2393 // no page table - must allocate one |
|
2394 id = AllocPageTable(); |
|
2395 if (id<0) |
|
2396 break; |
|
2397 // got page table, assign it |
|
2398 // AssignPageTable(TInt aId, TInt aUsage, TAny* aObject, TLinAddr aAddr, TPde aPdePerm) |
|
2399 AssignPageTable(id, aAttrib, NULL, a, aPdePerm); |
|
2400 ++newpts; |
|
2401 } |
|
2402 } |
|
2403 remain -= (iChunkSize-offset); |
|
2404 offset=0; |
|
2405 } |
|
2406 if (remain<=0) |
|
2407 return KErrNone; // completed OK |
|
2408 |
|
2409 // ran out of memory somewhere - free page tables which were allocated |
|
2410 for (; newpts; --newpts) |
|
2411 { |
|
2412 a-=iChunkSize; |
|
2413 TInt id=UnassignPageTable(a); |
|
2414 FreePageTable(id); |
|
2415 } |
|
2416 return KErrNoMemory; |
|
2417 } |
|
2418 |
|
2419 |
|
2420 /** |
|
2421 Create a hardware chunk object mapping a specified block of physical addresses |
|
2422 with specified access permissions and cache policy. |
|
2423 |
|
2424 When the mapping is no longer required, close the chunk using chunk->Close(0); |
|
2425 Note that closing a chunk does not free any RAM pages which were mapped by the |
|
2426 chunk - these must be freed separately using Epoc::FreePhysicalRam(). |
|
2427 |
|
2428 @param aChunk Upon successful completion this parameter receives a pointer to |
|
2429 the newly created chunk. Upon unsuccessful completion it is |
|
2430 written with a NULL pointer. The virtual address of the mapping |
|
2431 can subsequently be discovered using the LinearAddress() |
|
2432 function on the chunk. |
|
2433 @param aAddr The base address of the physical region to be mapped. This will |
|
2434 be rounded down to a multiple of the hardware page size before |
|
2435 being used. |
|
2436 @param aSize The size of the physical address region to be mapped. This will |
|
2437 be rounded up to a multiple of the hardware page size before |
|
2438 being used; the rounding is such that the entire range from |
|
2439 aAddr to aAddr+aSize-1 inclusive is mapped. For example if |
|
2440 aAddr=0xB0001FFF, aSize=2 and the hardware page size is 4KB, an |
|
2441 8KB range of physical addresses from 0xB0001000 to 0xB0002FFF |
|
2442 inclusive will be mapped. |
|
2443 @param aMapAttr Mapping attributes required for the mapping. This is formed |
|
2444 by ORing together values from the TMappingAttributes enumeration |
|
2445 to specify the access permissions and caching policy. |
|
2446 |
|
2447 @pre Calling thread must be in a critical section. |
|
2448 @pre Interrupts must be enabled. |
|
2449 @pre Kernel must be unlocked. |
|
2450 @pre No fast mutex can be held. |
|
2451 @pre Call in a thread context. |
|
2452 @pre Can be used in a device driver. |
|
2453 @see TMappingAttributes |
|
2454 */ |
|
2455 EXPORT_C TInt DPlatChunkHw::New(DPlatChunkHw*& aChunk, TPhysAddr aAddr, TInt aSize, TUint aMapAttr) |
|
2456 { |
|
2457 if (aAddr == KPhysAddrInvalid) |
|
2458 return KErrNotSupported; |
|
2459 return DoNew(aChunk, aAddr, aSize, aMapAttr); |
|
2460 } |
|
2461 |
|
2462 TInt DPlatChunkHw::DoNew(DPlatChunkHw*& aChunk, TPhysAddr aAddr, TInt aSize, TUint aMapAttr) |
|
2463 { |
|
2464 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"DPlatChunkHw::New"); |
|
2465 __KTRACE_OPT(KMMU,Kern::Printf("DPlatChunkHw::New phys=%08x, size=%x, attribs=%x",aAddr,aSize,aMapAttr)); |
|
2466 if (aSize<=0) |
|
2467 return KErrArgument; |
|
2468 MmuBase& m=*MmuBase::TheMmu; |
|
2469 aChunk=NULL; |
|
2470 TPhysAddr pa=aAddr!=KPhysAddrInvalid ? aAddr&~m.iPageMask : 0; |
|
2471 TInt size=((aAddr+aSize+m.iPageMask)&~m.iPageMask)-pa; |
|
2472 __KTRACE_OPT(KMMU,Kern::Printf("Rounded %08x+%x", pa, size)); |
|
2473 DMemModelChunkHw* pC=new DMemModelChunkHw; |
|
2474 if (!pC) |
|
2475 return KErrNoMemory; |
|
2476 __KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunkHw created at %08x",pC)); |
|
2477 pC->iPhysAddr=aAddr; |
|
2478 pC->iSize=size; |
|
2479 TUint mapattr=aMapAttr; |
|
2480 TPde pdePerm=0; |
|
2481 TPte ptePerm=0; |
|
2482 TInt r=m.PdePtePermissions(mapattr, pdePerm, ptePerm); |
|
2483 if (r==KErrNone) |
|
2484 { |
|
2485 pC->iAllocator=m.MappingRegion(mapattr); |
|
2486 pC->iAttribs=mapattr; // save actual mapping attributes |
|
2487 r=pC->AllocateLinearAddress(pdePerm); |
|
2488 if (r>=0) |
|
2489 { |
|
2490 TInt map_shift=r; |
|
2491 MmuBase::Wait(); |
|
2492 r=m.AllocateAllPageTables(pC->iLinAddr, size, pdePerm, map_shift, SPageTableInfo::EGlobal); |
|
2493 if (r==KErrNone && aAddr!=KPhysAddrInvalid) |
|
2494 m.Map(pC->iLinAddr, pa, size, pdePerm, ptePerm, map_shift); |
|
2495 MmuBase::Signal(); |
|
2496 } |
|
2497 } |
|
2498 if (r==KErrNone) |
|
2499 aChunk=pC; |
|
2500 else |
|
2501 pC->Close(NULL); |
|
2502 return r; |
|
2503 } |
|
2504 |
|
2505 TInt DMemModelChunkHw::AllocateLinearAddress(TPde aPdePerm) |
|
2506 { |
|
2507 __KTRACE_OPT(KMMU, Kern::Printf("DMemModelChunkHw::AllocateLinearAddress(%08x)", aPdePerm)); |
|
2508 __KTRACE_OPT(KMMU, Kern::Printf("iAllocator=%08x iPhysAddr=%08x iSize=%08x", iAllocator, iPhysAddr, iSize)); |
|
2509 MmuBase& m=*MmuBase::TheMmu; |
|
2510 TInt map_shift = (iPhysAddr<0xffffffffu) ? 30 : m.iPageShift; |
|
2511 for (; map_shift>=m.iPageShift; --map_shift) |
|
2512 { |
|
2513 TUint32 map_size = 1<<map_shift; |
|
2514 TUint32 map_mask = map_size-1; |
|
2515 if (!(m.iMapSizes & map_size)) |
|
2516 continue; // map_size is not supported on this hardware |
|
2517 TPhysAddr base = (iPhysAddr+map_mask) &~ map_mask; // base rounded up |
|
2518 TPhysAddr end = (iPhysAddr+iSize)&~map_mask; // end rounded down |
|
2519 if ((base-end)<0x80000000u && map_shift>m.iPageShift) |
|
2520 continue; // region not big enough to use this mapping size |
|
2521 __KTRACE_OPT(KMMU, Kern::Printf("Try map size %08x", map_size)); |
|
2522 iLinAddr=iAllocator->Alloc(iSize, map_shift, iPhysAddr, aPdePerm); |
|
2523 if (iLinAddr) |
|
2524 break; // done |
|
2525 } |
|
2526 TInt r=iLinAddr ? map_shift : KErrNoMemory; |
|
2527 __KTRACE_OPT(KMMU, Kern::Printf("iLinAddr=%08x, returning %d", iLinAddr, r)); |
|
2528 return r; |
|
2529 } |
|
2530 |
|
2531 void DMemModelChunkHw::DeallocateLinearAddress() |
|
2532 { |
|
2533 __KTRACE_OPT(KMMU, Kern::Printf("DMemModelChunkHw::DeallocateLinearAddress %O", this)); |
|
2534 MmuBase& m=*MmuBase::TheMmu; |
|
2535 MmuBase::WaitHwChunk(); |
|
2536 THwChunkRegion* rgn=iAllocator->Free(iLinAddr, iSize); |
|
2537 iLinAddr=0; |
|
2538 MmuBase::SignalHwChunk(); |
|
2539 TLinAddr base = iAllocator->iSection->iBase; |
|
2540 TBitMapAllocator& section_allocator = iAllocator->iSection->iAllocator; |
|
2541 while (rgn) |
|
2542 { |
|
2543 MmuBase::Wait(); |
|
2544 if (rgn->iRegionSize) |
|
2545 { |
|
2546 // free address range |
|
2547 __KTRACE_OPT(KMMU, Kern::Printf("Freeing range %03x+%03x", rgn->iIndex, rgn->iRegionSize)); |
|
2548 section_allocator.Free(rgn->iIndex, rgn->iRegionSize); |
|
2549 |
|
2550 // Though this is large region, it still can be made up of page tables (not sections). |
|
2551 // Check each chunk and remove tables in neccessary |
|
2552 TInt i = 0; |
|
2553 TLinAddr a = base + (TLinAddr(rgn->iIndex)<<m.iChunkShift); |
|
2554 for (; i<rgn->iRegionSize ; i++,a+=m.iChunkSize) |
|
2555 { |
|
2556 TInt id = m.UnassignPageTable(a); |
|
2557 if (id>=0) |
|
2558 m.FreePageTable(id); |
|
2559 } |
|
2560 } |
|
2561 else |
|
2562 { |
|
2563 // free address and page table if it exists |
|
2564 __KTRACE_OPT(KMMU, Kern::Printf("Freeing index %03x", rgn->iIndex)); |
|
2565 section_allocator.Free(rgn->iIndex); |
|
2566 TLinAddr a = base + (TLinAddr(rgn->iIndex)<<m.iChunkShift); |
|
2567 TInt id = m.UnassignPageTable(a); |
|
2568 if (id>=0) |
|
2569 m.FreePageTable(id); |
|
2570 } |
|
2571 MmuBase::Signal(); |
|
2572 THwChunkRegion* free=rgn; |
|
2573 rgn=rgn->iNext; |
|
2574 Kern::Free(free); |
|
2575 } |
|
2576 } |
|
2577 |
|
2578 |
|
2579 // |
|
2580 // RamCacheBase |
|
2581 // |
|
2582 |
|
2583 |
|
2584 RamCacheBase* RamCacheBase::TheRamCache = NULL; |
|
2585 |
|
2586 |
|
2587 RamCacheBase::RamCacheBase() |
|
2588 { |
|
2589 } |
|
2590 |
|
2591 |
|
2592 void RamCacheBase::Init2() |
|
2593 { |
|
2594 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">RamCacheBase::Init2")); |
|
2595 iMmu = MmuBase::TheMmu; |
|
2596 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<RamCacheBase::Init2")); |
|
2597 } |
|
2598 |
|
2599 |
|
2600 void RamCacheBase::ReturnToSystem(SPageInfo* aPageInfo) |
|
2601 { |
|
2602 __ASSERT_MUTEX(MmuBase::RamAllocatorMutex); |
|
2603 __ASSERT_SYSTEM_LOCK; |
|
2604 aPageInfo->SetUnused(); |
|
2605 --iNumberOfFreePages; |
|
2606 __NK_ASSERT_DEBUG(iNumberOfFreePages>=0); |
|
2607 // Release system lock before using the RAM allocator. |
|
2608 NKern::UnlockSystem(); |
|
2609 iMmu->iRamPageAllocator->FreeRamPage(aPageInfo->PhysAddr(), EPageDiscard); |
|
2610 NKern::LockSystem(); |
|
2611 } |
|
2612 |
|
2613 |
|
2614 SPageInfo* RamCacheBase::GetPageFromSystem(TUint aBlockedZoneId, TBool aBlockRest) |
|
2615 { |
|
2616 __ASSERT_MUTEX(MmuBase::RamAllocatorMutex); |
|
2617 SPageInfo* pageInfo; |
|
2618 TPhysAddr pagePhys; |
|
2619 TInt r = iMmu->iRamPageAllocator->AllocRamPages(&pagePhys,1, EPageDiscard, aBlockedZoneId, aBlockRest); |
|
2620 if(r==KErrNone) |
|
2621 { |
|
2622 NKern::LockSystem(); |
|
2623 pageInfo = SPageInfo::FromPhysAddr(pagePhys); |
|
2624 pageInfo->Change(SPageInfo::EPagedFree,SPageInfo::EStatePagedDead); |
|
2625 ++iNumberOfFreePages; |
|
2626 NKern::UnlockSystem(); |
|
2627 } |
|
2628 else |
|
2629 pageInfo = NULL; |
|
2630 return pageInfo; |
|
2631 } |
|
2632 |
|
2633 |
|
2634 // |
|
2635 // RamCache |
|
2636 // |
|
2637 |
|
2638 |
|
2639 void RamCache::Init2() |
|
2640 { |
|
2641 __KTRACE_OPT(KBOOT,Kern::Printf(">RamCache::Init2")); |
|
2642 RamCacheBase::Init2(); |
|
2643 __KTRACE_OPT(KBOOT,Kern::Printf("<RamCache::Init2")); |
|
2644 } |
|
2645 |
|
2646 |
|
2647 TInt RamCache::Init3() |
|
2648 { |
|
2649 return KErrNone; |
|
2650 } |
|
2651 |
|
2652 void RamCache::RemovePage(SPageInfo& aPageInfo) |
|
2653 { |
|
2654 __NK_ASSERT_DEBUG(aPageInfo.Type() == SPageInfo::EPagedCache); |
|
2655 __NK_ASSERT_DEBUG(aPageInfo.State() == SPageInfo::EStatePagedYoung); |
|
2656 aPageInfo.iLink.Deque(); |
|
2657 aPageInfo.SetState(SPageInfo::EStatePagedDead); |
|
2658 } |
|
2659 |
|
2660 TBool RamCache::GetFreePages(TInt aNumPages) |
|
2661 { |
|
2662 __KTRACE_OPT(KPAGING,Kern::Printf("DP: >GetFreePages %d",aNumPages)); |
|
2663 NKern::LockSystem(); |
|
2664 |
|
2665 while(aNumPages>0 && NumberOfFreePages()>=aNumPages) |
|
2666 { |
|
2667 // steal a page from cache list and return it to the free pool... |
|
2668 SPageInfo* pageInfo = SPageInfo::FromLink(iPageList.First()->Deque()); |
|
2669 pageInfo->SetState(SPageInfo::EStatePagedDead); |
|
2670 SetFree(pageInfo); |
|
2671 ReturnToSystem(pageInfo); |
|
2672 --aNumPages; |
|
2673 } |
|
2674 |
|
2675 NKern::UnlockSystem(); |
|
2676 __KTRACE_OPT(KPAGING,Kern::Printf("DP: <GetFreePages %d",!aNumPages)); |
|
2677 return !aNumPages; |
|
2678 } |
|
2679 |
|
2680 |
|
2681 void RamCache::DonateRamCachePage(SPageInfo* aPageInfo) |
|
2682 { |
|
2683 SPageInfo::TType type = aPageInfo->Type(); |
|
2684 if(type==SPageInfo::EChunk) |
|
2685 { |
|
2686 //Must not donate locked page. An example is DMA trasferred memory. |
|
2687 __NK_ASSERT_DEBUG(0 == aPageInfo->LockCount()); |
|
2688 |
|
2689 aPageInfo->Change(SPageInfo::EPagedCache,SPageInfo::EStatePagedYoung); |
|
2690 iPageList.Add(&aPageInfo->iLink); |
|
2691 ++iNumberOfFreePages; |
|
2692 // Update ram allocator counts as this page has changed its type |
|
2693 DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner(); |
|
2694 iMmu->iRamPageAllocator->ChangePageType(aPageInfo, chunk->GetPageType(), EPageDiscard); |
|
2695 |
|
2696 #ifdef BTRACE_PAGING |
|
2697 BTraceContext8(BTrace::EPaging, BTrace::EPagingChunkDonatePage, chunk, aPageInfo->Offset()); |
|
2698 #endif |
|
2699 return; |
|
2700 } |
|
2701 // allow already donated pages... |
|
2702 __NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache); |
|
2703 } |
|
2704 |
|
2705 |
|
2706 TBool RamCache::ReclaimRamCachePage(SPageInfo* aPageInfo) |
|
2707 { |
|
2708 SPageInfo::TType type = aPageInfo->Type(); |
|
2709 // Kern::Printf("DemandPaging::ReclaimRamCachePage %x %d free=%d",aPageInfo,type,iNumberOfFreePages); |
|
2710 |
|
2711 if(type==SPageInfo::EChunk) |
|
2712 return ETrue; // page already reclaimed |
|
2713 |
|
2714 __NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache); |
|
2715 __NK_ASSERT_DEBUG(aPageInfo->State()==SPageInfo::EStatePagedYoung); |
|
2716 // Update ram allocator counts as this page has changed its type |
|
2717 DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner(); |
|
2718 iMmu->iRamPageAllocator->ChangePageType(aPageInfo, EPageDiscard, chunk->GetPageType()); |
|
2719 aPageInfo->iLink.Deque(); |
|
2720 --iNumberOfFreePages; |
|
2721 aPageInfo->Change(SPageInfo::EChunk,SPageInfo::EStateNormal); |
|
2722 |
|
2723 #ifdef BTRACE_PAGING |
|
2724 BTraceContext8(BTrace::EPaging, BTrace::EPagingChunkReclaimPage, chunk, aPageInfo->Offset()); |
|
2725 #endif |
|
2726 return ETrue; |
|
2727 } |
|
2728 |
|
2729 |
|
2730 /** |
|
2731 Discard the specified page. |
|
2732 Should only be called on a page if a previous call to IsPageDiscardable() |
|
2733 returned ETrue and the system lock hasn't been released between the calls. |
