| 0 |      1 | // Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
 | 
|  |      2 | // All rights reserved.
 | 
|  |      3 | // This component and the accompanying materials are made available
 | 
|  |      4 | // under the terms of the License "Eclipse Public License v1.0"
 | 
|  |      5 | // which accompanies this distribution, and is available
 | 
|  |      6 | // at the URL "http://www.eclipse.org/legal/epl-v10.html".
 | 
|  |      7 | //
 | 
|  |      8 | // Initial Contributors:
 | 
|  |      9 | // Nokia Corporation - initial contribution.
 | 
|  |     10 | //
 | 
|  |     11 | // Contributors:
 | 
|  |     12 | //
 | 
|  |     13 | // Description:
 | 
|  |     14 | // e32test\heap\t_heap2.cpp
 | 
|  |     15 | // Overview:
 | 
|  |     16 | // Tests RHeap class, including a stress test and a "grow in place"
 | 
|  |     17 | // ReAlloc test.
 | 
|  |     18 | // API Information:
 | 
|  |     19 | // RHeap
 | 
|  |     20 | // Details:
 | 
|  |     21 | // - Test allocation on fixed length heaps in local, disconnected chunks for
 | 
|  |     22 | // different heap sizes and alignments.  Assumes knowledge of heap
 | 
|  |     23 | // implementation.
 | 
|  |     24 | // - Test allocation, free, reallocation and compression on chunk heaps with
 | 
|  |     25 | // different maximum and minimum lengths and alignments.  Assumes knowledge
 | 
|  |     26 | // of heap implementation.      
 | 
|  |     27 | // - Stress test heap implementation with a single thread that allocates, frees
 | 
|  |     28 | // and reallocates cells, and checks the heap.
 | 
|  |     29 | // - Stress test heap implementation with two threads that run concurrently.
 | 
|  |     30 | // - Create a chunk heap, test growing in place by allocating a cell and 
 | 
|  |     31 | // then reallocating additional space until failure, verify that the cell 
 | 
|  |     32 | // did not move and the size was increased.
 | 
|  |     33 | // - The heap is checked to verify that no cells remain allocated after the 
 | 
|  |     34 | // tests are complete.
 | 
|  |     35 | // Platforms/Drives/Compatibility:
 | 
|  |     36 | // All
 | 
|  |     37 | // Assumptions/Requirement/Pre-requisites:
 | 
|  |     38 | // Failures and causes:
 | 
|  |     39 | // Base Port information:
 | 
|  |     40 | // 
 | 
|  |     41 | //
 | 
|  |     42 | 
 | 
|  |     43 | #include <e32test.h>
 | 
|  |     44 | #include <e32hal.h>
 | 
|  |     45 | #include <e32def.h>
 | 
|  |     46 | #include <e32def_private.h>
 | 
|  |     47 | 
 | 
|  |     48 | // Needed for KHeapShrinkHysRatio which is now ROM 'patchdata'
 | 
|  |     49 | #include "TestRHeapShrink.h"
 | 
|  |     50 | 
 | 
|  |     51 | #define DECL_GET(T,x)		inline T x() const {return i##x;}
 | 
|  |     52 | #define DECL_GET2(T,x,y)	inline T y() const {return i##x;}
 | 
|  |     53 | 
 | 
|  |     54 | 
 | 
|  |     55 | #ifdef __EABI__
 | 
|  |     56 |        IMPORT_D extern const TInt KHeapMinCellSize;
 | 
|  |     57 | #else
 | 
|  |     58 |        const TInt KHeapMinCellSize = 0;
 | 
|  |     59 | #endif
 | 
|  |     60 | 
 | 
|  |     61 | RTest test(_L("T_HEAP2"));
 | 
|  |     62 | 
 | 
|  |     63 | #define	TEST_ALIGN(p,a)		test((TLinAddr(p)&((a)-1))==0)
 | 
|  |     64 | 
 | 
|  |     65 | struct STestCell
 | 
|  |     66 | 	{
 | 
|  |     67 | 	enum {EMagic = 0xb8aa3b29};
 | 
|  |     68 | 
 | 
|  |     69 | 	TUint32 iLength;
 | 
|  |     70 | 	TUint32 iData[1];
 | 
|  |     71 | 
 | 
|  |     72 | 	void Set(TInt aLength);
 | 
|  |     73 | 	void Verify(TInt aLength);
 | 
|  |     74 | 	void Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength);
 | 
|  |     75 | 	};
 | 
|  |     76 | 
 | 
|  |     77 | void STestCell::Set(TInt aLength)
 | 
|  |     78 | 	{
 | 
|  |     79 | 	TInt i;
 | 
|  |     80 | 	TUint32 x = (TUint32)this ^ (TUint32)aLength ^ (TUint32)EMagic;
 | 
|  |     81 | 	aLength -= RHeap::EAllocCellSize;
 | 
|  |     82 | 	if (aLength==0)
 | 
|  |     83 | 		return;
 | 
|  |     84 | 	iLength = x;
 | 
|  |     85 | 	aLength /= sizeof(TUint32);
 | 
|  |     86 | 	for (i=0; i<aLength-1; ++i)
 | 
|  |     87 | 		{
 | 
|  |     88 | 		x *= 69069;
 | 
|  |     89 | 		x += 41;
 | 
|  |     90 | 		iData[i] = x;
 | 
|  |     91 | 		}
 | 
|  |     92 | 	}
 | 
|  |     93 | 
 | 
|  |     94 | void STestCell::Verify(TInt aLength)
 | 
|  |     95 | 	{
 | 
|  |     96 | 	Verify(this, aLength, aLength);
 | 
|  |     97 | 	}
 | 
|  |     98 | 
 | 
|  |     99 | void STestCell::Verify(const TAny* aInitPtr, TInt aInitLength, TInt aLength)
 | 
|  |    100 | 	{
 | 
|  |    101 | 	TInt i;
 | 
|  |    102 | 	TUint32 x = (TUint32)aInitPtr ^ (TUint32)aInitLength ^ (TUint32)EMagic;
 | 
|  |    103 | 	aLength -= RHeap::EAllocCellSize;
 | 
|  |    104 | 	if (aLength==0)
 | 
|  |    105 | 		return;
 | 
|  |    106 | 	test(iLength == x);
 | 
|  |    107 | 	aLength /= sizeof(TUint32);
 | 
|  |    108 | 	for (i=0; i<aLength-1; ++i)
 | 
|  |    109 | 		{
 | 
|  |    110 | 		x *= 69069;
 | 
|  |    111 | 		x += 41;
 | 
|  |    112 | 		test(iData[i] == x);
 | 
|  |    113 | 		}
 | 
|  |    114 | 	}
 | 
|  |    115 | 
 | 
|  |    116 | class RTestHeap : public RHeap
 | 
|  |    117 | 	{
 | 
|  |    118 | public:
 | 
|  |    119 | 	DECL_GET(TInt,AccessCount)
 | 
|  |    120 | 	DECL_GET(TInt,HandleCount)
 | 
|  |    121 | 	DECL_GET(TInt*,Handles)
 | 
|  |    122 | 	DECL_GET(TUint32,Flags)
 | 
|  |    123 | 	DECL_GET(TInt,CellCount)
 | 
|  |    124 | 	DECL_GET(TInt,TotalAllocSize)
 | 
|  |    125 | 	DECL_GET(TInt,MinLength)
 | 
|  |    126 | 	DECL_GET(TInt,Offset)
 | 
|  |    127 | 	DECL_GET(TInt,GrowBy)
 | 
|  |    128 | 	DECL_GET(TInt,ChunkHandle)
 | 
|  |    129 | 	DECL_GET2(const RFastLock&,Lock,LockRef)
 | 
|  |    130 | 	DECL_GET(TUint8*,Top)
 | 
|  |    131 | 	DECL_GET(TInt,Align)
 | 
|  |    132 | 	DECL_GET(TInt,MinCell)
 | 
|  |    133 | 	DECL_GET(TInt,PageSize)
 | 
|  |    134 | 	DECL_GET2(const SCell&,Free,FreeRef)
 | 
|  |    135 | public:
 | 
|  |    136 | 	TInt CheckAllocatedCell(const TAny* aCell) const;
 | 
|  |    137 | 	void FullCheckAllocatedCell(const TAny* aCell) const;
 | 
|  |    138 | 	TAny* TestAlloc(TInt aSize);
 | 
|  |    139 | 	void TestFree(TAny* aPtr);
 | 
|  |    140 | 	TAny* TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0);
 | 
|  |    141 | 	void FullCheck();
 | 
|  |    142 | 	static void WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen);
 | 
|  |    143 | 	TInt FreeCellLen(const TAny* aPtr) const;
 | 
|  |    144 | 	static RTestHeap* FixedHeap(TInt aMaxLength, TInt aAlign=0, TBool aSingleThread=ETrue);
 | 
|  |    145 | 	void TakeChunkOwnership(RChunk aChunk);
 | 
|  |    146 | 	TInt LastFreeCellLen(void) const;
 | 
|  |    147 | 	TInt CalcComp(TInt aCompSize);
 | 
|  |    148 | 	void ForceCompress(TInt aFreed);
 | 
|  |    149 | 	};
 | 
|  |    150 | 
 | 
|  |    151 | TInt RTestHeap::CheckAllocatedCell(const TAny* aCell) const
 | 
|  |    152 | 	{
 | 
|  |    153 | 	SCell* pC = GetAddress(aCell);
 | 
|  |    154 | 	TInt len = pC->len;
 | 
|  |    155 | 	TUint8* pEnd = (TUint8*)pC + len;
 | 
|  |    156 | 	TEST_ALIGN(aCell, iAlign);
 | 
|  |    157 | 	TEST_ALIGN(len, iAlign);
 | 
|  |    158 | 	test(len >= iMinCell);
 | 
|  |    159 | 	test((TUint8*)pC>=iBase && pEnd<=iTop);
 | 
|  |    160 | 	return len;
 | 
|  |    161 | 	}
 | 
|  |    162 | 
 | 
|  |    163 | void RTestHeap::FullCheckAllocatedCell(const TAny* aCell) const
 | 
|  |    164 | 	{
 | 
|  |    165 | 	((STestCell*)aCell)->Verify(CheckAllocatedCell(aCell));
 | 
|  |    166 | 	}
 | 
|  |    167 | 
 | 
|  |    168 | TAny* RTestHeap::TestAlloc(TInt aSize)
 | 
|  |    169 | 	{
 | 
|  |    170 | 	TAny* p = Alloc(aSize);
 | 
|  |    171 | 	if (p)
 | 
|  |    172 | 		{
 | 
|  |    173 | 		TInt len = CheckAllocatedCell(p);
 | 
|  |    174 | 		test((len-RHeap::EAllocCellSize)>=aSize);
 | 
|  |    175 | 		((STestCell*)p)->Set(len);
 | 
|  |    176 | 		}
 | 
|  |    177 | 	return p;
 | 
|  |    178 | 	}
 | 
|  |    179 | 
 | 
|  |    180 | void RTestHeap::TestFree(TAny* aPtr)
 | 
|  |    181 | 	{
 | 
|  |    182 | 	if (aPtr)
 | 
|  |    183 | 		FullCheckAllocatedCell(aPtr);
 | 
|  |    184 | 	Free(aPtr);
 | 
|  |    185 | 	}
 | 
|  |    186 | 
 | 
|  |    187 | TAny* RTestHeap::TestReAlloc(TAny* aPtr, TInt aSize, TInt aMode)
 | 
|  |    188 | 	{
 | 