|
2734 |
|
2735 @param aPageInfo The page info of the page to be discarded |
|
2736 @param aBlockedZoneId Not used by this overload. |
|
2737 @param aBlockRest Not used by this overload. |
|
2738 @return ETrue if page succesfully discarded |
|
2739 |
|
2740 @pre System lock held. |
|
2741 @post System lock held. |
|
2742 */ |
|
2743 TBool RamCache::DoDiscardPage(SPageInfo& aPageInfo, TUint aBlockedZoneId, TBool aBlockRest) |
|
2744 { |
|
2745 __NK_ASSERT_DEBUG(iNumberOfFreePages > 0); |
|
2746 RemovePage(aPageInfo); |
|
2747 SetFree(&aPageInfo); |
|
2748 ReturnToSystem(&aPageInfo); |
|
2749 return ETrue; |
|
2750 } |
|
2751 |
|
2752 |
|
2753 /** |
|
2754 First stage in discarding a list of pages. |
|
2755 |
|
2756 Must ensure that the pages will still be discardable even if system lock is released. |
|
2757 To be used in conjunction with RamCacheBase::DoDiscardPages1(). |
|
2758 |
|
2759 @param aPageList A NULL terminated list of the pages to be discarded |
|
2760 @return KErrNone on success. |
|
2761 |
|
2762 @pre System lock held |
|
2763 @post System lock held |
|
2764 */ |
|
2765 TInt RamCache::DoDiscardPages0(SPageInfo** aPageList) |
|
2766 { |
|
2767 __ASSERT_SYSTEM_LOCK; |
|
2768 |
|
2769 SPageInfo* pageInfo; |
|
2770 while((pageInfo = *aPageList++) != 0) |
|
2771 { |
|
2772 RemovePage(*pageInfo); |
|
2773 } |
|
2774 return KErrNone; |
|
2775 } |
|
2776 |
|
2777 |
|
2778 /** |
|
2779 Final stage in discarding a list of page |
|
2780 Finish discarding the pages previously removed by RamCacheBase::DoDiscardPages0(). |
|
2781 This overload doesn't actually need to do anything. |
|
2782 |
|
2783 @param aPageList A NULL terminated list of the pages to be discarded |
|
2784 @return KErrNone on success. |
|
2785 |
|
2786 @pre System lock held |
|
2787 @post System lock held |
|
2788 */ |
|
2789 TInt RamCache::DoDiscardPages1(SPageInfo** aPageList) |
|
2790 { |
|
2791 __ASSERT_SYSTEM_LOCK; |
|
2792 SPageInfo* pageInfo; |
|
2793 while((pageInfo = *aPageList++) != 0) |
|
2794 { |
|
2795 SetFree(pageInfo); |
|
2796 ReturnToSystem(pageInfo); |
|
2797 } |
|
2798 return KErrNone; |
|
2799 } |
|
2800 |
|
2801 |
|
2802 /** |
|
2803 Check whether the specified page can be discarded by the RAM cache. |
|
2804 |
|
2805 @param aPageInfo The page info of the page being queried. |
|
2806 @return ETrue when the page can be discarded, EFalse otherwise. |
|
2807 @pre System lock held. |
|
2808 @post System lock held. |
|
2809 */ |
|
2810 TBool RamCache::IsPageDiscardable(SPageInfo& aPageInfo) |
|
2811 { |
|
2812 SPageInfo::TType type = aPageInfo.Type(); |
|
2813 SPageInfo::TState state = aPageInfo.State(); |
|
2814 return (type == SPageInfo::EPagedCache && state == SPageInfo::EStatePagedYoung); |
|
2815 } |
|
2816 |
|
2817 |
|
2818 /** |
|
2819 @return ETrue when the unmapped page should be freed, EFalse otherwise |
|
2820 */ |
|
2821 TBool RamCache::PageUnmapped(SPageInfo* aPageInfo) |
|
2822 { |
|
2823 SPageInfo::TType type = aPageInfo->Type(); |
|
2824 // Kern::Printf("DemandPaging::PageUnmapped %x %d",aPageInfo,type); |
|
2825 if(type!=SPageInfo::EPagedCache) |
|
2826 return ETrue; |
|
2827 SPageInfo::TState state = aPageInfo->State(); |
|
2828 if(state==SPageInfo::EStatePagedYoung) |
|
2829 { |
|
2830 // This page will be freed by DChunk::DoDecommit as it was originally |
|
2831 // allocated so update page counts in ram allocator |
|
2832 DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner(); |
|
2833 iMmu->iRamPageAllocator->ChangePageType(aPageInfo, EPageDiscard, chunk->GetPageType()); |
|
2834 aPageInfo->iLink.Deque(); |
|
2835 --iNumberOfFreePages; |
|
2836 } |
|
2837 return ETrue; |
|
2838 } |
|
2839 |
|
2840 |
|
2841 void RamCache::Panic(TFault aFault) |
|
2842 { |
|
2843 Kern::Fault("RamCache",aFault); |
|
2844 } |
|
2845 |
|
2846 /** |
|
2847 Flush all cache pages. |
|
2848 |
|
2849 @pre RAM allocator mutex held |
|
2850 @post RAM allocator mutex held |
|
2851 */ |
|
2852 void RamCache::FlushAll() |
|
2853 { |
|
2854 __ASSERT_MUTEX(MmuBase::RamAllocatorMutex); |
|
2855 #ifdef _DEBUG |
|
2856 // Should always succeed |
|
2857 __NK_ASSERT_DEBUG(GetFreePages(iNumberOfFreePages)); |
|
2858 #else |
|
2859 GetFreePages(iNumberOfFreePages); |
|
2860 #endif |
|
2861 } |
|
2862 |
|
2863 |
|
2864 // |
|
2865 // Demand Paging |
|
2866 // |
|
2867 |
|
2868 #ifdef __DEMAND_PAGING__ |
|
2869 |
|
2870 DemandPaging* DemandPaging::ThePager = 0; |
|
2871 TBool DemandPaging::PseudoRandInitialised = EFalse; |
|
2872 volatile TUint32 DemandPaging::PseudoRandSeed = 0; |
|
2873 |
|
2874 |
|
2875 void M::DemandPagingInit() |
|
2876 { |
|
2877 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">M::DemandPagingInit")); |
|
2878 TInt r = RamCacheBase::TheRamCache->Init3(); |
|
2879 if (r != KErrNone) |
|
2880 DemandPaging::Panic(DemandPaging::EInitialiseFailed); |
|
2881 |
|
2882 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<M::DemandPagingInit")); |
|
2883 } |
|
2884 |
|
2885 |
|
2886 TInt M::DemandPagingFault(TAny* aExceptionInfo) |
|
2887 { |
|
2888 DemandPaging* pager = DemandPaging::ThePager; |
|
2889 if(pager) |
|
2890 return pager->Fault(aExceptionInfo); |
|
2891 return KErrAbort; |
|
2892 } |
|
2893 |
|
2894 #ifdef _DEBUG |
|
2895 extern "C" void ASMCheckPagingSafe(TLinAddr aPC, TLinAddr aLR, TLinAddr aStartAddres, TUint aLength) |
|
2896 { |
|
2897 if(M::CheckPagingSafe(EFalse, aStartAddres, aLength)) |
|
2898 return; |
|
2899 Kern::Printf("ASM_ASSERT_PAGING_SAFE FAILED: pc=%x lr=%x",aPC,aLR); |
|
2900 __NK_ASSERT_ALWAYS(0); |
|
2901 } |
|
2902 |
|
2903 extern "C" void ASMCheckDataPagingSafe(TLinAddr aPC, TLinAddr aLR, TLinAddr aStartAddres, TUint aLength) |
|
2904 { |
|
2905 if(M::CheckPagingSafe(ETrue, aStartAddres, aLength)) |
|
2906 return; |
|
2907 __KTRACE_OPT(KDATAPAGEWARN,Kern::Printf("Data paging: ASM_ASSERT_DATA_PAGING_SAFE FAILED: pc=%x lr=%x",aPC,aLR)); |
|
2908 } |
|
2909 #endif |
|
2910 |
|
2911 |
|
2912 TBool M::CheckPagingSafe(TBool aDataPaging, TLinAddr aStartAddr, TUint aLength) |
|
2913 { |
|
2914 DemandPaging* pager = DemandPaging::ThePager; |
|
2915 if(!pager || K::Initialising) |
|
2916 return ETrue; |
|
2917 |
|
2918 NThread* nt = NCurrentThread(); |
|
2919 if(!nt) |
|
2920 return ETrue; // We've not booted properly yet! |
|
2921 |
|
2922 if (!pager->NeedsMutexOrderCheck(aStartAddr, aLength)) |
|
2923 return ETrue; |
|
2924 |
|
2925 TBool dataPagingEnabled = EFalse; // data paging not supported on moving or multiple models |
|
2926 |
|
2927 DThread* thread = _LOFF(nt,DThread,iNThread); |
|
2928 NFastMutex* fm = NKern::HeldFastMutex(); |
|
2929 if(fm) |
|
2930 { |
|
2931 if(!thread->iPagingExcTrap || fm!=&TheScheduler.iLock) |
|
2932 { |
|
2933 if (!aDataPaging) |
|
2934 { |
|
2935 __KTRACE_OPT2(KPAGING,KPANIC,Kern::Printf("DP: CheckPagingSafe FAILED - FM Held")); |
|
2936 return EFalse; |
|
2937 } |
|
2938 else |
|
2939 { |
|
2940 __KTRACE_OPT(KDATAPAGEWARN, Kern::Printf("Data paging: CheckPagingSafe FAILED - FM Held")); |
|
2941 return !dataPagingEnabled; |
|
2942 } |
|
2943 } |
|
2944 } |
|
2945 |
|
2946 DMutex* m = pager->CheckMutexOrder(); |
|
2947 if (m) |
|
2948 { |
|
2949 if (!aDataPaging) |
|
2950 { |
|
2951 __KTRACE_OPT2(KPAGING,KPANIC,Kern::Printf("DP: Mutex Order Fault %O",m)); |
|
2952 return EFalse; |
|
2953 } |
|
2954 else |
|
2955 { |
|
2956 __KTRACE_OPT(KDATAPAGEWARN, Kern::Printf("Data paging: Mutex Order Fault %O",m)); |
|
2957 return !dataPagingEnabled; |
|
2958 } |
|
2959 } |
|
2960 |
|
2961 return ETrue; |
|
2962 } |
|
2963 |
|
2964 |
|
2965 TInt M::LockRegion(TLinAddr aStart,TInt aSize) |
|
2966 { |
|
2967 DemandPaging* pager = DemandPaging::ThePager; |
|
2968 if(pager) |
|
2969 return pager->LockRegion(aStart,aSize,NULL); |
|
2970 return KErrNone; |
|
2971 } |
|
2972 |
|
2973 |
|
2974 TInt M::UnlockRegion(TLinAddr aStart,TInt aSize) |
|
2975 { |
|
2976 DemandPaging* pager = DemandPaging::ThePager; |
|
2977 if(pager) |
|
2978 return pager->UnlockRegion(aStart,aSize,NULL); |
|
2979 return KErrNone; |
|
2980 } |
|
2981 |
|
2982 #else // !__DEMAND_PAGING__ |
|
2983 |
|
2984 TInt M::LockRegion(TLinAddr /*aStart*/,TInt /*aSize*/) |
|
2985 { |
|
2986 return KErrNone; |
|
2987 } |
|
2988 |
|
2989 |
|
2990 TInt M::UnlockRegion(TLinAddr /*aStart*/,TInt /*aSize*/) |
|
2991 { |
|
2992 return KErrNone; |
|
2993 } |
|
2994 |
|
2995 #endif // __DEMAND_PAGING__ |
|
2996 |
|
2997 |
|
2998 |
|
2999 |
|
3000 // |
|
3001 // DemandPaging |
|
3002 // |
|
3003 |
|
3004 #ifdef __DEMAND_PAGING__ |
|
3005 |
|
3006 |
|
3007 const TUint16 KDefaultYoungOldRatio = 3; |
|
3008 const TUint KDefaultMinPages = 256; |
|
3009 const TUint KDefaultMaxPages = KMaxTUint >> KPageShift; |
|
3010 |
|
3011 /* Need at least 4 mapped pages to guarentee to be able to execute all ARM instructions. |
|
3012 (Worst case is a THUMB2 STM instruction with both instruction and data stradling page |
|
3013 boundaries.) |
|
3014 */ |
|
3015 const TUint KMinYoungPages = 4; |
|
3016 const TUint KMinOldPages = 1; |
|
3017 |
|
3018 /* A minimum young/old ratio of 1 means that we need at least twice KMinYoungPages pages... |
|
3019 */ |
|
3020 const TUint KAbsoluteMinPageCount = 2*KMinYoungPages; |
|
3021 |
|
3022 __ASSERT_COMPILE(KMinOldPages<=KAbsoluteMinPageCount/2); |
|
3023 |
|
3024 class DMissingPagingDevice : public DPagingDevice |
|
3025 { |
|
3026 TInt Read(TThreadMessage* /*aReq*/,TLinAddr /*aBuffer*/,TUint /*aOffset*/,TUint /*aSize*/,TInt /*aDrvNumber*/) |
|
3027 { DemandPaging::Panic(DemandPaging::EDeviceMissing); return 0; } |
|
3028 }; |
|
3029 |
|
3030 |
|
3031 TBool DemandPaging::RomPagingRequested() |
|
3032 { |
|
3033 return TheRomHeader().iPageableRomSize != 0; |
|
3034 } |
|
3035 |
|
3036 |
|
3037 TBool DemandPaging::CodePagingRequested() |
|
3038 { |
|
3039 return (TheSuperPage().KernelConfigFlags() & EKernelConfigCodePagingPolicyDefaultPaged) != EKernelConfigCodePagingPolicyNoPaging; |
|
3040 } |
|
3041 |
|
3042 |
|
3043 DemandPaging::DemandPaging() |
|
3044 { |
|
3045 } |
|
3046 |
|
3047 |
|
3048 void DemandPaging::Init2() |
|
3049 { |
|
3050 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::Init2")); |
|
3051 |
|
3052 RamCacheBase::Init2(); |
|
3053 |
|
3054 // initialise live list... |
|
3055 SDemandPagingConfig config = TheRomHeader().iDemandPagingConfig; |
|
3056 |
|
3057 iMinimumPageCount = KDefaultMinPages; |
|
3058 if(config.iMinPages) |
|
3059 iMinimumPageCount = config.iMinPages; |
|
3060 if(iMinimumPageCount<KAbsoluteMinPageCount) |
|
3061 iMinimumPageCount = KAbsoluteMinPageCount; |
|
3062 iInitMinimumPageCount = iMinimumPageCount; |
|
3063 |
|
3064 iMaximumPageCount = KDefaultMaxPages; |
|
3065 if(config.iMaxPages) |
|
3066 iMaximumPageCount = config.iMaxPages; |
|
3067 iInitMaximumPageCount = iMaximumPageCount; |
|
3068 |
|
3069 iYoungOldRatio = KDefaultYoungOldRatio; |
|
3070 if(config.iYoungOldRatio) |
|
3071 iYoungOldRatio = config.iYoungOldRatio; |
|
3072 TInt ratioLimit = (iMinimumPageCount-KMinOldPages)/KMinOldPages; |
|
3073 if(iYoungOldRatio>ratioLimit) |
|
3074 iYoungOldRatio = ratioLimit; |
|
3075 |
|
3076 iMinimumPageLimit = (KMinYoungPages * (1 + iYoungOldRatio)) / iYoungOldRatio; |
|
3077 if(iMinimumPageLimit<KAbsoluteMinPageCount) |
|
3078 iMinimumPageLimit = KAbsoluteMinPageCount; |
|
3079 |
|
3080 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::InitialiseLiveList min=%d max=%d ratio=%d",iMinimumPageCount,iMaximumPageCount,iYoungOldRatio)); |
|
3081 |
|
3082 if(iMaximumPageCount<iMinimumPageCount) |
|
3083 Panic(EInitialiseBadArgs); |
|
3084 |
|
3085 // |
|
3086 // This routine doesn't acuire any mutexes because it should be called before the system |
|
3087 // is fully up and running. I.e. called before another thread can preempt this. |
|
3088 // |
|
3089 |
|
3090 // Calculate page counts |
|
3091 iOldCount = iMinimumPageCount/(1+iYoungOldRatio); |
|
3092 if(iOldCount<KMinOldPages) |
|
3093 Panic(EInitialiseBadArgs); |
|
3094 iYoungCount = iMinimumPageCount-iOldCount; |
|
3095 if(iYoungCount<KMinYoungPages) |
|
3096 Panic(EInitialiseBadArgs); // Need at least 4 pages mapped to execute an ARM LDM instruction in THUMB2 mode |
|
3097 iNumberOfFreePages = 0; |
|
3098 |
|
3099 // Allocate RAM pages and put them all on the old list |
|
3100 iYoungCount = 0; |
|
3101 iOldCount = 0; |
|
3102 for(TUint i=0; i<iMinimumPageCount; i++) |
|
3103 { |
|
3104 // Allocate a single page |
|
3105 TPhysAddr pagePhys; |
|
3106 TInt r = iMmu->iRamPageAllocator->AllocRamPages(&pagePhys,1, EPageDiscard); |
|
3107 if(r!=0) |
|
3108 Panic(EInitialiseFailed); |
|
3109 AddAsFreePage(SPageInfo::FromPhysAddr(pagePhys)); |
|
3110 } |
|
3111 |
|
3112 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<DemandPaging::Init2")); |
|
3113 } |
|
3114 |
|
3115 |
|
3116 TInt VMHalFunction(TAny*, TInt aFunction, TAny* a1, TAny* a2); |
|
3117 |
|
3118 TInt DemandPaging::Init3() |
|
3119 { |
|
3120 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::Init3")); |
|
3121 TInt r; |
|
3122 |
|
3123 // construct iBufferChunk |
|
3124 iDeviceBufferSize = 2*KPageSize; |
|
3125 TChunkCreateInfo info; |
|
3126 info.iType = TChunkCreateInfo::ESharedKernelMultiple; |
|
3127 info.iMaxSize = iDeviceBufferSize*KMaxPagingDevices; |
|
3128 info.iMapAttr = EMapAttrCachedMax; |
|
3129 info.iOwnsMemory = ETrue; |
|
3130 TUint32 mapAttr; |
|
3131 r = Kern::ChunkCreate(info,iDeviceBuffersChunk,iDeviceBuffers,mapAttr); |
|
3132 if(r!=KErrNone) |
|
3133 return r; |
|
3134 |
|
3135 // Install 'null' paging devices which panic if used... |
|
3136 DMissingPagingDevice* missingPagingDevice = new DMissingPagingDevice; |
|
3137 for(TInt i=0; i<KMaxPagingDevices; i++) |
|
3138 { |
|
3139 iPagingDevices[i].iInstalled = EFalse; |
|
3140 iPagingDevices[i].iDevice = missingPagingDevice; |
|
3141 } |
|
3142 |
|
3143 // Initialise ROM info... |
|
3144 const TRomHeader& romHeader = TheRomHeader(); |
|
3145 iRomLinearBase = (TLinAddr)&romHeader; |
|
3146 iRomSize = iMmu->RoundToPageSize(romHeader.iUncompressedSize); |
|
3147 if(romHeader.iRomPageIndex) |
|
3148 iRomPageIndex = (SRomPageInfo*)((TInt)&romHeader+romHeader.iRomPageIndex); |
|
3149 |
|
3150 TLinAddr pagedStart = romHeader.iPageableRomSize ? (TLinAddr)&romHeader+romHeader.iPageableRomStart : 0; |
|
3151 if(pagedStart) |
|
3152 { |
|
3153 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("ROM=%x+%x PagedStart=%x",iRomLinearBase,iRomSize,pagedStart)); |
|
3154 __NK_ASSERT_ALWAYS(TUint(pagedStart-iRomLinearBase)<TUint(iRomSize)); |
|
3155 iRomPagedLinearBase = pagedStart; |
|
3156 iRomPagedSize = iRomLinearBase+iRomSize-pagedStart; |
|
3157 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("DemandPaging::Init3, ROM Paged start(0x%x), sixe(0x%x)",iRomPagedLinearBase,iRomPagedSize)); |
|
3158 |
|
3159 #ifdef __SUPPORT_DEMAND_PAGING_EMULATION__ |
|
3160 // Get physical addresses of ROM pages |
|
3161 iOriginalRomPageCount = iMmu->RoundToPageSize(iRomSize)>>KPageShift; |
|
3162 iOriginalRomPages = new TPhysAddr[iOriginalRomPageCount]; |
|
3163 __NK_ASSERT_ALWAYS(iOriginalRomPages); |
|
3164 TPhysAddr romPhysAddress; |
|
3165 iMmu->LinearToPhysical(iRomLinearBase,iRomSize,romPhysAddress,iOriginalRomPages); |
|
3166 #endif |
|
3167 } |
|
3168 |
|
3169 r = Kern::AddHalEntry(EHalGroupVM, VMHalFunction, 0); |
|
3170 __NK_ASSERT_ALWAYS(r==KErrNone); |
|
3171 |
|
3172 #ifdef __DEMAND_PAGING_BENCHMARKS__ |
|
3173 for (TInt i = 0 ; i < EMaxPagingBm ; ++i) |
|
3174 ResetBenchmarkData((TPagingBenchmark)i); |
|
3175 #endif |
|
3176 |
|
3177 // Initialisation now complete |
|
3178 ThePager = this; |
|
3179 return KErrNone; |
|
3180 } |
|
3181 |
|
3182 |
|
3183 DemandPaging::~DemandPaging() |
|
3184 { |
|
3185 #ifdef __SUPPORT_DEMAND_PAGING_EMULATION__ |
|
3186 delete[] iOriginalRomPages; |
|
3187 #endif |
|
3188 for (TUint i = 0 ; i < iPagingRequestCount ; ++i) |
|
3189 delete iPagingRequests[i]; |
|
3190 } |
|
3191 |
|
3192 |
|
3193 TInt DemandPaging::InstallPagingDevice(DPagingDevice* aDevice) |
|
3194 { |
|
3195 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf(">DemandPaging::InstallPagingDevice name='%s' type=%d",aDevice->iName,aDevice->iType)); |
|
3196 |
|
3197 if(aDevice->iReadUnitShift>KPageShift) |
|
3198 Panic(EInvalidPagingDevice); |
|
3199 |
|
3200 TInt i; |
|
3201 TInt r = KErrNone; |
|
3202 TBool createRequestObjects = EFalse; |
|
3203 |
|
3204 if ((aDevice->iType & DPagingDevice::ERom) && RomPagingRequested()) |
|
3205 { |
|
3206 r = DoInstallPagingDevice(aDevice, 0); |
|
3207 if (r != KErrNone) |
|
3208 goto done; |
|
3209 K::MemModelAttributes|=EMemModelAttrRomPaging; |
|
3210 createRequestObjects = ETrue; |
|
3211 } |
|
3212 |
|
3213 if ((aDevice->iType & DPagingDevice::ECode) && CodePagingRequested()) |
|
3214 { |
|
3215 for (i = 0 ; i < KMaxLocalDrives ; ++i) |
|
3216 { |
|
3217 if (aDevice->iDrivesSupported & (1<<i)) |
|
3218 { |
|
3219 r = DoInstallPagingDevice(aDevice, i + 1); |
|
3220 if (r != KErrNone) |
|
3221 goto done; |
|
3222 } |
|
3223 } |
|
3224 K::MemModelAttributes|=EMemModelAttrCodePaging; |
|
3225 createRequestObjects = ETrue; |
|
3226 } |
|
3227 |
|
3228 if (createRequestObjects) |
|
3229 { |
|
3230 for (i = 0 ; i < KPagingRequestsPerDevice ; ++i) |
|
3231 { |
|
3232 r = CreateRequestObject(); |
|
3233 if (r != KErrNone) |
|
3234 goto done; |
|
3235 } |
|
3236 } |
|
3237 |
|
3238 done: |
|
3239 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("<DemandPaging::InstallPagingDevice returns %d",r)); |
|
3240 return r; |
|
3241 } |
|
3242 |
|
3243 TInt DemandPaging::DoInstallPagingDevice(DPagingDevice* aDevice, TInt aId) |
|
3244 { |
|
3245 NKern::LockSystem(); |
|
3246 SPagingDevice* device = &iPagingDevices[aId]; |
|
3247 if(device->iInstalled) |
|
3248 { |
|
3249 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("**** Attempt to install more than one ROM paging device !!!!!!!! ****")); |
|
3250 //Panic(EDeviceAlreadyExists); |
|
3251 NKern::UnlockSystem(); |
|
3252 return KErrNone; |
|
3253 } |
|
3254 |
|
3255 aDevice->iDeviceId = aId; |
|
3256 device->iDevice = aDevice; |
|
3257 device->iInstalled = ETrue; |
|
3258 NKern::UnlockSystem(); |
|
3259 |
|
3260 __KTRACE_OPT2(KPAGING,KBOOT,Kern::Printf("DemandPaging::InstallPagingDevice id=%d, device=%08x",aId,device)); |
|
3261 |
|
3262 return KErrNone; |
|
3263 } |
|
3264 |
|
3265 DemandPaging::DPagingRequest::~DPagingRequest() |
|
3266 { |
|
3267 if (iMutex) |
|
3268 iMutex->Close(NULL); |
|
3269 } |
|
3270 |
|
3271 TInt DemandPaging::CreateRequestObject() |
|
3272 { |
|
3273 _LIT(KLitPagingRequest,"PagingRequest-"); |
|
3274 |
|
3275 TInt index; |
|
3276 TInt id = (TInt)__e32_atomic_add_ord32(&iNextPagingRequestCount, 1); |
|
3277 TLinAddr offset = id * iDeviceBufferSize; |
|
3278 TUint32 physAddr = 0; |
|
3279 TInt r = Kern::ChunkCommitContiguous(iDeviceBuffersChunk,offset,iDeviceBufferSize, physAddr); |
|
3280 if(r != KErrNone) |
|
3281 return r; |
|
3282 |
|
3283 DPagingRequest* req = new DPagingRequest(); |
|
3284 if (!req) |
|
3285 return KErrNoMemory; |
|
3286 |
|
3287 req->iBuffer = iDeviceBuffers + offset; |
|
3288 AllocLoadAddress(*req, id); |
|
3289 |
|
3290 TBuf<16> mutexName(KLitPagingRequest); |
|
3291 mutexName.AppendNum(id); |
|
3292 r = K::MutexCreate(req->iMutex, mutexName, NULL, EFalse, KMutexOrdPageIn); |
|
3293 if (r!=KErrNone) |
|
3294 goto done; |
|
3295 |
|
3296 // Ensure there are enough young pages to cope with new request object |
|
3297 r = ResizeLiveList(iMinimumPageCount, iMaximumPageCount); |
|
3298 if (r!=KErrNone) |
|
3299 goto done; |
|
3300 |
|
3301 NKern::LockSystem(); |
|
3302 index = iPagingRequestCount++; |
|
3303 __NK_ASSERT_ALWAYS(index < KMaxPagingRequests); |
|
3304 iPagingRequests[index] = req; |
|
3305 iFreeRequestPool.AddHead(req); |
|
3306 NKern::UnlockSystem(); |
|
3307 |
|
3308 done: |
|
3309 if (r != KErrNone) |
|
3310 delete req; |
|
3311 |
|
3312 return r; |
|
3313 } |
|
3314 |
|
3315 DemandPaging::DPagingRequest* DemandPaging::AcquireRequestObject() |
|
3316 { |
|
3317 __ASSERT_SYSTEM_LOCK; |
|
3318 __NK_ASSERT_DEBUG(iPagingRequestCount > 0); |
|
3319 |
|
3320 DPagingRequest* req = NULL; |
|
3321 |
|
3322 // System lock used to serialise access to our data strucures as we have to hold it anyway when |
|
3323 // we wait on the mutex |
|
3324 |
|
3325 req = (DPagingRequest*)iFreeRequestPool.GetFirst(); |
|
3326 if (req != NULL) |
|
3327 __NK_ASSERT_DEBUG(req->iUsageCount == 0); |
|
3328 else |
|
3329 { |
|
3330 // Pick a random request object to wait on |
|
3331 TUint index = (FastPseudoRand() * TUint64(iPagingRequestCount)) >> 32; |
|
3332 __NK_ASSERT_DEBUG(index < iPagingRequestCount); |
|
3333 req = iPagingRequests[index]; |
|
3334 __NK_ASSERT_DEBUG(req->iUsageCount > 0); |
|
3335 } |
|
3336 |
|
3337 #ifdef __CONCURRENT_PAGING_INSTRUMENTATION__ |
|
3338 ++iWaitingCount; |
|
3339 if (iWaitingCount > iMaxWaitingCount) |
|
3340 iMaxWaitingCount = iWaitingCount; |
|
3341 #endif |
|
3342 |
|
3343 ++req->iUsageCount; |
|
3344 TInt r = req->iMutex->Wait(); |
|
3345 __NK_ASSERT_ALWAYS(r == KErrNone); |
|
3346 |
|
3347 #ifdef __CONCURRENT_PAGING_INSTRUMENTATION__ |
|
3348 --iWaitingCount; |
|
3349 ++iPagingCount; |
|
3350 if (iPagingCount > iMaxPagingCount) |
|
3351 iMaxPagingCount = iPagingCount; |
|
3352 #endif |
|
3353 |
|
3354 return req; |
|
3355 } |
|
3356 |
|
3357 void DemandPaging::ReleaseRequestObject(DPagingRequest* aReq) |
|
3358 { |
|
3359 __ASSERT_SYSTEM_LOCK; |
|
3360 |
|
3361 #ifdef __CONCURRENT_PAGING_INSTRUMENTATION__ |
|
3362 --iPagingCount; |
|
3363 #endif |
|
3364 |
|
3365 // If there are no threads waiting on the mutex then return it to the free pool |
|
3366 __NK_ASSERT_DEBUG(aReq->iUsageCount > 0); |
|
3367 if (--aReq->iUsageCount == 0) |
|
3368 iFreeRequestPool.AddHead(aReq); |
|
3369 |
|
3370 aReq->iMutex->Signal(); |
|
3371 NKern::LockSystem(); |
|
3372 } |
|
3373 |
|
3374 TInt DemandPaging::ReadRomPage(const DPagingRequest* aReq, TLinAddr aRomAddress) |
|
3375 { |
|
3376 START_PAGING_BENCHMARK; |
|
3377 |
|
3378 TInt pageSize = KPageSize; |
|
3379 TInt dataOffset = aRomAddress-iRomLinearBase; |
|
3380 TInt pageNumber = dataOffset>>KPageShift; |
|
3381 TInt readUnitShift = RomPagingDevice().iDevice->iReadUnitShift; |
|
3382 TInt r; |
|
3383 if(!iRomPageIndex) |
|
3384 { |
|
3385 // ROM not broken into pages, so just read it in directly |
|
3386 START_PAGING_BENCHMARK; |
|
3387 r = RomPagingDevice().iDevice->Read(const_cast<TThreadMessage*>(&aReq->iMessage),aReq->iLoadAddr,dataOffset>>readUnitShift,pageSize>>readUnitShift,-1/*token for ROM paging*/); |
|
3388 END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmReadMedia); |
|
3389 } |
|
3390 else |
|
3391 { |
|
3392 // Work out where data for page is located |
|
3393 SRomPageInfo* romPageInfo = iRomPageIndex+pageNumber; |
|
3394 dataOffset = romPageInfo->iDataStart; |
|
3395 TInt dataSize = romPageInfo->iDataSize; |
|
3396 if(!dataSize) |
|
3397 { |
|
3398 // empty page, fill it with 0xff... |
|
3399 memset((void*)aReq->iLoadAddr,-1,pageSize); |
|
3400 r = KErrNone; |
|
3401 } |
|
3402 else |
|
3403 { |
|
3404 __NK_ASSERT_ALWAYS(romPageInfo->iPagingAttributes&SRomPageInfo::EPageable); |
|
3405 |
|
3406 // Read data for page... |
|
3407 TThreadMessage* msg= const_cast<TThreadMessage*>(&aReq->iMessage); |
|
3408 TLinAddr buffer = aReq->iBuffer; |
|
3409 TUint readStart = dataOffset>>readUnitShift; |
|
3410 TUint readSize = ((dataOffset+dataSize-1)>>readUnitShift)-readStart+1; |
|
3411 __NK_ASSERT_DEBUG((readSize<<readUnitShift)<=iDeviceBufferSize); |
|
3412 START_PAGING_BENCHMARK; |
|
3413 r = RomPagingDevice().iDevice->Read(msg,buffer,readStart,readSize,-1/*token for ROM paging*/); |
|
3414 END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmReadMedia); |
|
3415 if(r==KErrNone) |
|
3416 { |
|
3417 // Decompress data... |
|
3418 TLinAddr data = buffer+dataOffset-(readStart<<readUnitShift); |
|
3419 r = Decompress(romPageInfo->iCompressionType,aReq->iLoadAddr,data,dataSize); |
|
3420 if(r>=0) |
|
3421 { |
|
3422 __NK_ASSERT_ALWAYS(r==pageSize); |
|
3423 r = KErrNone; |
|
3424 } |
|
3425 } |
|
3426 } |
|
3427 } |
|
3428 |
|
3429 END_PAGING_BENCHMARK(this, EPagingBmReadRomPage); |
|
3430 return r; |
|
3431 } |
|
3432 |
|
3433 TInt ReadFunc(TAny* aArg1, TAny* aArg2, TLinAddr aBuffer, TInt aBlockNumber, TInt aBlockCount) |
|
3434 { |
|
3435 START_PAGING_BENCHMARK; |
|
3436 TInt drive = (TInt)aArg1; |
|
3437 TThreadMessage* msg= (TThreadMessage*)aArg2; |
|
3438 DemandPaging::SPagingDevice& device = DemandPaging::ThePager->CodePagingDevice(drive); |
|
3439 TInt r = device.iDevice->Read(msg, aBuffer, aBlockNumber, aBlockCount, drive); |
|
3440 END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmReadMedia); |
|
3441 return r; |
|
3442 } |
|
3443 |
|
3444 TInt DemandPaging::ReadCodePage(const DPagingRequest* aReq, DMmuCodeSegMemory* aCodeSegMemory, TLinAddr aCodeAddress) |
|
3445 { |
|
3446 __KTRACE_OPT(KPAGING,Kern::Printf("ReadCodePage buffer = %08x, csm == %08x, addr == %08x", aReq->iLoadAddr, aCodeSegMemory, aCodeAddress)); |
|
3447 |
|
3448 START_PAGING_BENCHMARK; |
|
3449 |
|
3450 // Get the paging device for this drive |
|
3451 SPagingDevice& device = CodePagingDevice(aCodeSegMemory->iCodeLocalDrive); |
|
3452 |
|
3453 // Work out which bit of the file to read |
|
3454 SRamCodeInfo& ri = aCodeSegMemory->iRamInfo; |
|
3455 TInt codeOffset = aCodeAddress - ri.iCodeRunAddr; |
|
3456 TInt pageNumber = codeOffset >> KPageShift; |
|
3457 TBool compressed = aCodeSegMemory->iCompressionType != SRomPageInfo::ENoCompression; |
|
3458 TInt dataOffset, dataSize; |
|
3459 if (compressed) |
|
3460 { |
|
3461 dataOffset = aCodeSegMemory->iCodePageOffsets[pageNumber]; |
|
3462 dataSize = aCodeSegMemory->iCodePageOffsets[pageNumber + 1] - dataOffset; |
|
3463 __KTRACE_OPT(KPAGING,Kern::Printf(" compressed, file offset == %x, size == %d", dataOffset, dataSize)); |
|
3464 } |
|
3465 else |
|
3466 { |
|
3467 dataOffset = codeOffset + aCodeSegMemory->iCodeStartInFile; |
|
3468 dataSize = Min(KPageSize, aCodeSegMemory->iBlockMap.DataLength() - dataOffset); |
|
3469 __NK_ASSERT_DEBUG(dataSize >= 0); |
|
3470 __KTRACE_OPT(KPAGING,Kern::Printf(" uncompressed, file offset == %x, size == %d", dataOffset, dataSize)); |
|
3471 } |
|
3472 |
|
3473 TInt bufferStart = aCodeSegMemory->iBlockMap.Read(aReq->iBuffer, |
|
3474 dataOffset, |
|
3475 dataSize, |
|
3476 device.iDevice->iReadUnitShift, |
|
3477 ReadFunc, |
|
3478 (TAny*)aCodeSegMemory->iCodeLocalDrive, |
|
3479 (TAny*)&aReq->iMessage); |
|
3480 |
|
3481 |
|
3482 TInt r = KErrNone; |
|
3483 if(bufferStart<0) |
|
3484 { |
|
3485 r = bufferStart; // return error |