|  |    189 | 	TInt old_len = aPtr ? CheckAllocatedCell(aPtr) : 0;
 | 
|  |    190 | 	if (aPtr)
 | 
|  |    191 | 		((STestCell*)aPtr)->Verify(old_len);
 | 
|  |    192 | 	TAny* p = ReAlloc(aPtr, aSize, aMode);
 | 
|  |    193 | 	if (!p)
 | 
|  |    194 | 		{
 | 
|  |    195 | 		((STestCell*)aPtr)->Verify(old_len);
 | 
|  |    196 | 		return p;
 | 
|  |    197 | 		}
 | 
|  |    198 | 	TInt new_len = CheckAllocatedCell(p);
 | 
|  |    199 | 	test((new_len-RHeap::EAllocCellSize)>=aSize);
 | 
|  |    200 | 	if (p == aPtr)
 | 
|  |    201 | 		{
 | 
|  |    202 | 		((STestCell*)p)->Verify(p, old_len, Min(old_len, new_len));
 | 
|  |    203 | 		if (new_len != old_len)
 | 
|  |    204 | 			((STestCell*)p)->Set(new_len);
 | 
|  |    205 | 		return p;
 | 
|  |    206 | 		}
 | 
|  |    207 | 	test(!(aMode & ENeverMove));
 | 
|  |    208 | 	test((new_len > old_len) || (aMode & EAllowMoveOnShrink));
 | 
|  |    209 | 	if (old_len)
 | 
|  |    210 | 		((STestCell*)p)->Verify(aPtr, old_len, Min(old_len, new_len));
 | 
|  |    211 | 	if (new_len != old_len)
 | 
|  |    212 | 		((STestCell*)p)->Set(new_len);
 | 
|  |    213 | 	return p;
 | 
|  |    214 | 	}
 | 
|  |    215 | 
 | 
|  |    216 | struct SHeapCellInfo
 | 
|  |    217 | 	{
 | 
|  |    218 | 	RTestHeap* iHeap;
 | 
|  |    219 | 	TInt iTotalAlloc;
 | 
|  |    220 | 	TInt iTotalAllocSize;
 | 
|  |    221 | 	TInt iTotalFree;
 | 
|  |    222 | 	TUint8* iNextCell;
 | 
|  |    223 | 	};
 | 
|  |    224 | 
 | 
|  |    225 | void RTestHeap::WalkFullCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen)
 | 
|  |    226 | 	{
 | 
|  |    227 | 	(void)aCell;
 | 
|  |    228 | 	::SHeapCellInfo& info = *(::SHeapCellInfo*)aPtr;
 | 
|  |    229 | 	switch(aType)
 | 
|  |    230 | 		{
 | 
|  |    231 | 		case EGoodAllocatedCell:
 | 
|  |    232 | 			{
 | 
|  |    233 | 			test(aCell == info.iNextCell);
 | 
|  |    234 | 			TInt len = ((SCell*)aCell)->len;
 | 
|  |    235 | 			test(len == aLen);
 | 
|  |    236 | 			info.iNextCell += len;
 | 
|  |    237 | 			++info.iTotalAlloc;
 | 
|  |    238 | 			info.iTotalAllocSize += (aLen-EAllocCellSize);
 | 
|  |    239 | 			STestCell* pT = (STestCell*)((TUint8*)aCell + EAllocCellSize);
 | 
|  |    240 | 			pT->Verify(len);
 | 
|  |    241 | 			break;
 | 
|  |    242 | 			}
 | 
|  |    243 | 		case EGoodFreeCell:
 | 
|  |    244 | 			{
 | 
|  |    245 | 			test(aCell == info.iNextCell);
 | 
|  |    246 | 			TInt len = ((SCell*)aCell)->len;
 | 
|  |    247 | 			test(len == aLen);
 | 
|  |    248 | 			info.iNextCell += len;
 | 
|  |    249 | 			++info.iTotalFree;
 | 
|  |    250 | 			break;
 | 
|  |    251 | 			}
 | 
|  |    252 | 		default:
 | 
|  |    253 | 			test.Printf(_L("TYPE=%d ??\n"),aType);
 | 
|  |    254 | 			test(0);
 | 
|  |    255 | 			break;
 | 
|  |    256 | 		}
 | 
|  |    257 | 	}
 | 
|  |    258 | 
 | 
|  |    259 | void RTestHeap::FullCheck()
 | 
|  |    260 | 	{
 | 
|  |    261 | 	::SHeapCellInfo info;
 | 
|  |    262 | 	Mem::FillZ(&info, sizeof(info));
 | 
|  |    263 | 	info.iHeap = this;
 | 
|  |    264 | 	info.iNextCell = iBase;
 | 
|  |    265 | 	DebugFunction(EWalk, (TAny*)&WalkFullCheckCell, &info);
 | 
|  |    266 | 	test(info.iNextCell == iTop);
 | 
|  |    267 | 	test(info.iTotalAlloc == iCellCount);
 | 
|  |    268 | 	test(info.iTotalAllocSize == iTotalAllocSize);
 | 
|  |    269 | 	}
 | 
|  |    270 | 
 | 
|  |    271 | TInt RTestHeap::FreeCellLen(const TAny* aPtr) const
 | 
|  |    272 | 	{
 | 
|  |    273 | 	SCell* p = iFree.next;
 | 
|  |    274 | 	SCell* q = (SCell*)((TUint8*)aPtr - EAllocCellSize);
 | 
|  |    275 | 	for (; p && p!=q; p = p->next) {}
 | 
|  |    276 | 	if (p == q)
 | 
|  |    277 | 		return p->len - EAllocCellSize;
 | 
|  |    278 | 	return -1;
 | 
|  |    279 | 	}
 | 
|  |    280 | 
 | 
|  |    281 | TInt RTestHeap::LastFreeCellLen(void) const
 | 
|  |    282 | 	{
 | 
|  |    283 | 	SCell* p = iFree.next;
 | 
|  |    284 | 	if (p==NULL)
 | 
|  |    285 | 		return -1;	
 | 
|  |    286 | 	for (; p->next; p=p->next){}
 | 
|  |    287 | 	return p->len;
 | 
|  |    288 | 	}
 | 
|  |    289 | 
 | 
|  |    290 | 
 | 
|  |    291 | /** Checks whether a call to Compress() will actually perform a reduction 
 | 
|  |    292 | 	of the heap.
 | 
|  |    293 | 	Relies on the free last cell on the heap being cell that has just been freed
 | 
|  |    294 | 	plus any extra.
 | 
|  |    295 | 	Intended for use by t_heap2.cpp - DoTest4().  
 | 
|  |    296 | 	@param aFreedSize The size in bytes of the cell that was freed
 | 
|  |    297 | */
 | 
|  |    298 | TInt RTestHeap::CalcComp(TInt aFreedSize)
 | 
|  |    299 | 	{	
 | 
|  |    300 | 	TInt largestCell=0;
 | 
|  |    301 | 	largestCell = LastFreeCellLen();
 | 
|  |    302 | 	// if the largest cell is too small or it would have been compressed by the
 | 
|  |    303 | 	// free operation then return 0.
 | 
|  |    304 | 	if (largestCell < iPageSize || aFreedSize >= KHeapShrinkHysRatio*(iGrowBy>>8))
 | 
|  |    305 | 		{
 | 
|  |    306 | 		return 0;			
 | 
|  |    307 | 		}
 | 
|  |    308 | 		else
 | 
|  |    309 | 		{
 | 
|  |    310 | 		return _ALIGN_DOWN(aFreedSize,iPageSize);
 | 
|  |    311 | 		}	
 | 
|  |    312 | 	}
 | 
|  |    313 | 	
 | 
|  |    314 | /** compress the heap if the KHeapShrinkRatio is too large for what we are
 | 
|  |    315 | 	expecting in DoTest4().
 | 
|  |    316 | */
 | 
|  |    317 | void RTestHeap::ForceCompress(TInt aFreed)
 | 
|  |    318 | 	{	
 | 
|  |    319 | 	if (aFreed < KHeapShrinkHysRatio*(iGrowBy>>8))
 | 
|  |    320 | 		{
 | 
|  |    321 | 		Compress();
 | 
|  |    322 | 		}
 | 
|  |    323 | 	}
 | 
|  |    324 | RTestHeap* RTestHeap::FixedHeap(TInt aMaxLength, TInt aAlign, TBool aSingleThread)
 | 
|  |    325 | 	{
 | 
|  |    326 | 	RChunk c;
 | 
|  |    327 | 	TInt bottom = 0x40000;
 | 
|  |    328 | 	TInt top = bottom + aMaxLength;
 | 
|  |    329 | 	TInt r = c.CreateDisconnectedLocal(bottom, top, top + bottom, EOwnerThread);
 | 
|  |    330 | 	if (r!=KErrNone)
 | 
|  |    331 | 		return NULL;
 | 
|  |    332 | 	TUint8* base = c.Base() + bottom;
 | 
|  |    333 | 	RTestHeap* h = (RTestHeap*)UserHeap::FixedHeap(base, aMaxLength, aAlign, aSingleThread);
 | 
|  |    334 | 	if (!aAlign)
 | 
|  |    335 | 		aAlign = RHeap::ECellAlignment;
 | 
|  |    336 | 	test((TUint8*)h == base);
 | 
|  |    337 | 	test(h->AccessCount() == 1);
 | 
|  |    338 | 	test(h->HandleCount() == (aSingleThread ? 0 : 1));
 | 
|  |    339 | 	test(h->Handles() == (aSingleThread ? NULL : (TInt*)&h->LockRef()));
 | 
|  |    340 | 	test(h->Flags() == TUint32(RAllocator::EFixedSize | (aSingleThread ? RAllocator::ESingleThreaded : 0)));
 | 
|  |    341 | 	test(h->CellCount() == 0);
 | 
|  |    342 | 	test(h->TotalAllocSize() == 0);
 | 
|  |    343 | 	test(h->MaxLength() == aMaxLength);
 | 
|  |    344 | 	test(h->MinLength() == h->Top() - (TUint8*)h);
 | 
|  |    345 | 	test(h->Offset() == 0);
 | 
|  |    346 | 	test(h->GrowBy() == 0);
 | 
|  |    347 | 	test(h->ChunkHandle() == 0);
 | 
|  |    348 | 	test(h->Align() == aAlign);
 | 
|  |    349 | 	TInt min_cell = _ALIGN_UP((KHeapMinCellSize + Max((TInt)RHeap::EAllocCellSize, (TInt)RHeap::EFreeCellSize)), aAlign);
 | 
|  |    350 | 	TInt hdr_len = _ALIGN_UP(sizeof(RHeap) + RHeap::EAllocCellSize, aAlign) - RHeap::EAllocCellSize;
 | 
|  |    351 | 	TInt user_len = _ALIGN_DOWN(aMaxLength - hdr_len, aAlign);
 | 
|  |    352 | 	test(h->Base() == base + hdr_len);
 | 
|  |    353 | 	test(h->MinCell() == min_cell);
 | 
|  |    354 | 	test(h->Top() - h->Base() == user_len);
 | 
|  |    355 | 	test(h->FreeRef().next == (RHeap::SCell*)h->Base());
 | 
|  |    356 | 	h->TakeChunkOwnership(c);
 | 
|  |    357 | 	return h;
 | 
|  |    358 | 	}
 | 
|  |    359 | 
 | 
|  |    360 | void RTestHeap::TakeChunkOwnership(RChunk aChunk)
 | 
|  |    361 | 	{
 | 
|  |    362 | 	iChunkHandle = aChunk.Handle();
 | 
|  |    363 | 	++iHandleCount;
 | 
|  |    364 | 	iHandles = &iChunkHandle;
 | 
|  |    365 | 	}
 | 
|  |    366 | 
 | 
|  |    367 | 
 | 
|  |    368 | #define	ACCESS_COUNT(h)		(((RTestHeap*)h)->AccessCount())
 | 
|  |    369 | #define	HANDLE_COUNT(h)		(((RTestHeap*)h)->HandleCount())
 | 
|  |    370 | #define	HANDLES(h)			(((RTestHeap*)h)->Handles())
 | 
|  |    371 | #define	FLAGS(h)			(((RTestHeap*)h)->Flags())
 | 
|  |    372 | #define	CELL_COUNT(h)		(((RTestHeap*)h)->CellCount())
 | 