|
3486 __NK_ASSERT_DEBUG(0); |
|
3487 } |
|
3488 else |
|
3489 { |
|
3490 TLinAddr data = aReq->iBuffer + bufferStart; |
|
3491 if (compressed) |
|
3492 { |
|
3493 TInt r = Decompress(aCodeSegMemory->iCompressionType, aReq->iLoadAddr, data, dataSize); |
|
3494 if(r>=0) |
|
3495 { |
|
3496 dataSize = Min(KPageSize, ri.iCodeSize - codeOffset); |
|
3497 if(r!=dataSize) |
|
3498 { |
|
3499 __NK_ASSERT_DEBUG(0); |
|
3500 r = KErrCorrupt; |
|
3501 } |
|
3502 else |
|
3503 r = KErrNone; |
|
3504 } |
|
3505 else |
|
3506 { |
|
3507 __NK_ASSERT_DEBUG(0); |
|
3508 } |
|
3509 } |
|
3510 else |
|
3511 { |
|
3512 #ifdef BTRACE_PAGING_VERBOSE |
|
3513 BTraceContext4(BTrace::EPaging,BTrace::EPagingDecompressStart,SRomPageInfo::ENoCompression); |
|
3514 #endif |
|
3515 memcpy((TAny*)aReq->iLoadAddr, (TAny*)data, dataSize); |
|
3516 #ifdef BTRACE_PAGING_VERBOSE |
|
3517 BTraceContext0(BTrace::EPaging,BTrace::EPagingDecompressEnd); |
|
3518 #endif |
|
3519 } |
|
3520 } |
|
3521 |
|
3522 if(r==KErrNone) |
|
3523 if (dataSize < KPageSize) |
|
3524 memset((TAny*)(aReq->iLoadAddr + dataSize), KPageSize - dataSize, 0x03); |
|
3525 |
|
3526 END_PAGING_BENCHMARK(this, EPagingBmReadCodePage); |
|
3527 |
|
3528 return KErrNone; |
|
3529 } |
|
3530 |
|
3531 |
|
3532 #include "decompress.h" |
|
3533 |
|
3534 |
|
3535 TInt DemandPaging::Decompress(TInt aCompressionType,TLinAddr aDst,TLinAddr aSrc,TUint aSrcSize) |
|
3536 { |
|
3537 #ifdef BTRACE_PAGING_VERBOSE |
|
3538 BTraceContext4(BTrace::EPaging,BTrace::EPagingDecompressStart,aCompressionType); |
|
3539 #endif |
|
3540 TInt r; |
|
3541 switch(aCompressionType) |
|
3542 { |
|
3543 case SRomPageInfo::ENoCompression: |
|
3544 memcpy((void*)aDst,(void*)aSrc,aSrcSize); |
|
3545 r = aSrcSize; |
|
3546 break; |
|
3547 |
|
3548 case SRomPageInfo::EBytePair: |
|
3549 { |
|
3550 START_PAGING_BENCHMARK; |
|
3551 TUint8* srcNext=0; |
|
3552 r=BytePairDecompress((TUint8*)aDst,KPageSize,(TUint8*)aSrc,aSrcSize,srcNext); |
|
3553 if (r == KErrNone) |
|
3554 __NK_ASSERT_ALWAYS((TLinAddr)srcNext == aSrc + aSrcSize); |
|
3555 END_PAGING_BENCHMARK(this, EPagingBmDecompress); |
|
3556 } |
|
3557 break; |
|
3558 |
|
3559 default: |
|
3560 r = KErrNotSupported; |
|
3561 break; |
|
3562 } |
|
3563 #ifdef BTRACE_PAGING_VERBOSE |
|
3564 BTraceContext0(BTrace::EPaging,BTrace::EPagingDecompressEnd); |
|
3565 #endif |
|
3566 return r; |
|
3567 } |
|
3568 |
|
3569 |
|
3570 void DemandPaging::BalanceAges() |
|
3571 { |
|
3572 if(iOldCount*iYoungOldRatio>=iYoungCount) |
|
3573 return; // We have enough old pages |
|
3574 |
|
3575 // make one young page into an old page... |
|
3576 |
|
3577 __NK_ASSERT_DEBUG(!iYoungList.IsEmpty()); |
|
3578 __NK_ASSERT_DEBUG(iYoungCount); |
|
3579 SDblQueLink* link = iYoungList.Last()->Deque(); |
|
3580 --iYoungCount; |
|
3581 |
|
3582 SPageInfo* pageInfo = SPageInfo::FromLink(link); |
|
3583 pageInfo->SetState(SPageInfo::EStatePagedOld); |
|
3584 |
|
3585 iOldList.AddHead(link); |
|
3586 ++iOldCount; |
|
3587 |
|
3588 SetOld(pageInfo); |
|
3589 |
|
3590 #ifdef BTRACE_PAGING_VERBOSE |
|
3591 BTraceContext4(BTrace::EPaging,BTrace::EPagingAged,pageInfo->PhysAddr()); |
|
3592 #endif |
|
3593 } |
|
3594 |
|
3595 |
|
3596 void DemandPaging::AddAsYoungest(SPageInfo* aPageInfo) |
|
3597 { |
|
3598 #ifdef _DEBUG |
|
3599 SPageInfo::TType type = aPageInfo->Type(); |
|
3600 __NK_ASSERT_DEBUG(type==SPageInfo::EPagedROM || type==SPageInfo::EPagedCode || type==SPageInfo::EPagedData || type==SPageInfo::EPagedCache); |
|
3601 #endif |
|
3602 aPageInfo->SetState(SPageInfo::EStatePagedYoung); |
|
3603 iYoungList.AddHead(&aPageInfo->iLink); |
|
3604 ++iYoungCount; |
|
3605 } |
|
3606 |
|
3607 |
|
3608 void DemandPaging::AddAsFreePage(SPageInfo* aPageInfo) |
|
3609 { |
|
3610 #ifdef BTRACE_PAGING |
|
3611 TPhysAddr phys = aPageInfo->PhysAddr(); |
|
3612 BTraceContext4(BTrace::EPaging,BTrace::EPagingPageInFree,phys); |
|
3613 #endif |
|
3614 aPageInfo->Change(SPageInfo::EPagedFree,SPageInfo::EStatePagedOld); |
|
3615 iOldList.Add(&aPageInfo->iLink); |
|
3616 ++iOldCount; |
|
3617 } |
|
3618 |
|
3619 |
|
3620 void DemandPaging::RemovePage(SPageInfo* aPageInfo) |
|
3621 { |
|
3622 switch(aPageInfo->State()) |
|
3623 { |
|
3624 case SPageInfo::EStatePagedYoung: |
|
3625 __NK_ASSERT_DEBUG(iYoungCount); |
|
3626 aPageInfo->iLink.Deque(); |
|
3627 --iYoungCount; |
|
3628 break; |
|
3629 |
|
3630 case SPageInfo::EStatePagedOld: |
|
3631 __NK_ASSERT_DEBUG(iOldCount); |
|
3632 aPageInfo->iLink.Deque(); |
|
3633 --iOldCount; |
|
3634 break; |
|
3635 |
|
3636 case SPageInfo::EStatePagedLocked: |
|
3637 break; |
|
3638 |
|
3639 default: |
|
3640 __NK_ASSERT_DEBUG(0); |
|
3641 } |
|
3642 aPageInfo->SetState(SPageInfo::EStatePagedDead); |
|
3643 } |
|
3644 |
|
3645 |
|
3646 SPageInfo* DemandPaging::GetOldestPage() |
|
3647 { |
|
3648 // remove oldest from list... |
|
3649 SDblQueLink* link; |
|
3650 if(iOldCount) |
|
3651 { |
|
3652 __NK_ASSERT_DEBUG(!iOldList.IsEmpty()); |
|
3653 link = iOldList.Last()->Deque(); |
|
3654 --iOldCount; |
|
3655 } |
|
3656 else |
|
3657 { |
|
3658 __NK_ASSERT_DEBUG(iYoungCount); |
|
3659 __NK_ASSERT_DEBUG(!iYoungList.IsEmpty()); |
|
3660 link = iYoungList.Last()->Deque(); |
|
3661 --iYoungCount; |
|
3662 } |
|
3663 SPageInfo* pageInfo = SPageInfo::FromLink(link); |
|
3664 pageInfo->SetState(SPageInfo::EStatePagedDead); |
|
3665 |
|
3666 // put page in a free state... |
|
3667 SetFree(pageInfo); |
|
3668 pageInfo->Change(SPageInfo::EPagedFree,SPageInfo::EStatePagedDead); |
|
3669 |
|
3670 // keep live list balanced... |
|
3671 BalanceAges(); |
|
3672 |
|
3673 return pageInfo; |
|
3674 } |
|
3675 |
|
3676 |
|
3677 TBool DemandPaging::GetFreePages(TInt aNumPages) |
|
3678 { |
|
3679 __KTRACE_OPT(KPAGING,Kern::Printf("DP: >GetFreePages %d",aNumPages)); |
|
3680 NKern::LockSystem(); |
|
3681 |
|
3682 while(aNumPages>0 && NumberOfFreePages()>=aNumPages) |
|
3683 { |
|
3684 // steal a page from live page list and return it to the free pool... |
|
3685 ReturnToSystem(GetOldestPage()); |
|
3686 --aNumPages; |
|
3687 } |
|
3688 |
|
3689 NKern::UnlockSystem(); |
|
3690 __KTRACE_OPT(KPAGING,Kern::Printf("DP: <GetFreePages %d",!aNumPages)); |
|
3691 return !aNumPages; |
|
3692 } |
|
3693 |
|
3694 |
|
3695 void DemandPaging::DonateRamCachePage(SPageInfo* aPageInfo) |
|
3696 { |
|
3697 __NK_ASSERT_DEBUG(iMinimumPageCount + iNumberOfFreePages <= iMaximumPageCount); |
|
3698 SPageInfo::TType type = aPageInfo->Type(); |
|
3699 if(type==SPageInfo::EChunk) |
|
3700 { |
|
3701 //Must not donate locked page. An example is DMA trasferred memory. |
|
3702 __NK_ASSERT_DEBUG(0 == aPageInfo->LockCount()); |
|
3703 |
|
3704 aPageInfo->Change(SPageInfo::EPagedCache,SPageInfo::EStatePagedYoung); |
|
3705 |
|
3706 // Update ram allocator counts as this page has changed its type |
|
3707 DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner(); |
|
3708 iMmu->iRamPageAllocator->ChangePageType(aPageInfo, chunk->GetPageType(), EPageDiscard); |
|
3709 |
|
3710 AddAsYoungest(aPageInfo); |
|
3711 ++iNumberOfFreePages; |
|
3712 if (iMinimumPageCount + iNumberOfFreePages > iMaximumPageCount) |
|
3713 ReturnToSystem(GetOldestPage()); |
|
3714 BalanceAges(); |
|
3715 return; |
|
3716 } |
|
3717 // allow already donated pages... |
|
3718 __NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache); |
|
3719 } |
|
3720 |
|
3721 |
|
3722 TBool DemandPaging::ReclaimRamCachePage(SPageInfo* aPageInfo) |
|
3723 { |
|
3724 SPageInfo::TType type = aPageInfo->Type(); |
|
3725 if(type==SPageInfo::EChunk) |
|
3726 return ETrue; // page already reclaimed |
|
3727 |
|
3728 __NK_ASSERT_DEBUG(type==SPageInfo::EPagedCache); |
|
3729 |
|
3730 if(!iNumberOfFreePages) |
|
3731 return EFalse; |
|
3732 --iNumberOfFreePages; |
|
3733 |
|
3734 RemovePage(aPageInfo); |
|
3735 aPageInfo->Change(SPageInfo::EChunk,SPageInfo::EStateNormal); |
|
3736 |
|
3737 // Update ram allocator counts as this page has changed its type |
|
3738 DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner(); |
|
3739 iMmu->iRamPageAllocator->ChangePageType(aPageInfo, EPageDiscard, chunk->GetPageType()); |
|
3740 return ETrue; |
|
3741 } |
|
3742 |
|
3743 |
|
3744 SPageInfo* DemandPaging::AllocateNewPage() |
|
3745 { |
|
3746 __ASSERT_SYSTEM_LOCK |
|
3747 SPageInfo* pageInfo; |
|
3748 |
|
3749 NKern::UnlockSystem(); |
|
3750 MmuBase::Wait(); |
|
3751 NKern::LockSystem(); |
|
3752 |
|
3753 // Try getting a free page from our active page list |
|
3754 if(iOldCount) |
|
3755 { |
|
3756 pageInfo = SPageInfo::FromLink(iOldList.Last()); |
|
3757 if(pageInfo->Type()==SPageInfo::EPagedFree) |
|
3758 { |
|
3759 pageInfo = GetOldestPage(); |
|
3760 goto done; |
|
3761 } |
|
3762 } |
|
3763 |
|
3764 // Try getting a free page from the system pool |
|
3765 if(iMinimumPageCount+iNumberOfFreePages<iMaximumPageCount) |
|
3766 { |
|
3767 NKern::UnlockSystem(); |
|
3768 pageInfo = GetPageFromSystem(); |
|
3769 NKern::LockSystem(); |
|
3770 if(pageInfo) |
|
3771 goto done; |
|
3772 } |
|
3773 |
|
3774 // As a last resort, steal one from our list of active pages |
|
3775 pageInfo = GetOldestPage(); |
|
3776 |
|
3777 done: |
|
3778 NKern::UnlockSystem(); |
|
3779 MmuBase::Signal(); |
|
3780 NKern::LockSystem(); |
|
3781 return pageInfo; |
|
3782 } |
|
3783 |
|
3784 |
|
3785 void DemandPaging::Rejuvenate(SPageInfo* aPageInfo) |
|
3786 { |
|
3787 SPageInfo::TState state = aPageInfo->State(); |
|
3788 if(state==SPageInfo::EStatePagedOld) |
|
3789 { |
|
3790 // move page from old list to head of young list... |
|
3791 __NK_ASSERT_DEBUG(iOldCount); |
|
3792 aPageInfo->iLink.Deque(); |
|
3793 --iOldCount; |
|
3794 AddAsYoungest(aPageInfo); |
|
3795 BalanceAges(); |
|
3796 } |
|
3797 else if(state==SPageInfo::EStatePagedYoung) |
|
3798 { |
|
3799 // page was already young, move it to the start of the list (make it the youngest) |
|
3800 aPageInfo->iLink.Deque(); |
|
3801 iYoungList.AddHead(&aPageInfo->iLink); |
|
3802 } |
|
3803 else |
|
3804 { |
|
3805 // leave locked pages alone |
|
3806 __NK_ASSERT_DEBUG(state==SPageInfo::EStatePagedLocked); |
|
3807 } |
|
3808 } |
|
3809 |
|
3810 |
|
3811 TInt DemandPaging::CheckRealtimeThreadFault(DThread* aThread, TAny* aContext) |
|
3812 { |
|
3813 TInt r = KErrNone; |
|
3814 DThread* client = aThread->iIpcClient; |
|
3815 |
|
3816 // If iIpcClient is set then we are accessing the address space of a remote thread. If we are |
|
3817 // in an IPC trap, this will contain information the local and remte addresses being accessed. |
|
3818 // If this is not set then we assume than any fault must be the fault of a bad remote address. |
|
3819 TIpcExcTrap* ipcTrap = (TIpcExcTrap*)aThread->iExcTrap; |
|
3820 if (ipcTrap && !ipcTrap->IsTIpcExcTrap()) |
|
3821 ipcTrap = 0; |
|
3822 if (client && (!ipcTrap || ipcTrap->ExcLocation(aThread, aContext) == TIpcExcTrap::EExcRemote)) |
|
3823 { |
|
3824 // Kill client thread... |
|
3825 NKern::UnlockSystem(); |
|
3826 if(K::IllegalFunctionForRealtimeThread(client,"Access to Paged Memory (by other thread)")) |
|
3827 { |
|
3828 // Treat memory access as bad... |
|
3829 r = KErrAbort; |
|
3830 } |
|
3831 // else thread is in 'warning only' state so allow paging |
|
3832 } |
|
3833 else |
|
3834 { |
|
3835 // Kill current thread... |
|
3836 NKern::UnlockSystem(); |
|
3837 if(K::IllegalFunctionForRealtimeThread(NULL,"Access to Paged Memory")) |
|
3838 { |
|
3839 // If current thread is in critical section, then the above kill will be deferred |
|
3840 // and we will continue executing. We will handle this by returning an error |
|
3841 // which means that the thread will take an exception (which hopfully is XTRAPed!) |
|
3842 r = KErrAbort; |
|
3843 } |
|
3844 // else thread is in 'warning only' state so allow paging |
|
3845 } |
|
3846 |
|
3847 NKern::LockSystem(); |
|
3848 return r; |
|
3849 } |
|
3850 |
|
3851 |
|
3852 TInt DemandPaging::ResizeLiveList(TUint aMinimumPageCount,TUint aMaximumPageCount) |
|
3853 { |
|
3854 if(!aMaximumPageCount) |
|
3855 { |
|
3856 aMinimumPageCount = iInitMinimumPageCount; |
|
3857 aMaximumPageCount = iInitMaximumPageCount; |
|
3858 } |
|
3859 |
|
3860 // Min must not be greater than max... |
|
3861 if(aMinimumPageCount>aMaximumPageCount) |
|
3862 return KErrArgument; |
|
3863 |
|
3864 NKern::ThreadEnterCS(); |
|
3865 MmuBase::Wait(); |
|
3866 |
|
3867 NKern::LockSystem(); |
|
3868 |
|
3869 // Make sure aMinimumPageCount is not less than absolute minimum we can cope with... |
|
3870 iMinimumPageLimit = ((KMinYoungPages + iNextPagingRequestCount) * (1 + iYoungOldRatio)) / iYoungOldRatio; |
|
3871 if(iMinimumPageLimit<KAbsoluteMinPageCount) |
|
3872 iMinimumPageLimit = KAbsoluteMinPageCount; |
|
3873 if(aMinimumPageCount<iMinimumPageLimit+iReservePageCount) |
|
3874 aMinimumPageCount = iMinimumPageLimit+iReservePageCount; |
|
3875 if(aMaximumPageCount<aMinimumPageCount) |
|
3876 aMaximumPageCount=aMinimumPageCount; |
|
3877 |
|
3878 // Increase iMaximumPageCount? |
|
3879 TInt extra = aMaximumPageCount-iMaximumPageCount; |
|
3880 if(extra>0) |
|
3881 iMaximumPageCount += extra; |
|
3882 |
|
3883 // Reduce iMinimumPageCount? |
|
3884 TInt spare = iMinimumPageCount-aMinimumPageCount; |
|
3885 if(spare>0) |
|
3886 { |
|
3887 iMinimumPageCount -= spare; |
|
3888 iNumberOfFreePages += spare; |
|
3889 } |
|
3890 |
|
3891 // Increase iMinimumPageCount? |
|
3892 TInt r=KErrNone; |
|
3893 while(aMinimumPageCount>iMinimumPageCount) |
|
3894 { |
|
3895 if(iNumberOfFreePages==0) // Need more pages? |
|
3896 { |
|
3897 // get a page from the system |
|
3898 NKern::UnlockSystem(); |
|
3899 SPageInfo* pageInfo = GetPageFromSystem(); |
|
3900 NKern::LockSystem(); |
|
3901 if(!pageInfo) |
|
3902 { |
|
3903 r=KErrNoMemory; |
|
3904 break; |
|
3905 } |
|
3906 AddAsFreePage(pageInfo); |
|
3907 } |
|
3908 ++iMinimumPageCount; |
|
3909 --iNumberOfFreePages; |
|
3910 NKern::FlashSystem(); |
|
3911 } |
|
3912 |
|
3913 // Reduce iMaximumPageCount? |
|
3914 while(iMaximumPageCount>aMaximumPageCount) |
|
3915 { |
|
3916 if (iMinimumPageCount+iNumberOfFreePages==iMaximumPageCount) // Need to free pages? |
|
3917 { |
|
3918 ReturnToSystem(GetOldestPage()); |
|
3919 } |
|
3920 --iMaximumPageCount; |
|
3921 NKern::FlashSystem(); |
|
3922 } |
|
3923 |
|
3924 #ifdef BTRACE_KERNEL_MEMORY |
|
3925 BTrace4(BTrace::EKernelMemory,BTrace::EKernelMemoryDemandPagingCache,ThePager->iMinimumPageCount << KPageShift); |
|
3926 #endif |
|
3927 |
|
3928 __NK_ASSERT_DEBUG(iMinimumPageCount + iNumberOfFreePages <= iMaximumPageCount); |
|
3929 |
|
3930 NKern::UnlockSystem(); |
|
3931 |
|
3932 MmuBase::Signal(); |
|
3933 NKern::ThreadLeaveCS(); |
|
3934 |
|
3935 return r; |
|
3936 } |
|
3937 |
|
3938 |
|
3939 TInt VMHalFunction(TAny*, TInt aFunction, TAny* a1, TAny* a2) |
|
3940 { |
|
3941 DemandPaging* pager = DemandPaging::ThePager; |
|
3942 switch(aFunction) |
|
3943 { |
|
3944 case EVMHalFlushCache: |
|
3945 if(!TheCurrentThread->HasCapability(ECapabilityWriteDeviceData,__PLATSEC_DIAGNOSTIC_STRING("Checked by VMHalFunction(EVMHalFlushCache)"))) |
|
3946 K::UnlockedPlatformSecurityPanic(); |
|
3947 pager->FlushAll(); |
|
3948 return KErrNone; |
|
3949 |
|
3950 case EVMHalSetCacheSize: |
|
3951 { |
|
3952 if(!TheCurrentThread->HasCapability(ECapabilityWriteDeviceData,__PLATSEC_DIAGNOSTIC_STRING("Checked by VMHalFunction(EVMHalSetCacheSize)"))) |
|
3953 K::UnlockedPlatformSecurityPanic(); |
|
3954 TUint min = (TUint)a1>>KPageShift; |
|
3955 if((TUint)a1&KPageMask) |
|
3956 ++min; |
|
3957 TUint max = (TUint)a2>>KPageShift; |
|
3958 if((TUint)a2&KPageMask) |
|
3959 ++max; |
|
3960 return pager->ResizeLiveList(min,max); |
|
3961 } |
|
3962 |
|
3963 case EVMHalGetCacheSize: |
|
3964 { |
|
3965 SVMCacheInfo info; |
|
3966 NKern::LockSystem(); // lock system to ensure consistent set of values are read... |
|
3967 info.iMinSize = pager->iMinimumPageCount<<KPageShift; |
|
3968 info.iMaxSize = pager->iMaximumPageCount<<KPageShift; |
|
3969 info.iCurrentSize = (pager->iMinimumPageCount+pager->iNumberOfFreePages)<<KPageShift; |
|
3970 info.iMaxFreeSize = pager->iNumberOfFreePages<<KPageShift; |
|
3971 NKern::UnlockSystem(); |
|
3972 kumemput32(a1,&info,sizeof(info)); |
|
3973 } |
|
3974 return KErrNone; |
|
3975 |
|
3976 case EVMHalGetEventInfo: |
|
3977 { |
|
3978 SVMEventInfo info; |
|
3979 NKern::LockSystem(); // lock system to ensure consistent set of values are read... |
|
3980 info = pager->iEventInfo; |
|
3981 NKern::UnlockSystem(); |
|
3982 Kern::InfoCopy(*(TDes8*)a1,(TUint8*)&info,sizeof(info)); |
|
3983 } |
|
3984 return KErrNone; |
|
3985 |
|
3986 case EVMHalResetEventInfo: |
|
3987 NKern::LockSystem(); |
|
3988 memclr(&pager->iEventInfo, sizeof(pager->iEventInfo)); |
|
3989 NKern::UnlockSystem(); |
|
3990 return KErrNone; |
|
3991 |
|
3992 #ifdef __SUPPORT_DEMAND_PAGING_EMULATION__ |
|
3993 case EVMHalGetOriginalRomPages: |
|
3994 *(TPhysAddr**)a1 = pager->iOriginalRomPages; |
|
3995 *(TInt*)a2 = pager->iOriginalRomPageCount; |
|
3996 return KErrNone; |
|
3997 #endif |
|
3998 |
|
3999 case EVMPageState: |
|
4000 return pager->PageState((TLinAddr)a1); |
|
4001 |
|
4002 #ifdef __CONCURRENT_PAGING_INSTRUMENTATION__ |
|
4003 case EVMHalGetConcurrencyInfo: |
|
4004 { |
|
4005 NKern::LockSystem(); |
|
4006 SPagingConcurrencyInfo info = { pager->iMaxWaitingCount, pager->iMaxPagingCount }; |
|
4007 NKern::UnlockSystem(); |
|
4008 kumemput32(a1,&info,sizeof(info)); |
|
4009 } |
|
4010 return KErrNone; |
|
4011 |
|
4012 case EVMHalResetConcurrencyInfo: |
|
4013 NKern::LockSystem(); |
|
4014 pager->iMaxWaitingCount = 0; |
|
4015 pager->iMaxPagingCount = 0; |
|
4016 NKern::UnlockSystem(); |
|
4017 return KErrNone; |
|
4018 #endif |
|
4019 |
|
4020 #ifdef __DEMAND_PAGING_BENCHMARKS__ |
|
4021 case EVMHalGetPagingBenchmark: |
|
4022 { |
|
4023 TUint index = (TInt) a1; |
|
4024 if (index >= EMaxPagingBm) |
|
4025 return KErrNotFound; |
|
4026 NKern::LockSystem(); |
|
4027 SPagingBenchmarkInfo info = pager->iBenchmarkInfo[index]; |
|
4028 NKern::UnlockSystem(); |
|
4029 kumemput32(a2,&info,sizeof(info)); |
|
4030 } |
|
4031 return KErrNone; |
|
4032 |
|
4033 case EVMHalResetPagingBenchmark: |
|
4034 { |
|
4035 TUint index = (TInt) a1; |
|
4036 if (index >= EMaxPagingBm) |
|
4037 return KErrNotFound; |
|
4038 NKern::LockSystem(); |
|
4039 pager->ResetBenchmarkData((TPagingBenchmark)index); |
|
4040 NKern::UnlockSystem(); |
|
4041 } |
|
4042 return KErrNone; |
|
4043 #endif |
|
4044 |
|
4045 default: |
|
4046 return KErrNotSupported; |
|
4047 } |
|
4048 } |
|
4049 |
|
4050 void DemandPaging::Panic(TFault aFault) |
|
4051 { |
|
4052 Kern::Fault("DEMAND-PAGING",aFault); |
|
4053 } |
|
4054 |
|
4055 |
|
4056 DMutex* DemandPaging::CheckMutexOrder() |
|
4057 { |
|
4058 #ifdef _DEBUG |
|
4059 SDblQue& ml = TheCurrentThread->iMutexList; |
|
4060 if(ml.IsEmpty()) |
|
4061 return NULL; |
|
4062 DMutex* mm = _LOFF(ml.First(), DMutex, iOrderLink); |
|
4063 if (KMutexOrdPageIn >= mm->iOrder) |
|
4064 return mm; |
|
4065 #endif |
|
4066 return NULL; |
|
4067 } |
|
4068 |
|
4069 |
|
4070 TBool DemandPaging::ReservePage() |
|
4071 { |
|
4072 __ASSERT_SYSTEM_LOCK; |
|
4073 __ASSERT_CRITICAL; |
|
4074 |
|
4075 NKern::UnlockSystem(); |
|
4076 MmuBase::Wait(); |
|
4077 NKern::LockSystem(); |
|
4078 |
|
4079 __NK_ASSERT_DEBUG(iMinimumPageCount >= iMinimumPageLimit + iReservePageCount); |
|
4080 while (iMinimumPageCount == iMinimumPageLimit + iReservePageCount && |
|
4081 iNumberOfFreePages == 0) |
|
4082 { |
|
4083 NKern::UnlockSystem(); |
|
4084 SPageInfo* pageInfo = GetPageFromSystem(); |
|
4085 if(!pageInfo) |
|
4086 { |
|
4087 MmuBase::Signal(); |
|
4088 NKern::LockSystem(); |
|
4089 return EFalse; |
|
4090 } |
|
4091 NKern::LockSystem(); |
|
4092 AddAsFreePage(pageInfo); |
|
4093 } |
|
4094 if (iMinimumPageCount == iMinimumPageLimit + iReservePageCount) |
|
4095 { |
|
4096 ++iMinimumPageCount; |
|
4097 --iNumberOfFreePages; |
|
4098 if (iMinimumPageCount > iMaximumPageCount) |
|
4099 iMaximumPageCount = iMinimumPageCount; |
|
4100 } |
|
4101 ++iReservePageCount; |
|
4102 __NK_ASSERT_DEBUG(iMinimumPageCount >= iMinimumPageLimit + iReservePageCount); |
|
4103 __NK_ASSERT_DEBUG(iMinimumPageCount + iNumberOfFreePages <= iMaximumPageCount); |
|
4104 |
|
4105 NKern::UnlockSystem(); |
|
4106 MmuBase::Signal(); |
|
4107 NKern::LockSystem(); |
|
4108 return ETrue; |
|
4109 } |
|
4110 |
|
4111 |
|
4112 TInt DemandPaging::LockRegion(TLinAddr aStart,TInt aSize,DProcess* aProcess) |
|
4113 { |
|
4114 __KTRACE_OPT(KPAGING,Kern::Printf("DP: LockRegion(%08x,%x)",aStart,aSize)); |
|
4115 NKern::ThreadEnterCS(); |
|
4116 |
|
4117 // calculate the number of pages required to lock aSize bytes |
|
4118 TUint32 mask=KPageMask; |
|
4119 TUint32 offset=aStart&mask; |
|
4120 TInt numPages = (aSize+offset+mask)>>KPageShift; |
|
4121 |
|
4122 // Lock pages... |
|
4123 TInt r=KErrNone; |
|
4124 TLinAddr page = aStart; |
|
4125 |
|
4126 NKern::LockSystem(); |
|
4127 while(--numPages>=0) |
|
4128 { |
|
4129 if (!ReservePage()) |
|
4130 break; |
|
4131 TPhysAddr phys; |
|
4132 r = LockPage(page,aProcess,phys); |
|
4133 NKern::FlashSystem(); |
|
4134 if(r!=KErrNone) |
|
4135 break; |
|
4136 page += KPageSize; |
|
4137 } |
|
4138 |
|
4139 NKern::UnlockSystem(); |
|
4140 |
|
4141 // If error, unlock whatever we managed to lock... |
|
4142 if(r!=KErrNone) |
|
4143 { |
|
4144 while((page-=KPageSize)>=aStart) |
|
4145 { |
|
4146 NKern::LockSystem(); |
|
4147 UnlockPage(aStart,aProcess,KPhysAddrInvalid); |
|
4148 --iReservePageCount; |
|
4149 NKern::UnlockSystem(); |
|
4150 } |
|
4151 } |
|
4152 |
|
4153 NKern::ThreadLeaveCS(); |
|
4154 __KTRACE_OPT(KPAGING,Kern::Printf("DP: LockRegion returns %d",r)); |
|
4155 return r; |
|
4156 } |
|
4157 |
|
4158 |
|
4159 TInt DemandPaging::UnlockRegion(TLinAddr aStart,TInt aSize,DProcess* aProcess) |
|
4160 { |
|
4161 __KTRACE_OPT(KPAGING,Kern::Printf("DP: UnlockRegion(%08x,%x)",aStart,aSize)); |
|
4162 TUint32 mask=KPageMask; |
|
4163 TUint32 offset=aStart&mask; |
|
4164 TInt numPages = (aSize+offset+mask)>>KPageShift; |
|
4165 NKern::LockSystem(); |
|
4166 __NK_ASSERT_DEBUG(iReservePageCount >= (TUint)numPages); |
|
4167 while(--numPages>=0) |
|
4168 { |
|
4169 UnlockPage(aStart,aProcess,KPhysAddrInvalid); |
|
4170 --iReservePageCount; |
|
4171 NKern::FlashSystem(); |
|
4172 aStart += KPageSize; |
|
4173 } |
|
4174 NKern::UnlockSystem(); |
|
4175 return KErrNone; |
|
4176 } |
|
4177 |
|
4178 |
|
4179 void DemandPaging::FlushAll() |
|
4180 { |
|
4181 NKern::ThreadEnterCS(); |
|
4182 MmuBase::Wait(); |
|
4183 // look at all RAM pages in the system, and unmap all those used for paging |
|
4184 const TUint32* piMap = (TUint32*)KPageInfoMap; |
|
4185 const TUint32* piMapEnd = piMap+(KNumPageInfoPages>>5); |
|
4186 SPageInfo* pi = (SPageInfo*)KPageInfoLinearBase; |
|
4187 NKern::LockSystem(); |
|
4188 do |
|
4189 { |
|
4190 SPageInfo* piNext = pi+(KPageInfosPerPage<<5); |
|
4191 for(TUint32 piFlags=*piMap++; piFlags; piFlags>>=1) |
|
4192 { |
|
4193 if(!(piFlags&1)) |
|
4194 { |
|
4195 pi += KPageInfosPerPage; |
|
4196 continue; |
|
4197 } |
|
4198 SPageInfo* piEnd = pi+KPageInfosPerPage; |
|
4199 do |
|
4200 { |
|
4201 SPageInfo::TState state = pi->State(); |
|
4202 if(state==SPageInfo::EStatePagedYoung || state==SPageInfo::EStatePagedOld) |
|
4203 { |
|
4204 RemovePage(pi); |
|
4205 SetFree(pi); |
|
4206 AddAsFreePage(pi); |
|
4207 NKern::FlashSystem(); |
|
4208 } |
|
4209 ++pi; |
|
4210 const TUint KFlashCount = 64; // flash every 64 page infos (must be a power-of-2) |
|
4211 __ASSERT_COMPILE((TUint)KPageInfosPerPage >= KFlashCount); |
|
4212 if(((TUint)pi&((KFlashCount-1)<<KPageInfoShift))==0) |
|
4213 NKern::FlashSystem(); |
|
4214 } |
|
4215 while(pi<piEnd); |
|
4216 } |
|
4217 pi = piNext; |
|
4218 } |
|
4219 while(piMap<piMapEnd); |
|
4220 NKern::UnlockSystem(); |
|
4221 |
|
4222 // reduce live page list to a minimum |
|
4223 while(GetFreePages(1)) {}; |
|
4224 |
|
4225 MmuBase::Signal(); |
|
4226 NKern::ThreadLeaveCS(); |
|
4227 } |
|
4228 |
|
4229 |
|
4230 TInt DemandPaging::LockPage(TLinAddr aPage, DProcess *aProcess, TPhysAddr& aPhysAddr) |
|
4231 { |
|
4232 __KTRACE_OPT(KPAGING,Kern::Printf("DP: LockPage() %08x",aPage)); |
|
4233 __ASSERT_SYSTEM_LOCK |
|
4234 |
|
4235 aPhysAddr = KPhysAddrInvalid; |
|
4236 |
|
4237 TInt r = EnsurePagePresent(aPage,aProcess); |
|
4238 if (r != KErrNone) |
|
4239 return KErrArgument; // page doesn't exist |
|
4240 |
|
4241 // get info about page to be locked... |
|
4242 TPhysAddr phys = LinearToPhysical(aPage,aProcess); |
|
4243 retry: |
|
4244 __NK_ASSERT_DEBUG(phys!=KPhysAddrInvalid); |
|
4245 |
|
4246 SPageInfo* pageInfo = SPageInfo::SafeFromPhysAddr(phys); |
|
4247 if(!pageInfo) |
|
4248 return KErrNotFound; |
|
4249 |
|
4250 // lock it... |
|
4251 SPageInfo::TType type = pageInfo->Type(); |
|
4252 if(type==SPageInfo::EShadow) |
|
4253 { |
|
4254 // get the page which is being shadowed and lock that |
|
4255 phys = (TPhysAddr)pageInfo->Owner(); |
|
4256 goto retry; |
|
4257 } |
|
4258 |
|
4259 switch(pageInfo->State()) |
|
4260 { |
|
4261 case SPageInfo::EStatePagedLocked: |
|
4262 // already locked, so just increment lock count... |
|
4263 ++pageInfo->PagedLock(); |
|
4264 break; |
|
4265 |
|
4266 case SPageInfo::EStatePagedYoung: |
|
4267 { |
|
4268 if(type!=SPageInfo::EPagedROM && type !=SPageInfo::EPagedCode) |
|
4269 { |
|
4270 // not implemented yet |
|
4271 __NK_ASSERT_ALWAYS(0); |
|
4272 } |
|
4273 |
|
4274 // remove page to be locked from live list... |
|
4275 RemovePage(pageInfo); |
|
4276 |
|
4277 // change to locked state... |
|
4278 pageInfo->SetState(SPageInfo::EStatePagedLocked); |
|
4279 pageInfo->PagedLock() = 1; // Start with lock count of one |
|
4280 |
|
4281 // open reference on memory... |
|
4282 if(type==SPageInfo::EPagedCode) |
|
4283 { |
|
4284 DMemModelCodeSegMemory* codeSegMemory = (DMemModelCodeSegMemory*)pageInfo->Owner(); |
|
4285 if(codeSegMemory->Open()!=KErrNone) |
|
4286 { |
|
4287 __NK_ASSERT_DEBUG(0); |
|
4288 } |
|
4289 } |
|
4290 } |
|
4291 |
|
4292 break; |
|
4293 |
|
4294 case SPageInfo::EStatePagedOld: |
|
4295 // can't happen because we forced the page to be accessible earlier |
|
4296 __NK_ASSERT_ALWAYS(0); |
|
4297 return KErrCorrupt; |
|
4298 |
|
4299 default: |
|
4300 return KErrNotFound; |
|
4301 } |
|
4302 |
|
4303 aPhysAddr = phys; |
|
4304 |
|
4305 #ifdef BTRACE_PAGING |
|
4306 BTraceContext8(BTrace::EPaging,BTrace::EPagingPageLock,phys,pageInfo->PagedLock()); |
|
4307 #endif |
|
4308 return KErrNone; |
|
4309 } |
|
4310 |
|
4311 |
|
4312 TInt DemandPaging::UnlockPage(TLinAddr aPage, DProcess* aProcess, TPhysAddr aPhysAddr) |