|  |    373 | #define	TOTAL_ALLOC_SIZE(h)	(((RTestHeap*)h)->TotalAllocSize())
 | 
|  |    374 | #define	MIN_LENGTH(h)		(((RTestHeap*)h)->MinLength())
 | 
|  |    375 | #define	OFFSET(h)			(((RTestHeap*)h)->Offset())
 | 
|  |    376 | #define	GROW_BY(h)			(((RTestHeap*)h)->GrowBy())
 | 
|  |    377 | #define	CHUNK_HANDLE(h)		(((RTestHeap*)h)->ChunkHandle())
 | 
|  |    378 | #define	LOCK_REF(h)			(((RTestHeap*)h)->LockRef())
 | 
|  |    379 | #define	TOP(h)				(((RTestHeap*)h)->Top())
 | 
|  |    380 | #define	ALIGN(h)			(((RTestHeap*)h)->Align())
 | 
|  |    381 | #define	MIN_CELL(h)			(((RTestHeap*)h)->MinCell())
 | 
|  |    382 | #define	PAGE_SIZE(h)		(((RTestHeap*)h)->PageSize())
 | 
|  |    383 | #define	FREE_REF(h)			(((RTestHeap*)h)->FreeRef())
 | 
|  |    384 | 
 | 
|  |    385 | void DoTest1(RHeap* aH)
 | 
|  |    386 | 	{
 | 
|  |    387 | 	RTestHeap* h = (RTestHeap*)aH;
 | 
|  |    388 | 	test.Printf(_L("Test Alloc: min=%x max=%x align=%d growby=%d\n"),
 | 
|  |    389 | 						h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
 | 
|  |    390 | 	TInt l;
 | 
|  |    391 | 	TAny* p = NULL;
 | 
|  |    392 | 	TUint8* next = h->Base();
 | 
|  |    393 | 	TUint8* top = h->Top();
 | 
|  |    394 | 	TUint8* limit = (TUint8*)h + h->MaxLength();
 | 
|  |    395 | 	TBool fixed = h->Flags() & RAllocator::EFixedSize;
 | 
|  |    396 | 	for (l=1; l<=1024; ++l)
 | 
|  |    397 | 		{
 | 
|  |    398 | 		TInt remain1 = top - next;
 | 
|  |    399 | 		TInt xl1 = _ALIGN_UP(Max((l+RHeap::EAllocCellSize), h->MinCell()), h->Align());
 | 
|  |    400 | 		p = h->TestAlloc(l);
 | 
|  |    401 | 		if ( (fixed && remain1 < xl1) || (next + xl1 > limit) )
 | 
|  |    402 | 			{
 | 
|  |    403 | 			test(p == NULL);
 | 
|  |    404 | 			test(top == h->Top());
 | 
|  |    405 | 			test.Printf(_L("Alloc failed at l=%d next=%08x\n"), l, next);
 | 
|  |    406 | 			break;
 | 
|  |    407 | 			}
 | 
|  |    408 | 		test(p == next + RHeap::EAllocCellSize);
 | 
|  |    409 | 		if (xl1 > remain1)
 | 
|  |    410 | 			{
 | 
|  |    411 | 			// no room for this cell
 | 
|  |    412 | 			TInt g = h->GrowBy();
 | 
|  |    413 | 			while (xl1 > remain1)
 | 
|  |    414 | 				{
 | 
|  |    415 | 				top += g;
 | 
|  |    416 | 				remain1 += g;
 | 
|  |    417 | 				}
 | 
|  |    418 | 			}
 | 
|  |    419 | 		test(top == h->Top());
 | 
|  |    420 | 		if (xl1 + h->MinCell() > remain1)
 | 
|  |    421 | 			{
 | 
|  |    422 | 			// this cell fits but remainder is too small or nonexistent
 | 
|  |    423 | 			xl1 = top - next;
 | 
|  |    424 | 			next = top;
 | 
|  |    425 | 			test(h->FreeRef().next == NULL);
 | 
|  |    426 | 			}
 | 
|  |    427 | 		else
 | 
|  |    428 | 			{
 | 
|  |    429 | 			// this cell fits and remainder can be reused
 | 
|  |    430 | 			next += xl1;
 | 
|  |    431 | 			}
 | 
|  |    432 | 		test(aH->AllocLen(p) == xl1 - RHeap::EAllocCellSize);
 | 
|  |    433 | 		}
 | 
|  |    434 | 	h->FullCheck();
 | 
|  |    435 | 	}
 | 
|  |    436 | 
 | 
|  |    437 | void DoTest2(RHeap* aH)
 | 
|  |    438 | 	{
 | 
|  |    439 | 	RTestHeap* h = (RTestHeap*)aH;
 | 
|  |    440 | 	test.Printf(_L("Test Free: min=%x max=%x align=%d growby=%d\n"),
 | 
|  |    441 | 						h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
 | 
|  |    442 | 	TInt al;
 | 
|  |    443 | 	TInt min = h->MinCell();
 | 
|  |    444 | 	TBool pad = EFalse;
 | 
|  |    445 | 	for (al=1; al<256; (void)((pad=!pad)!=0 || (al+=al+1)) )
 | 
|  |    446 | 		{
 | 
|  |    447 | 		TAny* p[32];
 | 
|  |    448 | 		TInt last_len = 0;
 | 
|  |    449 | 		TAny* last = NULL;
 | 
|  |    450 | 		TInt i;
 | 
|  |    451 | 		test.Printf(_L("al=%d pad=%d\n"), al, pad);
 | 
|  |    452 | 		TUint8* top=0;
 | 
|  |    453 | 		TAny* spare=0;
 | 
|  |    454 | 		TBool heapReduced = EFalse;
 | 
|  |    455 | 		for (i=0; i<32; ++i)
 | 
|  |    456 | 			{
 | 
|  |    457 | 			// Check whether the cell created for the allocation of al would end up
 | 
|  |    458 | 			// including extra bytes from the last free cell that aren't enough
 | 
|  |    459 | 			// to create a new free cell.
 | 
|  |    460 | 			top = h->Top();
 | 
|  |    461 | 			TInt freeLen=h->LastFreeCellLen();
 | 
|  |    462 | 			TInt actualAllocBytes = Max(_ALIGN_UP(al + RHeap::EAllocCellSize, h->Align()), min);
 | 
|  |    463 | 			TInt remainingBytes = freeLen - actualAllocBytes;
 | 
|  |    464 | 			if (remainingBytes < min)
 | 
|  |    465 | 				{
 | 
|  |    466 | 				// Force the heap to grow so that once this allocation is freed
 | 
|  |    467 | 				// the free cell left will be large enough to include the al allocation
 | 
|  |    468 | 				// and to create a new free cell if necessary.
 | 
|  |    469 | 				actualAllocBytes = _ALIGN_UP(actualAllocBytes + min, h->Align());
 | 
|  |    470 | 				TAny* q = h->TestAlloc(actualAllocBytes);
 | 
|  |    471 | 				// Check heap has grown
 | 
|  |    472 | 				test(top < h->Top());
 | 
|  |    473 | 				top = h->Top();
 | 
|  |    474 | 				test(q!=NULL);
 | 
|  |    475 | 				// Have grown the heap so allocate a cell as a place holder to stop
 | 
|  |    476 | 				// the heap being shrunk and the actual cell we want to allocate from being the
 | 
|  |    477 | 				// wrong size
 | 
|  |    478 | 				spare=h->TestAlloc(8);
 | 
|  |    479 | 				h->TestFree(q);
 | 
|  |    480 | 				// Ensure heap wasn't shrunk after free
 | 
|  |    481 | 				test(top == h->Top());
 | 
|  |    482 | 				}
 | 
|  |    483 | 			top = h->Top();
 | 
|  |    484 | 			// Allocate the new 
 | 
|  |    485 | 			p[i] = h->TestAlloc(al);
 | 
|  |    486 | 			test(p[i]!=NULL);
 | 
|  |    487 | 			if (remainingBytes < min)
 | 
|  |    488 | 				{// now safe to free any padding as p[i] now allocated and its size can't change
 | 
|  |    489 | 				h->TestFree(spare);
 | 
|  |    490 | 				}
 | 
|  |    491 | 			TInt tmp1=h->AllocLen(p[i]);
 | 
|  |    492 | 			TInt tmp2=Max(_ALIGN_UP(al+RHeap::EAllocCellSize,h->Align()), min)-RHeap::EAllocCellSize;
 | 
|  |    493 | 			test(tmp1 == tmp2);
 | 
|  |    494 | 			}
 | 
|  |    495 | 		last = (TUint8*)p[31] + _ALIGN_UP(Max((al + RHeap::EAllocCellSize), min), h->Align());
 | 
|  |    496 | 		last_len = h->FreeCellLen(last);
 | 
|  |    497 | 		test(last_len > 0);
 | 
|  |    498 | 		if (pad)
 | 
|  |    499 | 			{
 | 
|  |    500 | 			test(h->TestAlloc(last_len) == last);
 | 
|  |    501 | 			test(h->FreeRef().next == NULL);
 | 
|  |    502 | 			}
 | 
|  |    503 | 		else
 | 
|  |    504 | 			last = NULL;
 | 
|  |    505 | 		top = h->Top();
 | 
|  |    506 | 		for (i=0,heapReduced=EFalse; i<32; ++i)
 | 
|  |    507 | 			{
 | 
|  |    508 | 			h->TestFree(p[i]);
 | 
|  |    509 | 			TInt fl = h->FreeCellLen(p[i]);
 | 
|  |    510 | 			TInt xfl = _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize;
 | 
|  |    511 | 			if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
 | 
|  |    512 | 				{
 | 
|  |    513 | 				top = h->Top();
 | 
|  |    514 | 				heapReduced = ETrue;
 | 
|  |    515 | 				}
 | 
|  |    516 | 
 | 
|  |    517 | 			if (i < 31 || pad)
 | 
|  |    518 | 				test(fl == xfl);
 | 
|  |    519 | 			else
 | 
|  |    520 | 				{
 | 
|  |    521 | 				if (!heapReduced)
 | 
|  |    522 | 					test(fl == xfl + RHeap::EAllocCellSize + last_len);
 | 
|  |    523 | 				else
 | 
|  |    524 | 					{
 | 
|  |    525 | 					heapReduced = EFalse;
 | 
|  |    526 | 					}
 | 
|  |    527 | 				}
 | 
|  |    528 | 			test(h->TestAlloc(al)==p[i]);
 | 
|  |    529 | 			}
 | 
|  |    530 | 		for (i=0,heapReduced=EFalse; i<31; ++i)
 | 
|  |    531 | 			{
 | 
|  |    532 | 			TInt j = i+1;
 | 
|  |    533 | 			TUint8* q;
 | 
|  |    534 | 			// Free to adjacent cells and check that the free cell left is the combined
 | 
|  |    535 | 			// size of the 2 adjacent cells just freed
 | 
|  |    536 | 			h->TestFree(p[i]);
 | 
|  |    537 | 			h->TestFree(p[j]);
 | 
|  |    538 | 			TInt fl = h->FreeCellLen(p[i]);
 | 
|  |    539 | 			if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
 | 
|  |    540 | 				{
 | 
|  |    541 | 				top = h->Top();
 | 
|  |    542 | 				heapReduced = ETrue;
 | 
|  |    543 | 				}
 | 
|  |    544 | 			TInt xfl = 2 * _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize;
 | 
|  |    545 | 			if (j < 31 || pad)
 | 
|  |    546 | 				test(fl == xfl);
 | 
|  |    547 | 			else
 | 
|  |    548 | 				{
 | 