|
4313 { |
|
4314 __KTRACE_OPT(KPAGING,Kern::Printf("DP: UnlockPage() %08x",aPage)); |
|
4315 __ASSERT_SYSTEM_LOCK; |
|
4316 __ASSERT_CRITICAL; |
|
4317 |
|
4318 // Get info about page to be unlocked |
|
4319 TPhysAddr phys = LinearToPhysical(aPage,aProcess); |
|
4320 if(phys==KPhysAddrInvalid) |
|
4321 { |
|
4322 phys = aPhysAddr; |
|
4323 if(phys==KPhysAddrInvalid) |
|
4324 return KErrNotFound; |
|
4325 } |
|
4326 retry: |
|
4327 SPageInfo* pageInfo = SPageInfo::SafeFromPhysAddr(phys); |
|
4328 if(!pageInfo) |
|
4329 return KErrNotFound; |
|
4330 |
|
4331 SPageInfo::TType type = pageInfo->Type(); |
|
4332 if(type==SPageInfo::EShadow) |
|
4333 { |
|
4334 // Get the page which is being shadowed and unlock that |
|
4335 phys = (TPhysAddr)pageInfo->Owner(); |
|
4336 goto retry; |
|
4337 } |
|
4338 |
|
4339 __NK_ASSERT_DEBUG(phys==aPhysAddr || aPhysAddr==KPhysAddrInvalid); |
|
4340 |
|
4341 // Unlock it... |
|
4342 switch(pageInfo->State()) |
|
4343 { |
|
4344 case SPageInfo::EStatePagedLocked: |
|
4345 #ifdef BTRACE_PAGING |
|
4346 BTraceContext8(BTrace::EPaging,BTrace::EPagingPageUnlock,phys,pageInfo->PagedLock()); |
|
4347 #endif |
|
4348 if(!(--pageInfo->PagedLock())) |
|
4349 { |
|
4350 // get pointer to memory... |
|
4351 DMemModelCodeSegMemory* codeSegMemory = 0; |
|
4352 if(type==SPageInfo::EPagedCode) |
|
4353 codeSegMemory = (DMemModelCodeSegMemory*)pageInfo->Owner(); |
|
4354 |
|
4355 // put page back on live list... |
|
4356 AddAsYoungest(pageInfo); |
|
4357 BalanceAges(); |
|
4358 |
|
4359 // close reference on memory... |
|
4360 if(codeSegMemory) |
|
4361 { |
|
4362 NKern::UnlockSystem(); |
|
4363 codeSegMemory->Close(); |
|
4364 NKern::LockSystem(); |
|
4365 } |
|
4366 } |
|
4367 break; |
|
4368 |
|
4369 default: |
|
4370 return KErrNotFound; |
|
4371 } |
|
4372 |
|
4373 return KErrNone; |
|
4374 } |
|
4375 |
|
4376 |
|
4377 |
|
4378 TInt DemandPaging::ReserveAlloc(TInt aSize, DDemandPagingLock& aLock) |
|
4379 { |
|
4380 __NK_ASSERT_DEBUG(aLock.iPages == NULL); |
|
4381 |
|
4382 // calculate the number of pages required to lock aSize bytes |
|
4383 TInt numPages = ((aSize-1+KPageMask)>>KPageShift)+1; |
|
4384 |
|
4385 __KTRACE_OPT(KPAGING,Kern::Printf("DP: ReserveAlloc() pages %d",numPages)); |
|
4386 |
|
4387 NKern::ThreadEnterCS(); |
|
4388 |
|
4389 aLock.iPages = (TPhysAddr*)Kern::Alloc(numPages*sizeof(TPhysAddr)); |
|
4390 if(!aLock.iPages) |
|
4391 { |
|
4392 NKern::ThreadLeaveCS(); |
|
4393 return KErrNoMemory; |
|
4394 } |
|
4395 |
|
4396 MmuBase::Wait(); |
|
4397 NKern::LockSystem(); |
|
4398 |
|
4399 // reserve pages, adding more if necessary |
|
4400 while (aLock.iReservedPageCount < numPages) |
|
4401 { |
|
4402 if (!ReservePage()) |
|
4403 break; |
|
4404 ++aLock.iReservedPageCount; |
|
4405 } |
|
4406 |
|
4407 NKern::UnlockSystem(); |
|
4408 MmuBase::Signal(); |
|
4409 |
|
4410 TBool enoughPages = aLock.iReservedPageCount == numPages; |
|
4411 if(!enoughPages) |
|
4412 ReserveFree(aLock); |
|
4413 |
|
4414 NKern::ThreadLeaveCS(); |
|
4415 return enoughPages ? KErrNone : KErrNoMemory; |
|
4416 } |
|
4417 |
|
4418 |
|
4419 |
|
4420 void DemandPaging::ReserveFree(DDemandPagingLock& aLock) |
|
4421 { |
|
4422 NKern::ThreadEnterCS(); |
|
4423 |
|
4424 // make sure pages aren't still locked |
|
4425 ReserveUnlock(aLock); |
|
4426 |
|
4427 NKern::LockSystem(); |
|
4428 __NK_ASSERT_DEBUG(iReservePageCount >= (TUint)aLock.iReservedPageCount); |
|
4429 iReservePageCount -= aLock.iReservedPageCount; |
|
4430 aLock.iReservedPageCount = 0; |
|
4431 NKern::UnlockSystem(); |
|
4432 |
|
4433 // free page array... |
|
4434 Kern::Free(aLock.iPages); |
|
4435 aLock.iPages = 0; |
|
4436 |
|
4437 NKern::ThreadLeaveCS(); |
|
4438 } |
|
4439 |
|
4440 |
|
4441 |
|
4442 TBool DemandPaging::ReserveLock(DThread* aThread, TLinAddr aStart,TInt aSize, DDemandPagingLock& aLock) |
|
4443 { |
|
4444 if(aLock.iLockedPageCount) |
|
4445 Panic(ELockTwice); |
|
4446 |
|
4447 // calculate the number of pages that need to be locked... |
|
4448 TUint32 mask=KPageMask; |
|
4449 TUint32 offset=aStart&mask; |
|
4450 TInt numPages = (aSize+offset+mask)>>KPageShift; |
|
4451 if(numPages>aLock.iReservedPageCount) |
|
4452 Panic(ELockTooBig); |
|
4453 |
|
4454 NKern::LockSystem(); |
|
4455 |
|
4456 // lock the pages |
|
4457 TBool locked = EFalse; // becomes true if any pages were locked |
|
4458 DProcess* process = aThread->iOwningProcess; |
|
4459 TLinAddr page=aStart; |
|
4460 TInt count=numPages; |
|
4461 TPhysAddr* physPages = aLock.iPages; |
|
4462 while(--count>=0) |
|
4463 { |
|
4464 if(LockPage(page,process,*physPages)==KErrNone) |
|
4465 locked = ETrue; |
|
4466 NKern::FlashSystem(); |
|
4467 page += KPageSize; |
|
4468 ++physPages; |
|
4469 } |
|
4470 |
|
4471 // if any pages were locked, save the lock info... |
|
4472 if(locked) |
|
4473 { |
|
4474 if(aLock.iLockedPageCount) |
|
4475 Panic(ELockTwice); |
|
4476 aLock.iLockedStart = aStart; |
|
4477 aLock.iLockedPageCount = numPages; |
|
4478 aLock.iProcess = process; |
|
4479 aLock.iProcess->Open(); |
|
4480 } |
|
4481 |
|
4482 NKern::UnlockSystem(); |
|
4483 return locked; |
|
4484 } |
|
4485 |
|
4486 |
|
4487 |
|
4488 void DemandPaging::ReserveUnlock(DDemandPagingLock& aLock) |
|
4489 { |
|
4490 NKern::ThreadEnterCS(); |
|
4491 |
|
4492 DProcess* process = NULL; |
|
4493 NKern::LockSystem(); |
|
4494 TInt numPages = aLock.iLockedPageCount; |
|
4495 TLinAddr page = aLock.iLockedStart; |
|
4496 TPhysAddr* physPages = aLock.iPages; |
|
4497 while(--numPages>=0) |
|
4498 { |
|
4499 UnlockPage(page, aLock.iProcess,*physPages); |
|
4500 NKern::FlashSystem(); |
|
4501 page += KPageSize; |
|
4502 ++physPages; |
|
4503 } |
|
4504 process = aLock.iProcess; |
|
4505 aLock.iProcess = NULL; |
|
4506 aLock.iLockedPageCount = 0; |
|
4507 NKern::UnlockSystem(); |
|
4508 if (process) |
|
4509 process->Close(NULL); |
|
4510 |
|
4511 NKern::ThreadLeaveCS(); |
|
4512 } |
|
4513 |
|
4514 /** |
|
4515 Check whether the specified page can be discarded by the RAM cache. |
|
4516 |
|
4517 @param aPageInfo The page info of the page being queried. |
|
4518 @return ETrue when the page can be discarded, EFalse otherwise. |
|
4519 @pre System lock held. |
|
4520 @post System lock held. |
|
4521 */ |
|
4522 TBool DemandPaging::IsPageDiscardable(SPageInfo& aPageInfo) |
|
4523 { |
|
4524 // on live list? |
|
4525 SPageInfo::TState state = aPageInfo.State(); |
|
4526 return (state == SPageInfo::EStatePagedYoung || state == SPageInfo::EStatePagedOld); |
|
4527 } |
|
4528 |
|
4529 |
|
4530 /** |
|
4531 Discard the specified page. |
|
4532 Should only be called on a page if a previous call to IsPageDiscardable() |
|
4533 returned ETrue and the system lock hasn't been released between the calls. |
|
4534 |
|
4535 @param aPageInfo The page info of the page to be discarded |
|
4536 @param aBlockZoneId The ID of the RAM zone that shouldn't be allocated into. |
|
4537 @param aBlockRest Set to ETrue to stop allocation as soon as aBlockedZoneId is reached |
|
4538 in preference ordering. EFalse otherwise. |
|
4539 @return ETrue if the page could be discarded, EFalse otherwise. |
|
4540 |
|
4541 @pre System lock held. |
|
4542 @post System lock held. |
|
4543 */ |
|
4544 TBool DemandPaging::DoDiscardPage(SPageInfo& aPageInfo, TUint aBlockedZoneId, TBool aBlockRest) |
|
4545 { |
|
4546 __ASSERT_SYSTEM_LOCK; |
|
4547 // Ensure that we don't reduce the cache beyond its minimum. |
|
4548 if (iNumberOfFreePages == 0) |
|
4549 { |
|
4550 NKern::UnlockSystem(); |
|
4551 SPageInfo* newPage = GetPageFromSystem(aBlockedZoneId, aBlockRest); |
|
4552 NKern::LockSystem(); |
|
4553 if (newPage == NULL) |
|
4554 {// couldn't allocate a new page |
|
4555 return EFalse; |
|
4556 } |
|
4557 if (IsPageDiscardable(aPageInfo)) |
|
4558 {// page can still be discarded so use new page |
|
4559 // and discard old one |
|
4560 AddAsFreePage(newPage); |
|
4561 RemovePage(&aPageInfo); |
|
4562 SetFree(&aPageInfo); |
|
4563 ReturnToSystem(&aPageInfo); |
|
4564 BalanceAges(); |
|
4565 return ETrue; |
|
4566 } |
|
4567 else |
|
4568 {// page no longer discardable so no longer require new page |
|
4569 ReturnToSystem(newPage); |
|
4570 return EFalse; |
|
4571 } |
|
4572 } |
|
4573 |
|
4574 // Discard the page |
|
4575 RemovePage(&aPageInfo); |
|
4576 SetFree(&aPageInfo); |
|
4577 ReturnToSystem(&aPageInfo); |
|
4578 BalanceAges(); |
|
4579 |
|
4580 return ETrue; |
|
4581 } |
|
4582 |
|
4583 |
|
4584 /** |
|
4585 First stage in discarding a list of pages. |
|
4586 |
|
4587 Must ensure that the pages will still be discardable even if system lock is released. |
|
4588 To be used in conjunction with RamCacheBase::DoDiscardPages1(). |
|
4589 |
|
4590 @param aPageList A NULL terminated list of the pages to be discarded |
|
4591 @return KErrNone on success. |
|
4592 |
|
4593 @pre System lock held |
|
4594 @post System lock held |
|
4595 */ |
|
4596 TInt DemandPaging::DoDiscardPages0(SPageInfo** aPageList) |
|
4597 { |
|
4598 __ASSERT_SYSTEM_LOCK; |
|
4599 |
|
4600 SPageInfo* pageInfo; |
|
4601 while((pageInfo = *aPageList++) != 0) |
|
4602 { |
|
4603 RemovePage(pageInfo); |
|
4604 } |
|
4605 return KErrNone; |
|
4606 } |
|
4607 |
|
4608 |
|
4609 /** |
|
4610 Final stage in discarding a list of page |
|
4611 Finish discarding the pages previously removed by RamCacheBase::DoDiscardPages0(). |
|
4612 |
|
4613 @param aPageList A NULL terminated list of the pages to be discarded |
|
4614 @return KErrNone on success. |
|
4615 |
|
4616 @pre System lock held |
|
4617 @post System lock held |
|
4618 */ |
|
4619 TInt DemandPaging::DoDiscardPages1(SPageInfo** aPageList) |
|
4620 { |
|
4621 __ASSERT_SYSTEM_LOCK; |
|
4622 |
|
4623 SPageInfo* pageInfo; |
|
4624 while((pageInfo = *aPageList++)!=0) |
|
4625 { |
|
4626 SetFree(pageInfo); |
|
4627 ReturnToSystem(pageInfo); |
|
4628 BalanceAges(); |
|
4629 } |
|
4630 return KErrNone; |
|
4631 } |
|
4632 |
|
4633 |
|
4634 TBool DemandPaging::MayBePaged(TLinAddr aStartAddr, TUint aLength) |
|
4635 { |
|
4636 TLinAddr endAddr = aStartAddr + aLength; |
|
4637 TBool rangeTouchesPagedRom = |
|
4638 TUint(aStartAddr - iRomPagedLinearBase) < iRomSize || |
|
4639 TUint(endAddr - iRomPagedLinearBase) < iRomSize; |
|
4640 TBool rangeTouchesCodeArea = |
|
4641 TUint(aStartAddr - iCodeLinearBase) < iCodeSize || |
|
4642 TUint(endAddr - iCodeLinearBase) < iCodeSize; |
|
4643 return rangeTouchesPagedRom || rangeTouchesCodeArea; |
|
4644 } |
|
4645 |
|
4646 |
|
4647 #ifdef __DEMAND_PAGING_BENCHMARKS__ |
|
4648 |
|
4649 void DemandPaging::ResetBenchmarkData(TPagingBenchmark aBm) |
|
4650 { |
|
4651 SPagingBenchmarkInfo& info = iBenchmarkInfo[aBm]; |
|
4652 info.iCount = 0; |
|
4653 info.iTotalTime = 0; |
|
4654 info.iMaxTime = 0; |
|
4655 info.iMinTime = KMaxTInt; |
|
4656 } |
|
4657 |
|
4658 void DemandPaging::RecordBenchmarkData(TPagingBenchmark aBm, TUint32 aStartTime, TUint32 aEndTime) |
|
4659 { |
|
4660 SPagingBenchmarkInfo& info = iBenchmarkInfo[aBm]; |
|
4661 ++info.iCount; |
|
4662 #if !defined(HIGH_RES_TIMER) || defined(HIGH_RES_TIMER_COUNTS_UP) |
|
4663 TInt64 elapsed = aEndTime - aStartTime; |
|
4664 #else |
|
4665 TInt64 elapsed = aStartTime - aEndTime; |
|
4666 #endif |
|
4667 info.iTotalTime += elapsed; |
|
4668 if (elapsed > info.iMaxTime) |
|
4669 info.iMaxTime = elapsed; |
|
4670 if (elapsed < info.iMinTime) |
|
4671 info.iMinTime = elapsed; |
|
4672 } |
|
4673 |
|
4674 #endif |
|
4675 |
|
4676 |
|
4677 // |
|
4678 // DDemandPagingLock |
|
4679 // |
|
4680 |
|
4681 EXPORT_C DDemandPagingLock::DDemandPagingLock() |
|
4682 : iThePager(DemandPaging::ThePager), iReservedPageCount(0), iLockedPageCount(0), iPages(0) |
|
4683 { |
|
4684 } |
|
4685 |
|
4686 |
|
4687 EXPORT_C TInt DDemandPagingLock::Alloc(TInt aSize) |
|
4688 { |
|
4689 if (iThePager) |
|
4690 return iThePager->ReserveAlloc(aSize,*this); |
|
4691 else |
|
4692 return KErrNone; |
|
4693 } |
|
4694 |
|
4695 |
|
4696 EXPORT_C void DDemandPagingLock::DoUnlock() |
|
4697 { |
|
4698 if (iThePager) |
|
4699 iThePager->ReserveUnlock(*this); |
|
4700 } |
|
4701 |
|
4702 |
|
4703 EXPORT_C void DDemandPagingLock::Free() |
|
4704 { |
|
4705 if (iThePager) |
|
4706 iThePager->ReserveFree(*this); |
|
4707 } |
|
4708 |
|
4709 |
|
4710 EXPORT_C TInt Kern::InstallPagingDevice(DPagingDevice* aDevice) |
|
4711 { |
|
4712 if (DemandPaging::ThePager) |
|
4713 return DemandPaging::ThePager->InstallPagingDevice(aDevice); |
|
4714 else |
|
4715 return KErrNotSupported; |
|
4716 } |
|
4717 |
|
4718 |
|
4719 #else // !__DEMAND_PAGING__ |
|
4720 |
|
4721 EXPORT_C DDemandPagingLock::DDemandPagingLock() |
|
4722 : iLockedPageCount(0) |
|
4723 { |
|
4724 } |
|
4725 |
|
4726 EXPORT_C TInt DDemandPagingLock::Alloc(TInt /*aSize*/) |
|
4727 { |
|
4728 return KErrNone; |
|
4729 } |
|
4730 |
|
4731 EXPORT_C TBool DDemandPagingLock::Lock(DThread* /*aThread*/, TLinAddr /*aStart*/, TInt /*aSize*/) |
|
4732 { |
|
4733 return EFalse; |
|
4734 } |
|
4735 |
|
4736 EXPORT_C void DDemandPagingLock::DoUnlock() |
|
4737 { |
|
4738 } |
|
4739 |
|
4740 EXPORT_C void DDemandPagingLock::Free() |
|
4741 { |
|
4742 } |
|
4743 |
|
4744 EXPORT_C TInt Kern::InstallPagingDevice(DPagingDevice* aDevice) |
|
4745 { |
|
4746 return KErrNotSupported; |
|
4747 } |
|
4748 |
|
4749 #endif // __DEMAND_PAGING__ |
|
4750 |
|
4751 |
|
4752 DMmuCodeSegMemory::DMmuCodeSegMemory(DEpocCodeSeg* aCodeSeg) |
|
4753 : DEpocCodeSegMemory(aCodeSeg), iCodeAllocBase(KMinTInt) |
|
4754 { |
|
4755 } |
|
4756 |
|
4757 //#define __DUMP_BLOCKMAP_INFO |
|
4758 DMmuCodeSegMemory::~DMmuCodeSegMemory() |
|
4759 { |
|
4760 #ifdef __DEMAND_PAGING__ |
|
4761 Kern::Free(iCodeRelocTable); |
|
4762 Kern::Free(iCodePageOffsets); |
|
4763 Kern::Free(iDataSectionMemory); |
|
4764 #endif |
|
4765 } |
|
4766 |
|
4767 #ifdef __DEMAND_PAGING__ |
|
4768 |
|
4769 /** |
|
4770 Read and process the block map and related data. |
|
4771 */ |
|
4772 TInt DMmuCodeSegMemory::ReadBlockMap(const TCodeSegCreateInfo& aInfo) |
|
4773 { |
|
4774 __KTRACE_OPT(KPAGING,Kern::Printf("DP: Reading block map for %C", iCodeSeg)); |
|
4775 |
|
4776 if (aInfo.iCodeBlockMapEntriesSize <= 0) |
|
4777 return KErrArgument; // no block map provided |
|
4778 |
|
4779 // Get compression data |
|
4780 switch (aInfo.iCompressionType) |
|
4781 { |
|
4782 case KFormatNotCompressed: |
|
4783 iCompressionType = SRomPageInfo::ENoCompression; |
|
4784 break; |
|
4785 |
|
4786 case KUidCompressionBytePair: |
|
4787 { |
|
4788 iCompressionType = SRomPageInfo::EBytePair; |
|
4789 if (!aInfo.iCodePageOffsets) |
|
4790 return KErrArgument; |
|
4791 TInt size = sizeof(TInt32) * (iPageCount + 1); |
|
4792 iCodePageOffsets = (TInt32*)Kern::Alloc(size); |
|
4793 if (!iCodePageOffsets) |
|
4794 return KErrNoMemory; |
|
4795 kumemget32(iCodePageOffsets, aInfo.iCodePageOffsets, size); |
|
4796 |
|
4797 #ifdef __DUMP_BLOCKMAP_INFO |
|
4798 Kern::Printf("CodePageOffsets:"); |
|
4799 for (TInt i = 0 ; i < iPageCount + 1 ; ++i) |
|
4800 Kern::Printf(" %08x", iCodePageOffsets[i]); |
|
4801 #endif |
|
4802 |
|
4803 TInt last = 0; |
|
4804 for (TInt j = 0 ; j < iPageCount + 1 ; ++j) |
|
4805 { |
|
4806 if (iCodePageOffsets[j] < last || |
|
4807 iCodePageOffsets[j] > (aInfo.iCodeLengthInFile + aInfo.iCodeStartInFile)) |
|
4808 { |
|
4809 __NK_ASSERT_DEBUG(0); |
|
4810 return KErrCorrupt; |
|
4811 } |
|
4812 last = iCodePageOffsets[j]; |
|
4813 } |
|
4814 } |
|
4815 break; |
|
4816 |
|
4817 default: |
|
4818 return KErrNotSupported; |
|
4819 } |
|
4820 |
|
4821 // Copy block map data itself... |
|
4822 |
|
4823 #ifdef __DUMP_BLOCKMAP_INFO |
|
4824 Kern::Printf("Original block map"); |
|
4825 Kern::Printf(" block granularity: %d", aInfo.iCodeBlockMapCommon.iBlockGranularity); |
|
4826 Kern::Printf(" block start offset: %x", aInfo.iCodeBlockMapCommon.iBlockStartOffset); |
|
4827 Kern::Printf(" start block address: %016lx", aInfo.iCodeBlockMapCommon.iStartBlockAddress); |
|
4828 Kern::Printf(" local drive number: %d", aInfo.iCodeBlockMapCommon.iLocalDriveNumber); |
|
4829 Kern::Printf(" entry size: %d", aInfo.iCodeBlockMapEntriesSize); |
|
4830 #endif |
|
4831 |
|
4832 // Find relevant paging device |
|
4833 iCodeLocalDrive = aInfo.iCodeBlockMapCommon.iLocalDriveNumber; |
|
4834 if (TUint(iCodeLocalDrive) >= (TUint)KMaxLocalDrives) |
|
4835 { |
|
4836 __KTRACE_OPT(KPAGING,Kern::Printf("Bad local drive number")); |
|
4837 return KErrArgument; |
|
4838 } |
|
4839 DemandPaging* pager = DemandPaging::ThePager; |
|
4840 |
|
4841 if (!pager->CodePagingDevice(iCodeLocalDrive).iInstalled) |
|
4842 { |
|
4843 __KTRACE_OPT(KPAGING,Kern::Printf("No paging device installed for drive")); |
|
4844 return KErrNotSupported; |
|
4845 } |
|
4846 DPagingDevice* device = pager->CodePagingDevice(iCodeLocalDrive).iDevice; |
|
4847 |
|
4848 // Set code start offset |
|
4849 iCodeStartInFile = aInfo.iCodeStartInFile; |
|
4850 if (iCodeStartInFile < 0) |
|
4851 { |
|
4852 __KTRACE_OPT(KPAGING,Kern::Printf("Bad code start offset")); |
|
4853 return KErrArgument; |
|
4854 } |
|
4855 |
|
4856 // Allocate buffer for block map and copy from user-side |
|
4857 TBlockMapEntryBase* buffer = (TBlockMapEntryBase*)Kern::Alloc(aInfo.iCodeBlockMapEntriesSize); |
|
4858 if (!buffer) |
|
4859 return KErrNoMemory; |
|
4860 kumemget32(buffer, aInfo.iCodeBlockMapEntries, aInfo.iCodeBlockMapEntriesSize); |
|
4861 |
|
4862 #ifdef __DUMP_BLOCKMAP_INFO |
|
4863 Kern::Printf(" entries:"); |
|
4864 for (TInt k = 0 ; k < aInfo.iCodeBlockMapEntriesSize / sizeof(TBlockMapEntryBase) ; ++k) |
|
4865 Kern::Printf(" %d: %d blocks at %08x", k, buffer[k].iNumberOfBlocks, buffer[k].iStartBlock); |
|
4866 #endif |
|
4867 |
|
4868 // Initialise block map |
|
4869 TInt r = iBlockMap.Initialise(aInfo.iCodeBlockMapCommon, |
|
4870 buffer, |
|
4871 aInfo.iCodeBlockMapEntriesSize, |
|
4872 device->iReadUnitShift, |
|
4873 iCodeStartInFile + aInfo.iCodeLengthInFile); |
|
4874 if (r != KErrNone) |
|
4875 { |
|
4876 Kern::Free(buffer); |
|
4877 return r; |
|
4878 } |
|
4879 |
|
4880 #if defined(__DUMP_BLOCKMAP_INFO) && defined(_DEBUG) |
|
4881 iBlockMap.Dump(); |
|
4882 #endif |
|
4883 |
|
4884 return KErrNone; |
|
4885 } |
|
4886 |
|
4887 /** |
|
4888 Read code relocation table and import fixup table from user side. |
|
4889 */ |
|
4890 TInt DMmuCodeSegMemory::ReadFixupTables(const TCodeSegCreateInfo& aInfo) |
|
4891 { |
|
4892 __KTRACE_OPT(KPAGING,Kern::Printf("DP: Reading fixup tables for %C", iCodeSeg)); |
|
4893 |
|
4894 iCodeRelocTableSize = aInfo.iCodeRelocTableSize; |
|
4895 iImportFixupTableSize = aInfo.iImportFixupTableSize; |
|
4896 iCodeDelta = aInfo.iCodeDelta; |
|
4897 iDataDelta = aInfo.iDataDelta; |
|
4898 |
|
4899 // round sizes to four-byte boundaris... |
|
4900 TInt relocSize = (iCodeRelocTableSize + 3) & ~3; |
|
4901 TInt fixupSize = (iImportFixupTableSize + 3) & ~3; |
|
4902 |
|
4903 // copy relocs and fixups... |
|
4904 iCodeRelocTable = (TUint8*)Kern::Alloc(relocSize+fixupSize); |
|
4905 if (!iCodeRelocTable) |
|
4906 return KErrNoMemory; |
|
4907 iImportFixupTable = iCodeRelocTable + relocSize; |
|
4908 kumemget32(iCodeRelocTable, aInfo.iCodeRelocTable, relocSize); |
|
4909 kumemget32(iImportFixupTable, aInfo.iImportFixupTable, fixupSize); |
|
4910 |
|
4911 return KErrNone; |
|
4912 } |
|
4913 |
|
4914 #endif |
|
4915 |
|
4916 |
|
4917 TInt DMmuCodeSegMemory::Create(TCodeSegCreateInfo& aInfo) |
|
4918 { |
|
4919 TInt r = KErrNone; |
|
4920 if (!aInfo.iUseCodePaging) |
|
4921 iPageCount=(iRamInfo.iCodeSize+iRamInfo.iDataSize+KPageMask)>>KPageShift; |
|
4922 else |
|
4923 { |
|
4924 #ifdef __DEMAND_PAGING__ |
|
4925 iDataSectionMemory = Kern::Alloc(iRamInfo.iDataSize); |
|
4926 if (!iDataSectionMemory) |
|
4927 return KErrNoMemory; |
|
4928 |
|
4929 iPageCount=(iRamInfo.iCodeSize+KPageMask)>>KPageShift; |
|
4930 iDataPageCount=(iRamInfo.iDataSize+KPageMask)>>KPageShift; |
|
4931 |
|
4932 r = ReadBlockMap(aInfo); |
|
4933 if (r != KErrNone) |
|
4934 return r; |
|
4935 |
|
4936 iIsDemandPaged = ETrue; |
|
4937 iCodeSeg->iAttr |= ECodeSegAttCodePaged; |
|
4938 #endif |
|
4939 } |
|
4940 |
|
4941 iCodeSeg->iSize = (iPageCount+iDataPageCount)<<KPageShift; |
|
4942 return r; |
|
4943 } |
|
4944 |
|
4945 |
|
4946 TInt DMmuCodeSegMemory::Loaded(TCodeSegCreateInfo& aInfo) |
|
4947 { |
|
4948 #ifdef __DEMAND_PAGING__ |
|
4949 if(iIsDemandPaged) |
|
4950 { |
|
4951 TInt r = ReadFixupTables(aInfo); |
|
4952 if (r != KErrNone) |
|
4953 return r; |
|
4954 } |
|
4955 TAny* dataSection = iDataSectionMemory; |
|
4956 if(dataSection) |
|
4957 { |
|
4958 UNLOCK_USER_MEMORY(); |
|
4959 memcpy(dataSection,(TAny*)iRamInfo.iDataLoadAddr,iRamInfo.iDataSize); |
|
4960 LOCK_USER_MEMORY(); |
|
4961 iRamInfo.iDataLoadAddr = (TLinAddr)dataSection; |
|
4962 } |
|
4963 #endif |
|
4964 return KErrNone; |
|
4965 } |
|
4966 |
|
4967 |
|
4968 void DMmuCodeSegMemory::ApplyCodeFixups(TUint32* aBuffer, TLinAddr aDestAddress) |
|
4969 { |
|
4970 __NK_ASSERT_DEBUG(iRamInfo.iCodeRunAddr==iRamInfo.iCodeLoadAddr); // code doesn't work if this isn't true |
|
4971 |
|
4972 START_PAGING_BENCHMARK; |
|
4973 |
|
4974 TUint offset = aDestAddress - iRamInfo.iCodeRunAddr; |
|
4975 __ASSERT_ALWAYS(offset < (TUint)(iRamInfo.iCodeSize + iRamInfo.iDataSize), K::Fault(K::ECodeSegBadFixupAddress)); |
|
4976 |
|
4977 // Index tables are only valid for pages containg code |
|
4978 if (offset >= (TUint)iRamInfo.iCodeSize) |
|
4979 return; |
|
4980 |
|
4981 UNLOCK_USER_MEMORY(); |
|
4982 |
|
4983 TInt page = offset >> KPageShift; |
|
4984 |
|
4985 // Relocate code |
|
4986 |
|
4987 if (iCodeRelocTableSize > 0) |
|
4988 { |
|
4989 TUint32* codeRelocTable32 = (TUint32*)iCodeRelocTable; |
|
4990 TUint startOffset = codeRelocTable32[page]; |
|
4991 TUint endOffset = codeRelocTable32[page + 1]; |
|
4992 |
|
4993 __KTRACE_OPT(KPAGING, Kern::Printf("Performing code relocation: start == %x, end == %x", startOffset, endOffset)); |
|
4994 __ASSERT_ALWAYS(startOffset <= endOffset && endOffset <= (TUint)iCodeRelocTableSize, |
|
4995 K::Fault(K::ECodeSegBadFixupTables)); |
|
4996 |
|
4997 TUint8* codeRelocTable8 = (TUint8*)codeRelocTable32; |
|
4998 const TUint16* ptr = (const TUint16*)(codeRelocTable8 + startOffset); |
|
4999 const TUint16* end = (const TUint16*)(codeRelocTable8 + endOffset); |
|
5000 |
|
5001 const TUint32 codeDelta = iCodeDelta; |
|
5002 const TUint32 dataDelta = iDataDelta; |
|
5003 |
|
5004 while (ptr < end) |
|
5005 { |
|
5006 TUint16 entry = *ptr++; |
|
5007 |
|
5008 // address of word to fix up is sum of page start and 12-bit offset |
|
5009 TUint32* addr = (TUint32*)((TUint8*)aBuffer + (entry & 0x0fff)); |
|
5010 |
|
5011 TUint32 word = *addr; |
|
5012 #ifdef _DEBUG |
|
5013 TInt type = entry & 0xf000; |
|
5014 __NK_ASSERT_DEBUG(type == KTextRelocType || type == KDataRelocType); |
|
5015 #endif |
|
5016 if (entry < KDataRelocType /* => type == KTextRelocType */) |
|
5017 word += codeDelta; |
|
5018 else |
|
5019 word += dataDelta; |
|
5020 *addr = word; |
|
5021 } |
|
5022 } |
|
5023 |
|
5024 // Fixup imports |
|
5025 |
|
5026 if (iImportFixupTableSize > 0) |
|
5027 { |
|
5028 TUint32* importFixupTable32 = (TUint32*)iImportFixupTable; |
|
5029 TUint startOffset = importFixupTable32[page]; |
|
5030 TUint endOffset = importFixupTable32[page + 1]; |
|
5031 |
|
5032 __KTRACE_OPT(KPAGING, Kern::Printf("Performing import fixup: start == %x, end == %x", startOffset, endOffset)); |
|
5033 __ASSERT_ALWAYS(startOffset <= endOffset && endOffset <= (TUint)iImportFixupTableSize, |
|
5034 K::Fault(K::ECodeSegBadFixupTables)); |
|
5035 |
|
5036 TUint8* importFixupTable8 = (TUint8*)importFixupTable32; |
|
5037 const TUint16* ptr = (const TUint16*)(importFixupTable8 + startOffset); |
|
5038 const TUint16* end = (const TUint16*)(importFixupTable8 + endOffset); |
|
5039 |
|
5040 while (ptr < end) |
|
5041 { |
|
5042 TUint16 offset = *ptr++; |
|
5043 |
|
5044 // get word to write into that address |
|
5045 // (don't read as a single TUint32 because may not be word-aligned) |
|
5046 TUint32 wordLow = *ptr++; |
|
5047 TUint32 wordHigh = *ptr++; |
|
5048 TUint32 word = (wordHigh << 16) | wordLow; |
|
5049 |
|
5050 __KTRACE_OPT(KPAGING, Kern::Printf("DP: Fixup %08x=%08x", iRamInfo.iCodeRunAddr+(page<<KPageShift)+offset, word)); |
|
5051 *(TUint32*)((TLinAddr)aBuffer+offset) = word; |
|
5052 } |
|
5053 } |
|
5054 |
|
5055 LOCK_USER_MEMORY(); |
|
5056 |
|
5057 END_PAGING_BENCHMARK(DemandPaging::ThePager, EPagingBmFixupCodePage); |
|
5058 } |
|
5059 |
|
5060 |
|
5061 TInt DMmuCodeSegMemory::ApplyCodeFixupsOnLoad(TUint32* aBuffer, TLinAddr aDestAddress) |
|
5062 { |
|
5063 #ifdef __DEMAND_PAGING__ |
|
5064 TInt r=DemandPaging::ThePager->LockRegion((TLinAddr)aBuffer,KPageSize,&Kern::CurrentProcess()); |
|
5065 if(r!=KErrNone) |
|
5066 return r; |
|
5067 #endif |
|
5068 ApplyCodeFixups(aBuffer,aDestAddress); |
|
5069 UNLOCK_USER_MEMORY(); |
|
5070 CacheMaintenance::CodeChanged((TLinAddr)aBuffer, KPageSize); |
|
5071 LOCK_USER_MEMORY(); |
|
5072 #ifdef __DEMAND_PAGING__ |
|
5073 DemandPaging::ThePager->UnlockRegion((TLinAddr)aBuffer,KPageSize,&Kern::CurrentProcess()); |
|
5074 #endif |
|
5075 return KErrNone; |
|
5076 } |
|
5077 |
|
5078 |
|
5079 #ifdef __DEMAND_PAGING__ |
|
5080 |
|
5081 TInt M::CreateVirtualPinObject(TVirtualPinObject*& aPinObject) |
|
5082 { |
|
5083 aPinObject = (TVirtualPinObject*) new DDemandPagingLock; |
|
5084 return aPinObject != NULL ? KErrNone : KErrNoMemory; |
|
5085 } |
|
5086 |
|
5087 TInt M::PinVirtualMemory(TVirtualPinObject* aPinObject, TLinAddr aStart, TUint aSize, DThread* aThread) |
|
5088 { |
|
5089 if (!DemandPaging::ThePager) |
|
5090 return KErrNone; |
|
5091 |
|
5092 if (!DemandPaging::ThePager->MayBePaged(aStart, aSize)) |
|
5093 return KErrNone; |
|
5094 |
|
5095 DDemandPagingLock* lock = (DDemandPagingLock*)aPinObject; |
|
5096 TInt r = lock->Alloc(aSize); |
|
5097 if (r != KErrNone) |
|
5098 return r; |
|
5099 lock->Lock(aThread, aStart, aSize); |
|
5100 return KErrNone; |
|
5101 } |
|
5102 |
|
5103 TInt M::CreateAndPinVirtualMemory(TVirtualPinObject*& aPinObject, TLinAddr aStart, TUint aSize) |
|
5104 { |
|
5105 aPinObject = 0; |
|
5106 |
|
5107 if (!DemandPaging::ThePager) |
|
5108 return KErrNone; |
|
5109 if (!DemandPaging::ThePager->MayBePaged(aStart, aSize)) |
|
5110 return KErrNone; |
|
5111 |
|
5112 TInt r = CreateVirtualPinObject(aPinObject); |
|
5113 if (r != KErrNone) |
|
5114 return r; |
|
5115 |
|
5116 DDemandPagingLock* lock = (DDemandPagingLock*)aPinObject; |
|
5117 r = lock->Alloc(aSize); |
|
5118 if (r != KErrNone) |
|
5119 return r; |
|
5120 lock->Lock(TheCurrentThread, aStart, aSize); |