|  |    549 | 				if (!heapReduced)
 | 
|  |    550 | 					test(fl == xfl + RHeap::EAllocCellSize + last_len);
 | 
|  |    551 | 				else
 | 
|  |    552 | 					{
 | 
|  |    553 | 					heapReduced = EFalse;
 | 
|  |    554 | 					}
 | 
|  |    555 | 				}
 | 
|  |    556 | 			test(h->FreeCellLen(p[j]) < 0);
 | 
|  |    557 | 			test(h->TestAlloc(fl)==p[i]);
 | 
|  |    558 | 			test(h->Top() == top);
 | 
|  |    559 | 			h->TestFree(p[i]);
 | 
|  |    560 | 			test(h->FreeCellLen(p[i]) == fl);
 | 
|  |    561 | 			// test when you alloc a cell that is larger than cells just freed
 | 
|  |    562 | 			// that its position is not the same as the freed cells
 | 
|  |    563 | 			// will hold for all cells except top/last one
 | 
|  |    564 | 			if (j < 31 && !pad && fl < last_len)
 | 
|  |    565 | 				{
 | 
|  |    566 | 				q = (TUint8*)h->TestAlloc(fl+1);
 | 
|  |    567 | 				if (h->Top() > top)
 | 
|  |    568 | 					top = h->Top();
 | 
|  |    569 | 				test(h->Top() == top);
 | 
|  |    570 | 				test(q > p[i]);
 | 
|  |    571 | 				h->TestFree(q);
 | 
|  |    572 | 				if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
 | 
|  |    573 | 					{
 | 
|  |    574 | 					top = h->Top();
 | 
|  |    575 | 					heapReduced = ETrue;
 | 
|  |    576 | 					}
 | 
|  |    577 | 				}
 | 
|  |    578 | 			// check cell that is just smaller than space but not small enough 
 | 
|  |    579 | 			// for a new free cell to be created, is the size of whole free cell
 | 
|  |    580 | 			test(h->TestAlloc(fl-min+1)==p[i]);
 | 
|  |    581 | 			test(h->Top() == top);
 | 
|  |    582 | 			test(h->AllocLen(p[i])==fl);
 | 
|  |    583 | 			h->TestFree(p[i]);
 | 
|  |    584 | 			// Check cell that is small enough for new free cell and alloc'd cell to be
 | 
|  |    585 | 			// created at p[i] cell is created at p[i]
 | 
|  |    586 | 			test(h->TestAlloc(fl-min)==p[i]);
 | 
|  |    587 | 			test(h->Top() == top);
 | 
|  |    588 | 			// check free cell is at expected position
 | 
|  |    589 | 			q = (TUint8*)p[i] + fl - min + RHeap::EAllocCellSize;
 | 
|  |    590 | 			test(h->FreeCellLen(q) == min - RHeap::EAllocCellSize);
 | 
|  |    591 | 			// alloc 0 length cell at q, will work as new cell of min length will be created
 | 
|  |    592 | 			test(h->TestAlloc(0) == q);
 | 
|  |    593 | 			test(h->Top() == top);
 | 
|  |    594 | 			h->TestFree(p[i]);
 | 
|  |    595 | 			test(h->FreeCellLen(p[i]) == fl - min);
 | 
|  |    596 | 			h->TestFree(q);
 | 
|  |    597 | 			// again check free cells are combined
 | 
|  |    598 | 			test(h->FreeCellLen(q) < 0);
 | 
|  |    599 | 			test(h->FreeCellLen(p[i]) == fl);
 | 
|  |    600 | 			// check reallocating the cells places them back to same positions
 | 
|  |    601 | 			test(h->TestAlloc(al)==p[i]);
 | 
|  |    602 | 			test(h->Top() == top);
 | 
|  |    603 | 			test(h->TestAlloc(al)==p[j]);
 | 
|  |    604 | 			test(h->Top() == top);
 | 
|  |    605 | 			if (pad)
 | 
|  |    606 | 				test(h->FreeRef().next == NULL);
 | 
|  |    607 | 			}
 | 
|  |    608 | 		for (i=0,heapReduced=EFalse; i<30; ++i)
 | 
|  |    609 | 			{
 | 
|  |    610 | 			TInt j = i+1;
 | 
|  |    611 | 			TInt k = i+2;
 | 
|  |    612 | 			TUint8* q;
 | 
|  |    613 | 			// Free 3 adjacent cells and check free cell created is combined size
 | 
|  |    614 | 			h->TestFree(p[i]);
 | 
|  |    615 | 			h->TestFree(p[k]);
 | 
|  |    616 | 			h->TestFree(p[j]);
 | 
|  |    617 | 			h->FullCheck();
 | 
|  |    618 | 			if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
 | 
|  |    619 | 				{
 | 
|  |    620 | 				top = h->Top();
 | 
|  |    621 | 				heapReduced = ETrue;
 | 
|  |    622 | 				}
 | 
|  |    623 | 			TInt fl = h->FreeCellLen(p[i]);
 | 
|  |    624 | 			TInt xfl = 3 * _ALIGN_UP(Max((al + RHeap::EAllocCellSize), h->MinCell()), h->Align()) - RHeap::EAllocCellSize;
 | 
|  |    625 | 			if (k < 31 || pad)
 | 
|  |    626 | 				test(fl == xfl);
 | 
|  |    627 | 			else
 | 
|  |    628 | 				{
 | 
|  |    629 | 				if (!heapReduced)
 | 
|  |    630 | 					test(fl == xfl + RHeap::EAllocCellSize + last_len);
 | 
|  |    631 | 				else
 | 
|  |    632 | 					{
 | 
|  |    633 | 					heapReduced = EFalse;
 | 
|  |    634 | 					}
 | 
|  |    635 | 				}
 | 
|  |    636 | 			test(h->FreeCellLen(p[j]) < 0);
 | 
|  |    637 | 			test(h->FreeCellLen(p[k]) < 0);
 | 
|  |    638 | 			//ensure created free cell is allocated to new cell of free cell size
 | 
|  |    639 | 			test(h->TestAlloc(fl)==p[i]);
 | 
|  |    640 | 			test(h->Top() == top);
 | 
|  |    641 | 			h->TestFree(p[i]);
 | 
|  |    642 | 			test(h->FreeCellLen(p[i]) == fl);
 | 
|  |    643 | 			if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
 | 
|  |    644 | 				top = h->Top();
 | 
|  |    645 | 			if (k < 31 && !pad && fl < last_len)
 | 
|  |    646 | 				{
 | 
|  |    647 | 				// Test new cell one larger than free cell size is allocated somewhere else
 | 
|  |    648 | 				q = (TUint8*)h->TestAlloc(fl+1);
 | 
|  |    649 | 				if (h->Top() > top)
 | 
|  |    650 | 					top = h->Top();
 | 
|  |    651 | 				test(h->Top() == top); 
 | 
|  |    652 | 				test(q > p[i]);
 | 
|  |    653 | 				h->TestFree(q);
 | 
|  |    654 | 				if (h->Top() < top) // heap was reduced due to small KHeapShrinkHysRatio and big KHeapMinCellSize
 | 
|  |    655 | 					{
 | 
|  |    656 | 					top = h->Top();
 | 
|  |    657 | 					heapReduced = ETrue;
 | 
|  |    658 | 					}
 | 
|  |    659 | 				}
 | 
|  |    660 | 			// check allocating cell just smaller than free cell size but
 | 
|  |    661 | 			// too large for neew free cell to be created, is size of whole free cell
 | 
|  |    662 | 			test(h->TestAlloc(fl-min+1)==p[i]);
 | 
|  |    663 | 			test(h->Top() == top);
 | 
|  |    664 | 			test(h->AllocLen(p[i])==fl);
 | 
|  |    665 | 			h->TestFree(p[i]);
 | 
|  |    666 | 			// ensure free cell is created this time as well as alloc'd cell
 | 
|  |    667 | 			test(h->TestAlloc(fl-min)==p[i]);
 | 
|  |    668 | 			test(h->Top() == top);
 | 
|  |    669 | 			q = (TUint8*)p[i] + fl - min + RHeap::EAllocCellSize;
 | 
|  |    670 | 			test(h->FreeCellLen(q) == min - RHeap::EAllocCellSize);
 | 
|  |    671 | 			test(h->TestAlloc(0) == q);
 | 
|  |    672 | 			test(h->Top() == top);
 | 
|  |    673 | 			h->TestFree(p[i]);
 | 
|  |    674 | 			test(h->FreeCellLen(p[i]) == fl - min);
 | 
|  |    675 | 			h->TestFree(q);
 | 
|  |    676 | 			test(h->FreeCellLen(q) < 0);
 | 
|  |    677 | 			test(h->FreeCellLen(p[i]) == fl);
 | 
|  |    678 | 			// realloc all cells and check heap not expanded
 | 
|  |    679 | 			test(h->TestAlloc(al)==p[i]);
 | 
|  |    680 | 			test(h->Top() == top);
 | 
|  |    681 | 			test(h->TestAlloc(al)==p[j]);
 | 
|  |    682 | 			test(h->Top() == top);
 | 
|  |    683 | 			test(h->TestAlloc(al)==p[k]);
 | 
|  |    684 | 			test(h->Top() == top);
 | 
|  |    685 | 			// If padding than no space should left on heap
 | 
|  |    686 | 			if (pad)
 | 
|  |    687 | 				test(h->FreeRef().next == NULL);
 | 
|  |    688 | 			}
 | 
|  |    689 | 		// when padding this will free padding from top of heap
 | 
|  |    690 | 		h->TestFree(last);
 | 
|  |    691 | 		}
 | 
|  |    692 | 	h->FullCheck();
 | 
|  |    693 | 	}
 | 
|  |    694 | 
 | 
|  |    695 | void DoTest3(RHeap* aH)
 | 
|  |    696 | 	{
 | 
|  |    697 | 	RTestHeap* h = (RTestHeap*)aH;
 | 
|  |    698 | 	test.Printf(_L("Test ReAlloc: min=%x max=%x align=%d growby=%d\n"),
 | 
|  |    699 | 						h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
 | 
|  |    700 | 	// allocate continuous heap cell, then free them and reallocate again
 | 
|  |    701 | 	TInt al;
 | 
|  |    702 | 	for (al=1; al<256; al+=al+1)
 | 
|  |    703 | 		{
 | 
|  |    704 | 		TAny* p0 = h->TestAlloc(al);
 | 
|  |    705 | 		TInt al0 = h->AllocLen(p0);
 | 
|  |    706 | 		h->TestFree(p0);
 | 
|  |    707 | 		TAny* p1 = h->TestReAlloc(NULL, al, 0);
 | 
|  |    708 | 		TInt al1 = h->AllocLen(p1);
 | 
|  |    709 | 		test(p1 == p0);
 | 
|  |    710 | 		test(al1 == al0);
 | 
|  |    711 | 		h->TestFree(p1);
 | 
|  |    712 | 		TAny* p2 = h->TestAlloc(1);
 | 
|  |    713 | 		TAny* p3 = h->TestReAlloc(p2, al, 0);
 | 
|  |    714 | 		test(p3 == p0);
 | 
|  |    715 | 		TInt al3 = h->AllocLen(p3);
 | 
|  |    716 | 		test(al3 == al0);
 | 
|  |    717 | 		h->TestFree(p3);
 | 