|
5121 return KErrNone; |
|
5122 } |
|
5123 |
|
5124 void M::UnpinVirtualMemory(TVirtualPinObject* aPinObject) |
|
5125 { |
|
5126 DDemandPagingLock* lock = (DDemandPagingLock*)aPinObject; |
|
5127 if (lock) |
|
5128 lock->Free(); |
|
5129 } |
|
5130 |
|
5131 void M::DestroyVirtualPinObject(TVirtualPinObject*& aPinObject) |
|
5132 { |
|
5133 DDemandPagingLock* lock = (DDemandPagingLock*)__e32_atomic_swp_ord_ptr(&aPinObject, 0); |
|
5134 if (lock) |
|
5135 lock->AsyncDelete(); |
|
5136 } |
|
5137 |
|
5138 #else |
|
5139 |
|
5140 class TVirtualPinObject |
|
5141 { |
|
5142 }; |
|
5143 |
|
5144 TInt M::CreateVirtualPinObject(TVirtualPinObject*& aPinObject) |
|
5145 { |
|
5146 aPinObject = new TVirtualPinObject; |
|
5147 return aPinObject != NULL ? KErrNone : KErrNoMemory; |
|
5148 } |
|
5149 |
|
5150 TInt M::PinVirtualMemory(TVirtualPinObject* aPinObject, TLinAddr, TUint, DThread*) |
|
5151 { |
|
5152 __ASSERT_DEBUG(aPinObject, K::Fault(K::EVirtualPinObjectBad)); |
|
5153 (void)aPinObject; |
|
5154 return KErrNone; |
|
5155 } |
|
5156 |
|
5157 TInt M::CreateAndPinVirtualMemory(TVirtualPinObject*& aPinObject, TLinAddr, TUint) |
|
5158 { |
|
5159 aPinObject = 0; |
|
5160 return KErrNone; |
|
5161 } |
|
5162 |
|
5163 void M::UnpinVirtualMemory(TVirtualPinObject* aPinObject) |
|
5164 { |
|
5165 __ASSERT_DEBUG(aPinObject, K::Fault(K::EVirtualPinObjectBad)); |
|
5166 (void)aPinObject; |
|
5167 } |
|
5168 |
|
5169 void M::DestroyVirtualPinObject(TVirtualPinObject*& aPinObject) |
|
5170 { |
|
5171 TVirtualPinObject* object = (TVirtualPinObject*)__e32_atomic_swp_ord_ptr(&aPinObject, 0); |
|
5172 if (object) |
|
5173 Kern::AsyncFree(object); |
|
5174 } |
|
5175 |
|
5176 #endif |
|
5177 |
|
5178 TInt M::CreatePhysicalPinObject(TPhysicalPinObject*& aPinObject) |
|
5179 { |
|
5180 return KErrNotSupported; |
|
5181 } |
|
5182 |
|
5183 TInt M::PinPhysicalMemory(TPhysicalPinObject*, TLinAddr, TUint, TBool, TUint32&, TUint32*, TUint32&, TUint&, DThread*) |
|
5184 { |
|
5185 K::Fault(K::EPhysicalPinObjectBad); |
|
5186 return KErrNone; |
|
5187 } |
|
5188 |
|
5189 void M::UnpinPhysicalMemory(TPhysicalPinObject* aPinObject) |
|
5190 { |
|
5191 K::Fault(K::EPhysicalPinObjectBad); |
|
5192 } |
|
5193 |
|
5194 void M::DestroyPhysicalPinObject(TPhysicalPinObject*& aPinObject) |
|
5195 { |
|
5196 K::Fault(K::EPhysicalPinObjectBad); |
|
5197 } |
|
5198 |
|
5199 // Misc DPagingDevice methods |
|
5200 |
|
5201 EXPORT_C void DPagingDevice::NotifyIdle() |
|
5202 { |
|
5203 // Not used on this memory model |
|
5204 } |
|
5205 |
|
5206 EXPORT_C void DPagingDevice::NotifyBusy() |
|
5207 { |
|
5208 // Not used on this memory model |
|
5209 } |
|
5210 |
|
5211 EXPORT_C TInt Cache::SyncPhysicalMemoryBeforeDmaWrite(TPhysAddr* , TUint , TUint , TUint , TUint32 ) |
|
5212 { |
|
5213 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"Cache::SyncPhysicalMemoryBeforeDmaWrite"); |
|
5214 return KErrNotSupported; |
|
5215 } |
|
5216 |
|
5217 EXPORT_C TInt Cache::SyncPhysicalMemoryBeforeDmaRead(TPhysAddr* , TUint , TUint , TUint , TUint32 ) |
|
5218 { |
|
5219 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"Cache::SyncPhysicalMemoryBeforeDmaRead"); |
|
5220 return KErrNotSupported; |
|
5221 } |
|
5222 EXPORT_C TInt Cache::SyncPhysicalMemoryAfterDmaRead(TPhysAddr* , TUint , TUint , TUint , TUint32 ) |
|
5223 { |
|
5224 CHECK_PRECONDITIONS(MASK_THREAD_STANDARD,"Cache::SyncPhysicalMemoryAfterDmaRead"); |
|
5225 return KErrNotSupported; |
|
5226 } |
|
5227 |
|
5228 // |
|
5229 // Page moving methods |
|
5230 // |
|
5231 |
|
5232 /* |
|
5233 * Move a page from aOld to aNew safely, updating any references to the page |
|
5234 * stored elsewhere (such as page table entries). The destination page must |
|
5235 * already be allocated. If the move is successful, the source page will be |
|
5236 * freed and returned to the allocator. |
|
5237 * |
|
5238 * @pre RAM alloc mutex must be held. |
|
5239 * @pre Calling thread must be in a critical section. |
|
5240 * @pre Interrupts must be enabled. |
|
5241 * @pre Kernel must be unlocked. |
|
5242 * @pre No fast mutex can be held. |
|
5243 * @pre Call in a thread context. |
|
5244 */ |
|
5245 TInt MmuBase::MovePage(TPhysAddr aOld, TPhysAddr& aNew, TUint aBlockZoneId, TBool aBlockRest) |
|
5246 { |
|
5247 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL, "Defrag::DoMovePage"); |
|
5248 __ASSERT_WITH_MESSAGE_MUTEX(MmuBase::RamAllocatorMutex, "Ram allocator mutex must be held", "Defrag::DoMovePage"); |
|
5249 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() old=%08x",aOld)); |
|
5250 TInt r = KErrNotSupported; |
|
5251 #if defined(__CPU_X86) && defined(__MEMMODEL_MULTIPLE__) |
|
5252 return r; |
|
5253 #endif |
|
5254 aNew = KPhysAddrInvalid; |
|
5255 NKern::LockSystem(); |
|
5256 SPageInfo* pi = SPageInfo::SafeFromPhysAddr(aOld); |
|
5257 if (!pi) |
|
5258 { |
|
5259 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() fails: page has no PageInfo")); |
|
5260 r = KErrArgument; |
|
5261 goto fail; |
|
5262 } |
|
5263 if (pi->LockCount()) |
|
5264 { |
|
5265 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() fails: page is locked")); |
|
5266 goto fail; |
|
5267 } |
|
5268 |
|
5269 switch(pi->Type()) |
|
5270 { |
|
5271 case SPageInfo::EUnused: |
|
5272 // Nothing to do - we allow this, though, in case the caller wasn't |
|
5273 // actually checking the free bitmap. |
|
5274 r = KErrNotFound; |
|
5275 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage(): page unused")); |
|
5276 break; |
|
5277 |
|
5278 case SPageInfo::EChunk: |
|
5279 { |
|
5280 // It's a chunk - we need to investigate what it's used for. |
|
5281 DChunk* chunk = (DChunk*)pi->Owner(); |
|
5282 TInt offset = pi->Offset()<<KPageShift; |
|
5283 |
|
5284 switch(chunk->iChunkType) |
|
5285 { |
|
5286 case EKernelData: |
|
5287 case EKernelMessage: |
|
5288 // The kernel data/bss/heap chunk pages are not moved as DMA may be accessing them. |
|
5289 __KTRACE_OPT(KMMU, Kern::Printf("MmuBase::MovePage() fails: kernel data")); |
|
5290 goto fail; |
|
5291 |
|
5292 case EKernelStack: |
|
5293 // The kernel thread stack chunk. |
|
5294 r = MoveKernelStackPage(chunk, offset, aOld, aNew, aBlockZoneId, aBlockRest); |
|
5295 __KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: k stack r%d",r)); |
|
5296 __NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0); |
|
5297 goto released; |
|
5298 |
|
5299 case EKernelCode: |
|
5300 case EDll: |
|
5301 // The kernel code chunk, or a global user code chunk. |
|
5302 r = MoveCodeChunkPage(chunk, offset, aOld, aNew, aBlockZoneId, aBlockRest); |
|
5303 __KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: code chk r%d",r)); |
|
5304 __NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0); |
|
5305 goto released; |
|
5306 |
|
5307 case ERamDrive: |
|
5308 case EUserData: |
|
5309 case EDllData: |
|
5310 case EUserSelfModCode: |
|
5311 // A data chunk of some description. |
|
5312 r = MoveDataChunkPage(chunk, offset, aOld, aNew, aBlockZoneId, aBlockRest); |
|
5313 __KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: data chk r%d",r)); |
|
5314 __NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0); |
|
5315 goto released; |
|
5316 |
|
5317 case ESharedKernelSingle: |
|
5318 case ESharedKernelMultiple: |
|
5319 case ESharedIo: |
|
5320 case ESharedKernelMirror: |
|
5321 // These chunk types cannot be moved |
|
5322 r = KErrNotSupported; |
|
5323 __KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: shared r%d",r)); |
|
5324 break; |
|
5325 |
|
5326 case EUserCode: |
|
5327 default: |
|
5328 // Unknown page type, or EUserCode. |
|
5329 // EUserCode is not used in moving model, and on multiple model |
|
5330 // it never owns any pages so shouldn't be found via SPageInfo |
|
5331 __KTRACE_OPT(KMMU,Kern::Printf("Defrag::DoMovePage fails: unknown chunk type %d",chunk->iChunkType)); |
|
5332 Panic(EDefragUnknownChunkType); |
|
5333 } |
|
5334 } |
|
5335 break; |
|
5336 |
|
5337 case SPageInfo::ECodeSegMemory: |
|
5338 // It's a code segment memory section (multiple model only) |
|
5339 r = MoveCodeSegMemoryPage((DMemModelCodeSegMemory*)pi->Owner(), pi->Offset()<<KPageShift, aOld, aNew, aBlockZoneId, aBlockRest); |
|
5340 __KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: codeseg r%d",r)); |
|
5341 __NK_ASSERT_DEBUG(NKern::HeldFastMutex()==0); |
|
5342 goto released; |
|
5343 |
|
5344 case SPageInfo::EPagedROM: |
|
5345 case SPageInfo::EPagedCode: |
|
5346 case SPageInfo::EPagedData: |
|
5347 case SPageInfo::EPagedCache: |
|
5348 case SPageInfo::EPagedFree: |
|
5349 {// DP or RamCache page so attempt to discard it. Added for testing purposes only |
|
5350 // In normal use ClearDiscardableFromZone will have already removed RAM cache pages |
|
5351 r = KErrInUse; |
|
5352 MmuBase& mmu = *MmuBase::TheMmu; |
|
5353 RamCacheBase& ramCache = *(mmu.iRamCache); |
|
5354 if (ramCache.IsPageDiscardable(*pi)) |
|
5355 { |
|
5356 if (ramCache.DoDiscardPage(*pi, KRamZoneInvalidId, EFalse)) |
|
5357 {// Sucessfully discarded the page. |
|
5358 r = KErrNone; |
|
5359 } |
|
5360 } |
|
5361 __KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: paged r%d",r)); |
|
5362 goto fail; // Goto fail to release the system lock. |
|
5363 } |
|
5364 |
|
5365 |
|
5366 case SPageInfo::EPageTable: |
|
5367 case SPageInfo::EPageDir: |
|
5368 case SPageInfo::EPtInfo: |
|
5369 case SPageInfo::EInvalid: |
|
5370 case SPageInfo::EFixed: |
|
5371 case SPageInfo::EShadow: |
|
5372 // These page types cannot be moved (or don't need to be moved) |
|
5373 r = KErrNotSupported; |
|
5374 __KTRACE_OPT(KMMU,if (r!=KErrNone) Kern::Printf("MmuBase::MovePage() fails: PT etc r%d",r)); |
|
5375 break; |
|
5376 |
|
5377 default: |
|
5378 // Unknown page type |
|
5379 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() fails: unknown page type %d",pi->Type())); |
|
5380 Panic(EDefragUnknownPageType); |
|
5381 } |
|
5382 |
|
5383 fail: |
|
5384 NKern::UnlockSystem(); |
|
5385 released: |
|
5386 __KTRACE_OPT(KMMU,Kern::Printf("MmuBase::MovePage() returns %d",r)); |
|
5387 return r; |
|
5388 } |
|
5389 |
|
5390 |
|
5391 TInt MmuBase::DiscardPage(TPhysAddr aAddr, TUint aBlockZoneId, TBool aBlockRest) |
|
5392 { |
|
5393 TInt r = KErrInUse; |
|
5394 NKern::LockSystem(); |
|
5395 SPageInfo* pageInfo = SPageInfo::SafeFromPhysAddr(aAddr); |
|
5396 if (pageInfo != NULL) |
|
5397 {// Allocatable page at this address so is it a discardable one? |
|
5398 if (iRamCache->IsPageDiscardable(*pageInfo)) |
|
5399 { |
|
5400 // Discard this page and return it to the ram allocator |
|
5401 if (!iRamCache->DoDiscardPage(*pageInfo, aBlockZoneId, aBlockRest)) |
|
5402 {// Couldn't discard the page. |
|
5403 if (aBlockRest) |
|
5404 { |
|
5405 __KTRACE_OPT(KMMU, Kern::Printf("ClearDiscardableFromZone: page discard fail addr %x", aAddr)); |
|
5406 NKern::UnlockSystem(); |
|
5407 return KErrNoMemory; |
|
5408 } |
|
5409 } |
|
5410 else |
|
5411 {// Page discarded successfully. |
|
5412 r = KErrNone; |
|
5413 } |
|
5414 } |
|
5415 } |
|
5416 NKern::UnlockSystem(); |
|
5417 return r; |
|
5418 } |
|
5419 |
|
5420 TUint MmuBase::NumberOfFreeDpPages() |
|
5421 { |
|
5422 TUint free = 0; |
|
5423 if(iRamCache) |
|
5424 { |
|
5425 free = iRamCache->NumberOfFreePages(); |
|
5426 } |
|
5427 return free; |
|
5428 } |
|
5429 |
|
5430 |
|
5431 EXPORT_C TInt Epoc::MovePhysicalPage(TPhysAddr aOld, TPhysAddr& aNew, TRamDefragPageToMove aPageToMove) |
|
5432 { |
|
5433 CHECK_PRECONDITIONS(MASK_THREAD_CRITICAL,"Epoc::MovePhysicalPage"); |
|
5434 __KTRACE_OPT(KMMU,Kern::Printf("Epoc::MovePhysicalPage() old=%08x pageToMove=%d",aOld,aPageToMove)); |
|
5435 |
|
5436 switch(aPageToMove) |
|
5437 { |
|
5438 case ERamDefragPage_Physical: |
|
5439 break; |
|
5440 default: |
|
5441 return KErrNotSupported; |
|
5442 } |
|
5443 |
|
5444 MmuBase::Wait(); |
|
5445 TInt r=M::MovePage(aOld,aNew,KRamZoneInvalidId,EFalse); |
|
5446 if (r!=KErrNone) |
|
5447 aNew = KPhysAddrInvalid; |
|
5448 MmuBase::Signal(); |
|
5449 __KTRACE_OPT(KMMU,Kern::Printf("Epoc::MovePhysicalPage() returns %d",r)); |
|
5450 return r; |
|
5451 } |
|
5452 |
|
5453 |
|
5454 TInt M::RamDefragFault(TAny* aExceptionInfo) |
|
5455 { |
|
5456 // If the mmu has been initialised then let it try processing the fault. |
|
5457 if(MmuBase::TheMmu) |
|
5458 return MmuBase::TheMmu->RamDefragFault(aExceptionInfo); |
|
5459 return KErrAbort; |
|
5460 } |
|
5461 |
|
5462 |
|
5463 void M::RamZoneClaimed(SZone* aZone) |
|
5464 { |
|
5465 // Lock each page. OK to traverse SPageInfo array as we know no unknown |
|
5466 // pages are in the zone. |
|
5467 SPageInfo* pageInfo = SPageInfo::FromPhysAddr(aZone->iPhysBase); |
|
5468 SPageInfo* pageInfoEnd = pageInfo + aZone->iPhysPages; |
|
5469 for (; pageInfo < pageInfoEnd; ++pageInfo) |
|
5470 { |
|
5471 NKern::LockSystem(); |
|
5472 __NK_ASSERT_DEBUG(pageInfo->Type()==SPageInfo::EUnused); |
|
5473 pageInfo->Lock(); |
|
5474 NKern::UnlockSystem(); |
|
5475 } |
|
5476 // For the sake of platform security we have to clear the memory. E.g. the driver |
|
5477 // could assign it to a chunk visible to user side. Set LSB so ClearPages |
|
5478 // knows this is a contiguous memory region. |
|
5479 Mmu::Get().ClearPages(aZone->iPhysPages, (TPhysAddr*)(aZone->iPhysBase|1)); |
|
5480 } |