|  |    718 | 		TAny* p4 = h->TestAlloc(1024);
 | 
|  |    719 | 		TAny* p5 = h->TestReAlloc(p4, al, 0);
 | 
|  |    720 | 		test(p5 == p0);
 | 
|  |    721 | 		TInt al5 = h->AllocLen(p5);
 | 
|  |    722 | 		test(al5 == al0);
 | 
|  |    723 | 		h->TestFree(p5);
 | 
|  |    724 | 		}
 | 
|  |    725 | 	TInt i;
 | 
|  |    726 | 	TInt j;
 | 
|  |    727 | 	for (j=0; j<30; j+=3)
 | 
|  |    728 | 		{
 | 
|  |    729 | 		TAny* p[30];
 | 
|  |    730 | 		TInt ala[30];
 | 
|  |    731 | 		TInt fla[30];
 | 
|  |    732 | 		h->Reset();
 | 
|  |    733 | 		for (i=0; i<30; ++i)
 | 
|  |    734 | 			{
 | 
|  |    735 | 			p[i] = h->TestAlloc(8*i*i);
 | 
|  |    736 | 			ala[i] = h->AllocLen(p[i]);
 | 
|  |    737 | 			fla[i] = 0;
 | 
|  |    738 | 			}
 | 
|  |    739 | 		for (i=1; i<30; i+=3)
 | 
|  |    740 | 			{
 | 
|  |    741 | 			h->TestFree(p[i]);
 | 
|  |    742 | 			fla[i] = h->FreeCellLen(p[i]);
 | 
|  |    743 | 			test(fla[i] == ala[i]);
 | 
|  |    744 | 			test(h->FreeCellLen(p[i-1]) < 0);
 | 
|  |    745 | 			test(h->FreeCellLen(p[i+1]) < 0);
 | 
|  |    746 | 			}
 | 
|  |    747 | 		h->FullCheck();
 | 
|  |    748 | 		TInt al1 = _ALIGN_UP(Max((RHeap::EAllocCellSize + 1), h->MinCell()), h->Align());
 | 
|  |    749 | 		// adjust al1 for some case when reallocated heap cell will not be shrinked because remainder will not big enough
 | 
|  |    750 | 		// to form a new free cell due to a big KHeapMinCellSize value
 | 
|  |    751 | 		TInt alaj = ala[j] + RHeap::EAllocCellSize;
 | 
|  |    752 | 		if (al1 < alaj && alaj - al1 < h->MinCell())
 | 
|  |    753 | 			al1 = alaj;
 | 
|  |    754 | 		TAny* p1 = h->TestReAlloc(p[j], 1, RHeap::ENeverMove);
 | 
|  |    755 | 		test(p1 == p[j]);
 | 
|  |    756 | 		test(h->AllocLen(p1) == al1 - RHeap::EAllocCellSize);
 | 
|  |    757 | 		TAny* p1b = (TUint8*)p1 + al1;
 | 
|  |    758 | 		test(h->FreeCellLen(p1b) == fla[j+1] + RHeap::EAllocCellSize + ala[j] - al1);
 | 
|  |    759 | 		TInt l2 = ala[j] + fla[j+1] + RHeap::EAllocCellSize; // max without moving
 | 
|  |    760 | 		TInt l3 = l2 - h->MinCell();
 | 
|  |    761 | 		TAny* p3 = h->TestReAlloc(p[j], l3, RHeap::ENeverMove);
 | 
|  |    762 | 		test(p3 == p[j]);
 | 
|  |    763 | 		TAny* p3b = (TUint8*)p3 + h->AllocLen(p3) + RHeap::EAllocCellSize;
 | 
|  |    764 | 		test(h->FreeCellLen(p3b) == h->MinCell() - RHeap::EAllocCellSize);
 | 
|  |    765 | 		TAny* p2 = h->TestReAlloc(p[j], l2, RHeap::ENeverMove);
 | 
|  |    766 | 		test(p2 == p[j]);
 | 
|  |    767 | 		test(h->AllocLen(p2) == l2);
 | 
|  |    768 | 		TAny* p4 = h->TestReAlloc(p[j], l2+1, RHeap::ENeverMove);
 | 
|  |    769 | 		test(p4 == NULL);
 | 
|  |    770 | 		test(h->AllocLen(p2) == l2);
 | 
|  |    771 | 		TAny* p5 = h->TestReAlloc(p[j], l2+1, 0);
 | 
|  |    772 | 		TInt k = 0;
 | 
|  |    773 | 		for (; k<30 && fla[k] <= l2; ++k) {}
 | 
|  |    774 | 		if (k < 30)
 | 
|  |    775 | 			test(p5 == p[k]);
 | 
|  |    776 | 		else
 | 
|  |    777 | 			test(p5 >= (TUint8*)p[29] + ala[29]);
 | 
|  |    778 | 		test(h->FreeCellLen(p2) == ala[j] + ala[j+1] + RHeap::EAllocCellSize);
 | 
|  |    779 | 		TInt ali = _ALIGN_UP(RHeap::EAllocCellSize,h->Align());
 | 
|  |    780 | 		TAny* p6b = (TUint8*)p[j+2] + ala[j+2] - ali + RHeap::EAllocCellSize;
 | 
|  |    781 | 		test(h->FreeCellLen(p6b) < 0);
 | 
|  |    782 | 		TAny* p6 = h->TestReAlloc(p[j+2], ala[j+2] - ali , 0);
 | 
|  |    783 | 		test(p6 == p[j+2]);
 | 
|  |    784 | 		if (h->AllocLen(p6) != ala[j+2]) // allocated heap cell size changed
 | 
|  |    785 | 			test(h->FreeCellLen(p6b) == h->MinCell() - RHeap::EAllocCellSize);
 | 
|  |    786 | 		TInt g = h->GrowBy();
 | 
|  |    787 | 		TAny* p7 = h->TestReAlloc(p5, 8*g, 0);
 | 
|  |    788 | 		test(p7 >= p5);
 | 
|  |    789 | 		TUint8* p8 = (TUint8*)p7 - RHeap::EAllocCellSize + al1;
 | 
|  |    790 | 		TUint8* p9 = (TUint8*)_ALIGN_UP(TLinAddr(p8), h->PageSize());
 | 
|  |    791 | 		if (p9-p8 < h->MinCell())
 | 
|  |    792 | 			p9 += h->PageSize();
 | 
|  |    793 | 		TAny* p7b = h->TestReAlloc(p7, 1, 0);
 | 
|  |    794 | 		test(p7b == p7);
 | 
|  |    795 | 		test(h->Top() + (RHeap::EAllocCellSize & (h->Align()-1)) == p9);
 | 
|  |    796 | 
 | 
|  |    797 | 		h->FullCheck();
 | 
|  |    798 | 		}
 | 
|  |    799 | 	}
 | 
|  |    800 | 
 | 
|  |    801 | // Test compression
 | 
|  |    802 | // {1 free cell, >1 free cell} x {reduce cell, eliminate cell, reduce cell but too small}
 | 
|  |    803 | //
 | 
|  |    804 | void DoTest4(RHeap* aH)
 | 
|  |    805 | 	{
 | 
|  |    806 | 	RTestHeap* h = (RTestHeap*)aH;
 | 
|  |    807 | 	test.Printf(_L("Test Compress: min=%x max=%x align=%d growby=%d\n"),
 | 
|  |    808 | 						h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
 | 
|  |    809 | 	TInt page_size;
 | 
|  |    810 | 	UserHal::PageSizeInBytes(page_size);
 | 
|  |    811 | 	test(page_size == h->PageSize());
 | 
|  |    812 | 	TInt g = h->GrowBy();
 | 
|  |    813 | 	TEST_ALIGN(g, page_size);
 | 
|  |    814 | 	test(g >= page_size);
 | 
|  |    815 | 	RChunk c;
 | 
|  |    816 | 	c.SetHandle(h->ChunkHandle());
 | 
|  |    817 | 	TInt align = h->Align();
 | 
|  |    818 | 	TInt minc = h->MinCell();
 | 
|  |    819 | 
 | 
|  |    820 | 	TInt orig_size = c.Size();
 | 
|  |    821 | 	TUint8* orig_top = h->Top();
 | 
|  |    822 | 
 | 
|  |    823 | 	// size in bytes that last free cell on the top of the heap must be 
 | 
|  |    824 | 	// before the heap will be shrunk, size must include the no of bytes to
 | 
|  |    825 | 	// store the cell data/header i.e RHeap::EAllocCellSize
 | 
|  |    826 | 	TInt shrinkThres = KHeapShrinkHysRatio*(g>>8);
 | 
|  |    827 | 
 | 
|  |    828 | 	TInt pass;
 | 
|  |    829 | 	for (pass=0; pass<2; ++pass)
 | 
|  |    830 | 		{
 | 
|  |    831 | 		TUint8* p0 = (TUint8*)h->TestAlloc(4);
 | 
|  |    832 | 		test(p0 == h->Base() + RHeap::EAllocCellSize);
 | 
|  |    833 | 		TInt l1 = h->Top() - (TUint8*)h->FreeRef().next;
 | 
|  |    834 | 		TEST_ALIGN(l1, align);
 | 
|  |    835 | 		l1 -= RHeap::EAllocCellSize;
 | 
|  |    836 | 		TUint8* p1;
 | 
|  |    837 | 		// Grow heap by 2*iGrowBy bytes
 | 
|  |    838 | 		p1 = (TUint8*)h->TestAlloc(l1 + 2*g);
 | 
|  |    839 | 		test(p1 == p0 + h->AllocLen(p0) + RHeap::EAllocCellSize);
 | 
|  |    840 | 		test(h->Top() - orig_top == 2*g);
 | 
|  |    841 | 		test(c.Size() - orig_size == 2*g);
 | 
|  |    842 | 		// May compress heap, may not
 | 
|  |    843 | 		h->TestFree(p1);
 | 
|  |    844 | 		h->ForceCompress(2*g);
 | 
|  |    845 | 		test(h->Top() == orig_top);
 | 
|  |    846 | 		test(c.Size() == orig_size);
 | 
|  |    847 | 		test((TUint8*)h->FreeRef().next == p1 - RHeap::EAllocCellSize);
 | 
|  |    848 | 		h->FullCheck();
 | 
|  |    849 | 		//if KHeapShrinkHysRatio is > 2.0 then heap compression will occur here
 | 
|  |    850 | 		test(h->Compress() == 0);
 | 
|  |    851 | 		test(h->TestAlloc(l1) == p1);
 | 
|  |    852 | 		test(h->FreeRef().next == NULL);
 | 
|  |    853 | 		if (pass)
 | 
|  |    854 | 			h->TestFree(p0);	// leave another free cell on second pass
 | 
|  |    855 | 		TInt l2 = g - RHeap::EAllocCellSize;
 | 
|  |    856 | 		// Will grow heap by iGrowBy bytes
 | 
|  |    857 | 		TUint8* p2 = (TUint8*)h->TestAlloc(l2);
 | 
|  |    858 | 		test(p2 == orig_top + RHeap::EAllocCellSize);
 | 
|  |    859 | 		test(h->Top() - orig_top == g);
 | 
|  |    860 | 		test(c.Size() - orig_size == g);
 | 
|  |    861 | 		// may or may not compress heap
 | 
|  |    862 | 		h->TestFree(p2);
 | 
|  |    863 | 		if (l2+RHeap::EAllocCellSize >= shrinkThres)
 | 
|  |    864 | 			{
 | 
|  |    865 | 			// When KHeapShrinkRatio small enough heap will have been compressed
 | 
|  |    866 | 			test(h->Top() == orig_top);			
 | 
|  |    867 | 			if (pass)
 | 
|  |    868 | 				{
 | 
|  |    869 | 				test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
 | 
|  |    870 | 				test((TUint8*)h->FreeRef().next->next == NULL);
 | 
|  |    871 | 				}
 | 
|  |    872 | 			else
 | 
|  |    873 | 				test((TUint8*)h->FreeRef().next == NULL);
 | 
|  |    874 | 			}
 | 
|  |    875 | 		else
 | 
|  |    876 | 			{			
 | 
|  |    877 | 			test(h->Top() - orig_top == g);
 | 
|  |    878 | 			if (pass)
 | 
|  |    879 | 				{
 | 
|  |    880 | 				test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
 | 
|  |    881 | 				test((TUint8*)h->FreeRef().next->next == orig_top);
 | 
|  |    882 | 				}
 | 
|  |    883 | 			else
 | 
|  |    884 | 				test((TUint8*)h->FreeRef().next == orig_top);
 | 
|  |    885 | 			}
 | 
|  |    886 | 		// this compress will only do anything if the KHeapShrinkRatio is large 
 | 
|  |    887 | 		// enough to introduce hysteresis otherwise the heap would have been compressed 
 | 
|  |    888 | 		// by the free operation itself
 | 
|  |    889 | 		TInt tmp1,tmp2;
 | 
|  |    890 | 		tmp2=h->CalcComp(g);
 | 
|  |    891 | 		tmp1=h->Compress();
 | 
|  |    892 | 		test(tmp1 == tmp2);
 | 
|  |    893 | 		test(h->Top() == orig_top);
 | 
|  |    894 | 		test(c.Size() == orig_size);
 | 
|  |    895 | 		h->FullCheck();
 | 
|  |    896 | 		// shouldn't compress heap as already compressed
 | 
|  |    897 | 		test(h->Compress() == 0);
 | 
|  |    898 | 		//grow heap by iGrowBy bytes
 | 
|  |    899 | 		test(h->TestAlloc(l2) == p2);
 | 
|  |    900 | 		//grow heap by iGrowBy bytes
 | 
|  |    901 | 		TUint8* p3 = (TUint8*)h->TestAlloc(l2);
 | 
|  |    902 | 		test(p3 == p2 + g);
 | 
|  |    903 | 		test(h->Top() - orig_top == 2*g);
 | 
|  |    904 | 		test(c.Size() - orig_size == 2*g);
 | 
|  |    905 | 		// may or may not reduce heap
 | 
|  |    906 | 		h->TestFree(p2);
 | 
|  |    907 | 		// may or may not reduce heap
 | 
|  |    908 | 		h->TestFree(p3);
 | 
|  |    909 | 		h->ForceCompress(2*g);
 | 
|  |    910 | 		test(h->Top() == orig_top);
 | 
|  |    911 | 		test(c.Size() == orig_size);
 | 
|  |    912 | 		h->FullCheck();
 | 
|  |    913 | 		if (pass)
 | 
|  |    914 | 			{
 | 
|  |    915 | 			test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
 | 
|  |    916 | 			test((TUint8*)h->FreeRef().next->next == NULL);
 | 
|  |    917 | 			}
 | 
|  |    918 | 		else
 | 
|  |    919 | 			test((TUint8*)h->FreeRef().next == NULL);
 | 
|  |    920 | 		//grow heap by iGrowBy bytes
 | 
|  |    921 | 		test(h->TestAlloc(l2) == p2);
 | 
|  |    922 | 		//grow heap by iGrowBy*2 + page size bytes
 | 
|  |    923 | 		test(h->TestAlloc(l2 + g + page_size) == p3);
 | 
|  |    924 | 		test(h->Top() - orig_top == 4*g);
 | 
|  |    925 | 		test(c.Size() - orig_size == 4*g);
 | 
|  |    926 | 		// will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatioDflt
 | 
|  |    927 | 		test(h->TestReAlloc(p3, page_size - RHeap::EAllocCellSize, 0) == p3);
 | 
|  |    928 | 		h->ForceCompress(g+page_size);
 | 
|  |    929 | 		test(h->Top() - orig_top == g + page_size);
 | 
|  |    930 | 		test(c.Size() - orig_size == g + page_size);
 | 
|  |    931 | 		h->FullCheck();
 | 
|  |    932 | 		// will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatio1
 | 
|  |    933 | 		h->TestFree(p2);
 | 
|  |    934 | 		// will compress heap if KHeapShrinkHysRatio <= KHeapShrinkRatio1 && g<=page_size
 | 
|  |    935 | 		// or KHeapShrinkHysRatio >= 2.0 and g==page_size
 | 
|  |    936 | 		h->TestFree(p3);
 | 
|  |    937 | 		// may or may not perform further compression
 | 
|  |    938 | 		tmp1=h->CalcComp(g+page_size);
 | 
|  |    939 | 		tmp2=h->Compress();
 | 
|  |    940 | 		test(tmp1 == tmp2);
 | 
|  |    941 | 		test(h->Top() == orig_top);
 | 
|  |    942 | 		test(c.Size() == orig_size);
 | 
|  |    943 | 		h->FullCheck();
 | 
|  |    944 | 		test(h->TestAlloc(l2 - minc) == p2);
 | 
|  |    945 | 		test(h->TestAlloc(l2 + g + page_size + minc) == p3 - minc);
 | 
|  |    946 | 		test(h->Top() - orig_top == 4*g);
 | 
|  |    947 | 		test(c.Size() - orig_size == 4*g);
 | 
|  |    948 | 		h->TestFree(p3 - minc);
 | 
|  |    949 | 		h->ForceCompress(l2 + g + page_size + minc);
 | 
|  |    950 | 		test(h->Top() - orig_top == g);
 | 
|  |    951 | 		test(c.Size() - orig_size == g);
 | 
|  |    952 | 		h->FullCheck();
 | 
|  |    953 | 		if (pass)
 | 
|  |    954 | 			{
 | 
|  |    955 | 			test((TUint8*)h->FreeRef().next == p0 - RHeap::EAllocCellSize);
 | 
|  |    956 | 			test((TUint8*)h->FreeRef().next->next == p3 - minc - RHeap::EAllocCellSize);
 | 
|  |    957 | 			}
 | 
|  |    958 | 		else
 | 
|  |    959 | 			test((TUint8*)h->FreeRef().next == p3 - minc - RHeap::EAllocCellSize);
 | 
|  |    960 | 		h->TestFree(p2);
 | 
|  |    961 | 		if (l2+RHeap::EAllocCellSize >= shrinkThres)
 | 
|  |    962 | 			{
 | 
|  |    963 | 			// When KHeapShrinkRatio small enough heap will have been compressed
 | 
|  |    964 | 			test(h->Top() == orig_top);
 | 
|  |    965 | 			test(c.Size() - orig_size == 0);
 | 
|  |    966 | 			}
 | 
|  |    967 | 		else
 | 
|  |    968 | 			{
 | 
|  |    969 | 			test(h->Top() - orig_top == g);
 | 
|  |    970 | 			test(c.Size() - orig_size == g);
 | 
|  |    971 | 			}
 | 
|  |    972 | 		h->FullCheck();
 | 
|  |    973 | 		if ( ((TLinAddr)orig_top & (align-1)) == 0)
 | 
|  |    974 | 			{
 | 
|  |    975 | 			TAny* free;
 | 
|  |    976 | 			TEST_ALIGN(p2 - RHeap::EAllocCellSize, page_size);
 | 
|  |    977 | 			// will have free space of g-minc
 | 
|  |    978 | 			test(h->TestAlloc(l2 + minc) == p2);
 | 
|  |    979 | 			test(h->Top() - orig_top == 2*g);
 | 
|  |    980 | 			test(c.Size() - orig_size == 2*g);
 | 
|  |    981 | 			free = pass ? h->FreeRef().next->next : h->FreeRef().next;
 | 
|  |    982 | 			test(free != NULL);
 | 
|  |    983 | 			test(h->TestReAlloc(p2, l2 - 4, 0) == p2);
 | 
|  |    984 | 			TInt freeSp = g-minc + (l2+minc - (l2-4));
 | 
|  |    985 | 			TInt adjust = 0;
 | 
|  |    986 | 			if (freeSp >= shrinkThres && freeSp-page_size >= minc)
 | 
|  |    987 | 				{
 | 
|  |    988 | 				// if page_size is less than growBy (g) then heap will be shrunk
 | 
|  |    989 | 				// by less than a whole g.
 | 
|  |    990 | 				adjust = g-((page_size<g)?page_size:0);
 | 
|  |    991 | 				}
 | 
|  |    992 | 			test(h->Top() - orig_top == 2*g - adjust);
 | 
|  |    993 | 			test(c.Size() - orig_size == 2*g - adjust);
 | 
|  |    994 | 			free = pass ? h->FreeRef().next->next : h->FreeRef().next;
 | 
|  |    995 | 			test(free != NULL);
 | 
|  |    996 | 			TEST_ALIGN(TLinAddr(free)+4, page_size);
 | 
|  |    997 | 			test(h->TestAlloc(l2 + g + page_size + 4) == p3 - 4);
 | 
|  |    998 | 			test(h->Top() - orig_top == 4*g - adjust);
 | 
|  |    999 | 			test(c.Size() - orig_size == 4*g - adjust);
 | 
|  |   1000 | 			h->TestFree(p3 - 4);
 | 
|  |   1001 | 			h->ForceCompress(l2 + g + page_size + 4);
 | 
|  |   1002 | 			test(h->Top() - orig_top == g + page_size);
 | 
|  |   1003 | 			test(c.Size() - orig_size == g + page_size);
 | 
|  |   1004 | 			h->FullCheck();
 | 
|  |   1005 | 			h->TestFree(p2);
 | 
|  |   1006 | 			h->ForceCompress(l2-4);
 | 
|  |   1007 | 			test(h->Compress() == 0);
 | 
|  |   1008 | 			// check heap is grown, will have free space of g-minc
 | 
|  |   1009 | 			test(h->TestAlloc(l2 + minc) == p2);
 | 
|  |   1010 | 			test(h->Top() - orig_top == 2*g);
 | 
|  |   1011 | 			test(c.Size() - orig_size == 2*g);
 | 
|  |   1012 | 			free = pass ? h->FreeRef().next->next : h->FreeRef().next;
 | 
|  |   1013 | 			test(free != NULL);
 | 
|  |   1014 | 			// may shrink heap as will now have g+minc free bytes
 | 
|  |   1015 | 			test(h->TestReAlloc(p2, l2 - minc, 0) == p2);
 | 
|  |   1016 | 			if (g+minc >= shrinkThres)
 | 
|  |   1017 | 				{
 | 
|  |   1018 | 				test(h->Top() - orig_top == g);
 | 
|  |   1019 | 				test(c.Size() - orig_size == g);
 | 
|  |   1020 | 				}
 | 
|  |   1021 | 			else
 | 
|  |   1022 | 				{
 | 
|  |   1023 | 				test(h->Top() - orig_top == 2*g);
 | 
|  |   1024 | 				test(c.Size() - orig_size == 2*g);
 | 
|  |   1025 | 				}
 | 
|  |   1026 | 			free = pass ? h->FreeRef().next->next : h->FreeRef().next;
 | 
|  |   1027 | 			test(free != NULL);
 | 
|  |   1028 | 			TEST_ALIGN(TLinAddr(free)+minc, page_size);
 | 
|  |   1029 | 			test(h->TestAlloc(l2 + g + page_size + minc) == p3 - minc);
 | 
|  |   1030 | 			test(h->Top() - orig_top == 4*g);
 | 
|  |   1031 | 			test(c.Size() - orig_size == 4*g);
 | 
|  |   1032 | 			h->TestFree(p3 - minc);
 | 
|  |   1033 | 			h->ForceCompress(l2 + g + page_size + minc);
 | 
|  |   1034 | 			test(h->Top() - orig_top == g);
 | 
|  |   1035 | 			test(c.Size() - orig_size == g);
 | 
|  |   1036 | 			h->FullCheck();
 | 
|  |   1037 | 			h->TestFree(p2);
 | 
|  |   1038 | 			}
 | 
|  |   1039 | 
 | 
|  |   1040 | 		h->TestFree(p1);
 | 
|  |   1041 | 		if (pass == 0)
 | 
|  |   1042 | 			h->TestFree(p0);
 | 
|  |   1043 | 		h->Compress();
 | 
|  |   1044 | 		}
 | 
|  |   1045 | 	h->FullCheck();
 | 
|  |   1046 | 	}
 | 
|  |   1047 | 
 | 
|  |   1048 | void Test1()
 | 
|  |   1049 | 	{
 | 
|  |   1050 | 	RHeap* h;
 | 
|  |   1051 | 	h = RTestHeap::FixedHeap(0x1000, 0);
 | 
|  |   1052 | 	test(h != NULL);
 | 
|  |   1053 | 	DoTest1(h);
 | 
|  |   1054 | 	h->Close();
 | 
|  |   1055 | 	h = RTestHeap::FixedHeap(0x1000, 0, EFalse);
 | 
|  |   1056 | 	test(h != NULL);
 | 
|  |   1057 | 	DoTest1(h);
 | 
|  |   1058 | 	h->Close();
 | 
|  |   1059 | 	h = RTestHeap::FixedHeap(0x10000, 64);
 | 
|  |   1060 | 	test(h != NULL);
 | 
|  |   1061 | 	DoTest1(h);
 | 
|  |   1062 | 	h->Close();
 | 
|  |   1063 | 	h = RTestHeap::FixedHeap(0x100000, 4096);
 | 
|  |   1064 | 	test(h != NULL);
 | 
|  |   1065 | 	DoTest1(h);
 | 
|  |   1066 | 	h->Close();
 | 
|  |   1067 | 	h = RTestHeap::FixedHeap(0x100000, 8192);
 | 
|  |   1068 | 	test(h != NULL);
 | 
|  |   1069 | 	DoTest1(h);
 | 
|  |   1070 | 	h->Close();
 | 
|  |   1071 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x1000, 0x1000, 4);
 | 
|  |   1072 | 	test(h != NULL);
 | 
|  |   1073 | 	DoTest1(h);
 | 
|  |   1074 | 	h->Close();
 | 
|  |   1075 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x10000, 0x1000, 4);
 | 
|  |   1076 | 	test(h != NULL);
 | 
|  |   1077 | 	DoTest1(h);
 | 
|  |   1078 | 	h->Close();
 | 
|  |   1079 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4096);
 | 
|  |   1080 | 	test(h != NULL);
 | 
|  |   1081 | 	DoTest1(h);
 | 
|  |   1082 | 	h->Close();
 | 
|  |   1083 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4);
 | 
|  |   1084 | 	test(h != NULL);
 | 
|  |   1085 | 	DoTest1(h);
 | 
|  |   1086 | 	h->Reset();
 | 
|  |   1087 | 	DoTest2(h);
 | 
|  |   1088 | 	h->Reset();
 | 
|  |   1089 | 	DoTest3(h);
 | 
|  |   1090 | 	h->Reset();
 | 
|  |   1091 | 	DoTest4(h);
 | 
|  |   1092 | 	h->Close();
 | 
|  |   1093 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 8);
 | 
|  |   1094 | 	test(h != NULL);
 | 
|  |   1095 | 	DoTest1(h);
 | 
|  |   1096 | 	h->Reset();
 | 
|  |   1097 | 	DoTest2(h);
 | 
|  |   1098 | 	h->Reset();
 | 
|  |   1099 | 	DoTest3(h);
 | 
|  |   1100 | 	h->Reset();
 | 
|  |   1101 | 	DoTest4(h);
 | 
|  |   1102 | 	h->Close();
 | 
|  |   1103 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 16);
 | 
|  |   1104 | 	test(h != NULL);
 | 
|  |   1105 | 	DoTest1(h);
 | 
|  |   1106 | 	h->Reset();
 | 
|  |   1107 | 	DoTest2(h);
 | 
|  |   1108 | 	h->Reset();
 | 
|  |   1109 | 	DoTest3(h);
 | 
|  |   1110 | 	h->Reset();
 | 
|  |   1111 | 	DoTest4(h);
 | 
|  |   1112 | 	h->Close();
 | 
|  |   1113 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 32);
 | 
|  |   1114 | 	test(h != NULL);
 | 
|  |   1115 | 	DoTest1(h);
 | 
|  |   1116 | 	h->Reset();
 | 
|  |   1117 | 	DoTest2(h);
 | 
|  |   1118 | 	h->Reset();
 | 
|  |   1119 | 	DoTest3(h);
 | 
|  |   1120 | 	h->Reset();
 | 
|  |   1121 | 	DoTest4(h);
 | 
|  |   1122 | 	h->Close();
 | 
|  |   1123 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x3000, 0x100000, 0x3000, 4);
 | 
|  |   1124 | 	test(h != NULL);
 | 
|  |   1125 | 	DoTest1(h);
 | 
|  |   1126 | 	h->Reset();
 | 
|  |   1127 | 	DoTest2(h);
 | 
|  |   1128 | 	h->Reset();
 | 
|  |   1129 | 	DoTest3(h);
 | 
|  |   1130 | 	h->Reset();
 | 
|  |   1131 | 	DoTest4(h);
 | 
|  |   1132 | 	h->Close();
 | 
|  |   1133 | 	}
 | 
|  |   1134 | 
 | 
|  |   1135 | struct SHeapStress
 | 
|  |   1136 | 	{
 | 
|  |   1137 | 	RThread iThread;
 | 
|  |   1138 | 	volatile TBool iStop;
 | 
|  |   1139 | 	TInt iAllocs;
 | 
|  |   1140 | 	TInt iFailedAllocs;
 | 
|  |   1141 | 	TInt iFrees;
 | 
|  |   1142 | 	TInt iReAllocs;
 | 
|  |   1143 | 	TInt iFailedReAllocs;
 | 
|  |   1144 | 	TInt iChecks;
 | 
|  |   1145 | 	TUint32 iSeed;
 | 
|  |   1146 | 	RAllocator* iAllocator;
 | 
|  |   1147 | 
 | 
|  |   1148 | 	TUint32 Random();
 | 
|  |   1149 | 	};
 | 
|  |   1150 | 
 | 
|  |   1151 | TUint32 SHeapStress::Random()
 | 
|  |   1152 | 	{
 | 
|  |   1153 | 	iSeed *= 69069;
 | 
|  |   1154 | 	iSeed += 41;
 | 
|  |   1155 | 	return iSeed;
 | 
|  |   1156 | 	}
 | 
|  |   1157 | 
 | 
|  |   1158 | TInt RandomLength(TUint32 aRandom)
 | 
|  |   1159 | 	{
 | 
|  |   1160 | 	TUint8 x = (TUint8)aRandom;
 | 
|  |   1161 | 	if (x & 0x80)
 | 
|  |   1162 | 		return (x & 0x7f) << 7;
 | 
|  |   1163 | 	return x & 0x7f;
 | 
|  |   1164 | 	}
 | 
|  |   1165 | 
 | 
|  |   1166 | TInt HeapStress(TAny* aPtr)
 | 
|  |   1167 | 	{
 | 
|  |   1168 | 	SHeapStress& hs = *(SHeapStress*)aPtr;
 | 
|  |   1169 | 	RTestHeap* h = (RTestHeap*)&User::Allocator();
 | 
|  |   1170 | 	TUint8* cell[256];
 | 
|  |   1171 | 	TInt len[256];
 | 
|  |   1172 | 
 | 
|  |   1173 | 	Mem::FillZ(cell, sizeof(cell));
 | 
|  |   1174 | 	Mem::FillZ(len, sizeof(len));
 | 
|  |   1175 | 
 | 
|  |   1176 | 	RThread::Rendezvous(KErrNone);
 | 
|  |   1177 | 	while (!hs.iStop)
 | 
|  |   1178 | 		{
 | 
|  |   1179 | 		// allocate all cells
 | 
|  |   1180 | 		TInt i;
 | 
|  |   1181 | 		for (i=0; i<256; ++i)
 | 
|  |   1182 | 			{
 | 
|  |   1183 | 			if (!cell[i])
 | 
|  |   1184 | 				{
 | 
|  |   1185 | 				++hs.iAllocs;
 | 
|  |   1186 | 				cell[i] = (TUint8*)h->TestAlloc(RandomLength(hs.Random()));
 | 
|  |   1187 | 				if (cell[i])
 | 
|  |   1188 | 					len[i] = h->AllocLen(cell[i]);
 | 
|  |   1189 | 				else
 | 
|  |   1190 | 					++hs.iFailedAllocs;
 | 
|  |   1191 | 				}
 | 
|  |   1192 | 			}
 | 
|  |   1193 | 
 | 
|  |   1194 | 		// free some cells
 | 
|  |   1195 | 		TInt n = 64 + (hs.Random() & 127);
 | 
|  |   1196 | 		while (--n)
 | 
|  |   1197 | 			{
 | 
|  |   1198 | 			i = hs.Random() & 0xff;
 | 
|  |   1199 | 			if (cell[i])
 | 
|  |   1200 | 				{
 | 
|  |   1201 | 				test(h->AllocLen(cell[i]) == len[i]);
 | 
|  |   1202 | 				h->TestFree(cell[i]);
 | 
|  |   1203 | 				cell[i] = NULL;
 | 
|  |   1204 | 				len[i] = 0;
 | 
|  |   1205 | 				++hs.iFrees;
 | 
|  |   1206 | 				}
 | 
|  |   1207 | 			}
 | 
|  |   1208 | 
 | 
|  |   1209 | 		// realloc some cells
 | 
|  |   1210 | 		n = 64 + (hs.Random() & 127);
 | 
|  |   1211 | 		while (--n)
 | 
|  |   1212 | 			{
 | 
|  |   1213 | 			TUint32 rn = hs.Random();
 | 
|  |   1214 | 			i = (rn >> 8) & 0xff;
 | 
|  |   1215 | 			TInt new_len = RandomLength(rn);
 | 
|  |   1216 | 			if (cell[i])
 | 
|  |   1217 | 				{
 | 
|  |   1218 | 				test(h->AllocLen(cell[i]) == len[i]);
 | 
|  |   1219 | 				++hs.iReAllocs;
 | 
|  |   1220 | 				TUint8* p = (TUint8*)h->TestReAlloc(cell[i], new_len, rn >> 16);
 | 
|  |   1221 | 				if (p)
 | 
|  |   1222 | 					{
 | 
|  |   1223 | 					cell[i] = p;
 | 
|  |   1224 | 					len[i] = h->AllocLen(p);
 | 
|  |   1225 | 					}
 | 
|  |   1226 | 				else
 | 
|  |   1227 | 					++hs.iFailedReAllocs;
 | 
|  |   1228 | 				}
 | 
|  |   1229 | 			}
 | 
|  |   1230 | 
 | 
|  |   1231 | 		// check the heap
 | 
|  |   1232 | 		h->Check();
 | 
|  |   1233 | 		++hs.iChecks;
 | 
|  |   1234 | 		}
 | 
|  |   1235 | 	return 0;
 | 
|  |   1236 | 	}
 | 
|  |   1237 | 
 | 
|  |   1238 | void CreateStressThread(SHeapStress& aInfo)
 | 
|  |   1239 | 	{
 | 
|  |   1240 | 	Mem::FillZ(&aInfo, _FOFF(SHeapStress, iSeed));
 | 
|  |   1241 | 	RThread& t = aInfo.iThread;
 | 
|  |   1242 | 	TInt r = t.Create(KNullDesC(), &HeapStress, 0x2000, aInfo.iAllocator, &aInfo);
 | 
|  |   1243 | 	test(r==KErrNone);
 | 
|  |   1244 | 	t.SetPriority(EPriorityLess);
 | 
|  |   1245 | 	TRequestStatus s;
 | 
|  |   1246 | 	t.Rendezvous(s);
 | 
|  |   1247 | 	test(s == KRequestPending);
 | 
|  |   1248 | 	t.Resume();
 | 
|  |   1249 | 	User::WaitForRequest(s);
 | 
|  |   1250 | 	test(s == KErrNone);
 | 
|  |   1251 | 	test(t.ExitType() == EExitPending);
 | 
|  |   1252 | 	t.SetPriority(EPriorityMuchLess);
 | 
|  |   1253 | 	}
 | 
|  |   1254 | 
 | 
|  |   1255 | void StopStressThread(SHeapStress& aInfo)
 | 
|  |   1256 | 	{
 | 
|  |   1257 | 	RThread& t = aInfo.iThread;
 | 
|  |   1258 | 	TRequestStatus s;
 | 
|  |   1259 | 	t.Logon(s);
 | 
|  |   1260 | 	aInfo.iStop = ETrue;
 | 
|  |   1261 | 	User::WaitForRequest(s);
 | 
|  |   1262 | 	const TDesC& exitCat = t.ExitCategory();
 | 
|  |   1263 | 	TInt exitReason = t.ExitReason();
 | 
|  |   1264 | 	TInt exitType = t.ExitType();
 | 
|  |   1265 | 	test.Printf(_L("Exit type %d,%d,%S\n"), exitType, exitReason, &exitCat);
 | 
|  |   1266 | 	test(exitType == EExitKill);
 | 
|  |   1267 | 	test(exitReason == KErrNone);
 | 
|  |   1268 | 	test(s == KErrNone);
 | 
|  |   1269 | 	test.Printf(_L("Total Allocs    : %d\n"), aInfo.iAllocs);
 | 
|  |   1270 | 	test.Printf(_L("Failed Allocs   : %d\n"), aInfo.iFailedAllocs);
 | 
|  |   1271 | 	test.Printf(_L("Total Frees		: %d\n"), aInfo.iFrees);
 | 
|  |   1272 | 	test.Printf(_L("Total ReAllocs  : %d\n"), aInfo.iReAllocs);
 | 
|  |   1273 | 	test.Printf(_L("Failed ReAllocs : %d\n"), aInfo.iFailedReAllocs);
 | 
|  |   1274 | 	test.Printf(_L("Heap checks     : %d\n"), aInfo.iChecks);
 | 
|  |   1275 | 	}
 | 
|  |   1276 | 
 | 
|  |   1277 | void DoStressTest1(RAllocator* aAllocator)
 | 
|  |   1278 | 	{
 | 
|  |   1279 | 	RTestHeap* h = (RTestHeap*)aAllocator;
 | 
|  |   1280 | 	test.Printf(_L("Test Stress 1: min=%x max=%x align=%d growby=%d\n"),
 | 
|  |   1281 | 						h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
 | 
|  |   1282 | 	SHeapStress hs;
 | 
|  |   1283 | 	hs.iSeed = 0xb504f334;
 | 
|  |   1284 | 	hs.iAllocator = aAllocator;
 | 
|  |   1285 | 	CreateStressThread(hs);
 | 
|  |   1286 | 	User::After(10*1000000);
 | 
|  |   1287 | 	StopStressThread(hs);
 | 
|  |   1288 | 	CLOSE_AND_WAIT(hs.iThread);
 | 
|  |   1289 | 	h->FullCheck();
 | 
|  |   1290 | 	}
 | 
|  |   1291 | 
 | 
|  |   1292 | void DoStressTest2(RAllocator* aAllocator)
 | 
|  |   1293 | 	{
 | 
|  |   1294 | 	RTestHeap* h = (RTestHeap*)aAllocator;
 | 
|  |   1295 | 	test.Printf(_L("Test Stress 2: min=%x max=%x align=%d growby=%d\n"),
 | 
|  |   1296 | 						h->MinLength(), h->MaxLength(), h->Align(), h->GrowBy());
 | 
|  |   1297 | 	SHeapStress hs1;
 | 
|  |   1298 | 	SHeapStress hs2;
 | 
|  |   1299 | 	hs1.iSeed = 0xb504f334;
 | 
|  |   1300 | 	hs1.iAllocator = aAllocator;
 | 
|  |   1301 | 	hs2.iSeed = 0xddb3d743;
 | 
|  |   1302 | 	hs2.iAllocator = aAllocator;
 | 
|  |   1303 | 	CreateStressThread(hs1);
 | 
|  |   1304 | 	CreateStressThread(hs2);
 | 
|  |   1305 | 	User::After(20*1000000);
 | 
|  |   1306 | 	StopStressThread(hs1);
 | 
|  |   1307 | 	StopStressThread(hs2);
 | 
|  |   1308 | 	CLOSE_AND_WAIT(hs1.iThread);
 | 
|  |   1309 | 	CLOSE_AND_WAIT(hs2.iThread);
 | 
|  |   1310 | 	h->FullCheck();
 | 
|  |   1311 | 	}
 | 
|  |   1312 | 
 | 
|  |   1313 | void StressTests()
 | 
|  |   1314 | 	{
 | 
|  |   1315 | 	RHeap* h;
 | 
|  |   1316 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 4);
 | 
|  |   1317 | 	test(h != NULL);
 | 
|  |   1318 | 	DoStressTest1(h);
 | 
|  |   1319 | 	h->Reset();
 | 
|  |   1320 | 	DoStressTest2(h);
 | 
|  |   1321 | 	h->Close();
 | 
|  |   1322 | 	h = UserHeap::ChunkHeap(&KNullDesC(), 0x1000, 0x100000, 0x1000, 8);
 | 
|  |   1323 | 	test(h != NULL);
 | 
|  |   1324 | 	DoStressTest1(h);
 | 
|  |   1325 | 	h->Reset();
 | 
|  |   1326 | 	DoStressTest2(h);
 | 
|  |   1327 | 	h->Close();
 | 
|  |   1328 | 	}
 | 
|  |   1329 | 		
 | 
|  |   1330 | TInt TestHeapGrowInPlace(TInt aMode)
 | 
|  |   1331 |     {
 | 
|  |   1332 |     TBool reAllocs=EFalse;
 | 
|  |   1333 |     TBool heapGrew=EFalse;
 | 
|  |   1334 |     
 | 
|  |   1335 |     RHeap* myHeap;
 | 
|  |   1336 |     
 | 
|  |   1337 |     myHeap = UserHeap::ChunkHeap(NULL,0x1000,0x4000,0x1000);
 | 
|  |   1338 |     
 | 
|  |   1339 |     TAny *testBuffer,*testBuffer2;
 | 
|  |   1340 |     // Start size chosen so that 1st realloc will use up exactly all the heap.
 | 
|  |   1341 |     // Later iterations wont, and there will be a free cell at the end of the heap.
 | 
|  |   1342 |     TInt currentSize = ((0x800) - sizeof(RHeap)) - RHeap::EAllocCellSize;
 | 
|  |   1343 |     TInt growBy = 0x800;
 | 
|  |   1344 |     TInt newSpace, space;
 | 
|  |   1345 |     
 | 
|  |   1346 |     testBuffer2 = myHeap->Alloc(currentSize);
 | 
|  |   1347 | 
 | 
|  |   1348 |     newSpace = myHeap->Size();
 | 
|  |   1349 |     do 
 | 
|  |   1350 |     {
 | 
|  |   1351 |     	space = newSpace;
 | 
|  |   1352 | 		testBuffer = testBuffer2;
 | 
|  |   1353 | 	    currentSize+=growBy;
 | 
|  |   1354 | 		testBuffer2 = myHeap->ReAlloc(testBuffer,currentSize,aMode);	
 | 
|  |   1355 | 		
 | 
|  |   1356 | 		newSpace = myHeap->Size();
 | 
|  |   1357 | 		
 | 
|  |   1358 | 		if (testBuffer2) 
 | 
|  |   1359 | 			{
 | 
|  |   1360 | 				
 | 
|  |   1361 | 			if (testBuffer!=testBuffer2)
 | 
|  |   1362 | 					reAllocs = ETrue;
 | 
|  |   1363 | 				
 | 
|  |   1364 | 			if (newSpace>space)
 | 
|  |   1365 | 					heapGrew = ETrue;
 | 
|  |   1366 | 			}
 | 
|  |   1367 | 		growBy-=16;
 | 
|  |   1368 |  	} while (testBuffer2);
 | 
|  |   1369 |     currentSize-=growBy;	
 | 
|  |   1370 |     
 | 
|  |   1371 |     myHeap->Free(testBuffer);
 | 
|  |   1372 |     myHeap->Close();
 | 
|  |   1373 |     
 | 
|  |   1374 |     // How did we do?
 | 
|  |   1375 |     if (reAllocs) 
 | 
|  |   1376 |     	{
 | 
|  |   1377 |     	test.Printf(_L("Failure - Memory was moved!\n"));
 | 
|  |   1378 |     	return -100;
 | 
|  |   1379 |     	}
 | 
|  |   1380 |     if (!heapGrew) 
 | 
|  |   1381 |     	{
 | 
|  |   1382 |     	test.Printf(_L("Failure - Heap Never Grew!\n"));
 | 
|  |   1383 |     	return -200;
 | 
|  |   1384 |     	}
 | 
|  |   1385 |     if (currentSize<= 0x3000) 
 | 
|  |   1386 |     	{
 | 
|  |   1387 |     	test.Printf(_L("Failed to grow by a reasonable amount!\n"));
 | 
|  |   1388 |     	return -300;
 | 
|  |   1389 |     	}
 | 
|  |   1390 |         
 | 
|  |   1391 |     return KErrNone;
 | 
|  |   1392 |     }
 | 
|  |   1393 |     
 | 
|  |   1394 | void ReAllocTests()
 | 
|  |   1395 | 	{
 | 
|  |   1396 | 	test.Next(_L("Testing Grow In Place"));
 | 
|  |   1397 | 	test(TestHeapGrowInPlace(0)==KErrNone);
 | 
|  |   1398 |     test(TestHeapGrowInPlace(RHeap::ENeverMove)==KErrNone);
 | 
|  |   1399 | 	}
 | 
|  |   1400 | 
 | 
|  |   1401 | RHeap* TestDEF078391Heap = 0;
 | 
|  |   1402 | 
 | 
|  |   1403 | TInt TestDEF078391ThreadFunction(TAny*)
 | 
|  |   1404 | 	{
 | 
|  |   1405 |     TestDEF078391Heap = UserHeap::ChunkHeap(NULL,0x1000,0x100000,KMinHeapGrowBy,0,EFalse);
 | 
|  |   1406 | 	return TestDEF078391Heap ? KErrNone : KErrGeneral;
 | 
|  |   1407 | 	}
 | 
|  |   1408 | 
 | 
|  |   1409 | void TestDEF078391()
 | 
|  |   1410 | 	{
 | 
|  |   1411 | 	// Test that creating a multithreaded heap with UserHeap::ChunkHeap
 | 
|  |   1412 | 	// doesn't create any reference counts on the creating thread.
 | 
|  |   1413 | 	// This is done by creating a heap in a named thread, then exiting
 | 
|  |   1414 | 	// the thread and re-creating it with the same name.
 | 
|  |   1415 | 	// This will fail with KErrAlreadyExists if the orinal thread has
 | 
|  |   1416 | 	// not died because of an unclosed reference count.
 | 
|  |   1417 | 	test.Next(_L("Test that creating a multithreaded heap doesn't open references of creator"));
 | 
|  |   1418 | 	_LIT(KThreadName,"ThreadName");
 | 
|  |   1419 | 	RThread t;
 | 
|  |   1420 | 	TInt r=t.Create(KThreadName,TestDEF078391ThreadFunction,0x1000,0x1000,0x100000,NULL);
 | 
|  |   1421 | 	test(r==KErrNone);
 | 
|  |   1422 | 	TRequestStatus status;
 | 
|  |   1423 | 	t.Logon(status);
 | 
|  |   1424 | 	t.Resume();
 | 
|  |   1425 | 	User::WaitForRequest(status);
 | 
|  |   1426 | 	test(status==KErrNone);
 | 
|  |   1427 | 	test(t.ExitType()==EExitKill);
 | 
|  |   1428 | 	test(t.ExitReason()==KErrNone);
 | 
|  |   1429 | 	CLOSE_AND_WAIT(t);
 | 
|  |   1430 | 	test(TestDEF078391Heap!=0);
 | 
|  |   1431 | 	User::After(1000000); // give more opportunity for thread cleanup to happen
 | 
|  |   1432 | 
 | 
|  |   1433 | 	// create thread a second time
 | 
|  |   1434 | 	r=t.Create(KThreadName,TestDEF078391ThreadFunction,0x1000,0x1000,0x100000,NULL);
 | 
|  |   1435 | 	test(r==KErrNone);
 | 
|  |   1436 | 	t.Kill(0);
 | 
|  |   1437 | 	CLOSE_AND_WAIT(t);
 | 
|  |   1438 | 
 | 
|  |   1439 | 	// close the heap that got created earlier
 | 
|  |   1440 | 	TestDEF078391Heap->Close();
 | 
|  |   1441 | 	}
 | 
|  |   1442 | 
 | 
|  |   1443 | TInt E32Main()
 | 
|  |   1444 | 	{
 | 
|  |   1445 | 	test.Title();
 | 
|  |   1446 | 	__KHEAP_MARK;
 | 
|  |   1447 | 	test.Start(_L("Testing heaps"));
 | 
|  |   1448 | 	TestDEF078391();
 | 
|  |   1449 | 	Test1();
 | 
|  |   1450 | 	StressTests();
 | 
|  |   1451 | 	ReAllocTests();
 | 
|  |   1452 | 	test.End();
 | 
|  |   1453 | 	__KHEAP_MARKEND;
 | 
|  |   1454 | 	return 0;
 | 
|  |   1455 | 	}
 |