| 2 |      1 | /*
 | 
|  |      2 | ** 2007 October 14
 | 
|  |      3 | **
 | 
|  |      4 | ** The author disclaims copyright to this source code.  In place of
 | 
|  |      5 | ** a legal notice, here is a blessing:
 | 
|  |      6 | **
 | 
|  |      7 | **    May you do good and not evil.
 | 
|  |      8 | **    May you find forgiveness for yourself and forgive others.
 | 
|  |      9 | **    May you share freely, never taking more than you give.
 | 
|  |     10 | **
 | 
|  |     11 | *************************************************************************
 | 
|  |     12 | ** This file contains the C functions that implement a memory
 | 
|  |     13 | ** allocation subsystem for use by SQLite. 
 | 
|  |     14 | **
 | 
|  |     15 | ** This version of the memory allocation subsystem omits all
 | 
|  |     16 | ** use of malloc().  All dynamically allocatable memory is
 | 
|  |     17 | ** contained in a static array, mem.aPool[].  The size of this
 | 
|  |     18 | ** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
 | 
|  |     19 | **
 | 
|  |     20 | ** This version of the memory allocation subsystem is used if
 | 
|  |     21 | ** and only if SQLITE_MEMORY_SIZE is defined.
 | 
|  |     22 | **
 | 
|  |     23 | ** $Id: mem3.cpp 1282 2008-11-13 09:31:33Z LarsPson $
 | 
|  |     24 | */
 | 
|  |     25 | 
 | 
|  |     26 | /*
 | 
|  |     27 | ** This version of the memory allocator is used only when 
 | 
|  |     28 | ** SQLITE_MEMORY_SIZE is defined.
 | 
|  |     29 | */
 | 
|  |     30 | #if defined(SQLITE_MEMORY_SIZE)
 | 
|  |     31 | #include "sqliteInt.h"
 | 
|  |     32 | 
 | 
|  |     33 | #ifdef SQLITE_MEMDEBUG
 | 
|  |     34 | # error  cannot define both SQLITE_MEMDEBUG and SQLITE_MEMORY_SIZE
 | 
|  |     35 | #endif
 | 
|  |     36 | 
 | 
|  |     37 | /*
 | 
|  |     38 | ** Maximum size (in Mem3Blocks) of a "small" chunk.
 | 
|  |     39 | */
 | 
|  |     40 | #define MX_SMALL 10
 | 
|  |     41 | 
 | 
|  |     42 | 
 | 
|  |     43 | /*
 | 
|  |     44 | ** Number of freelist hash slots
 | 
|  |     45 | */
 | 
|  |     46 | #define N_HASH  61
 | 
|  |     47 | 
 | 
|  |     48 | /*
 | 
|  |     49 | ** A memory allocation (also called a "chunk") consists of two or 
 | 
|  |     50 | ** more blocks where each block is 8 bytes.  The first 8 bytes are 
 | 
|  |     51 | ** a header that is not returned to the user.
 | 
|  |     52 | **
 | 
|  |     53 | ** A chunk is two or more blocks that is either checked out or
 | 
|  |     54 | ** free.  The first block has format u.hdr.  u.hdr.size is the
 | 
|  |     55 | ** size of the allocation in blocks if the allocation is free.
 | 
|  |     56 | ** If the allocation is checked out, u.hdr.size is the negative
 | 
|  |     57 | ** of the size.  Similarly, u.hdr.prevSize is the size of the
 | 
|  |     58 | ** immediately previous allocation.
 | 
|  |     59 | **
 | 
|  |     60 | ** We often identify a chunk by its index in mem.aPool[].  When
 | 
|  |     61 | ** this is done, the chunk index refers to the second block of
 | 
|  |     62 | ** the chunk.  In this way, the first chunk has an index of 1.
 | 
|  |     63 | ** A chunk index of 0 means "no such chunk" and is the equivalent
 | 
|  |     64 | ** of a NULL pointer.
 | 
|  |     65 | **
 | 
|  |     66 | ** The second block of free chunks is of the form u.list.  The
 | 
|  |     67 | ** two fields form a double-linked list of chunks of related sizes.
 | 
|  |     68 | ** Pointers to the head of the list are stored in mem.aiSmall[] 
 | 
|  |     69 | ** for smaller chunks and mem.aiHash[] for larger chunks.
 | 
|  |     70 | **
 | 
|  |     71 | ** The second block of a chunk is user data if the chunk is checked 
 | 
|  |     72 | ** out.
 | 
|  |     73 | */
 | 
|  |     74 | typedef struct Mem3Block Mem3Block;
 | 
|  |     75 | struct Mem3Block {
 | 
|  |     76 |   union {
 | 
|  |     77 |     struct {
 | 
|  |     78 |       int prevSize;   /* Size of previous chunk in Mem3Block elements */
 | 
|  |     79 |       int size;       /* Size of current chunk in Mem3Block elements */
 | 
|  |     80 |     } hdr;
 | 
|  |     81 |     struct {
 | 
|  |     82 |       int next;       /* Index in mem.aPool[] of next free chunk */
 | 
|  |     83 |       int prev;       /* Index in mem.aPool[] of previous free chunk */
 | 
|  |     84 |     } list;
 | 
|  |     85 |   } u;
 | 
|  |     86 | };
 | 
|  |     87 | 
 | 
|  |     88 | /*
 | 
|  |     89 | ** All of the static variables used by this module are collected
 | 
|  |     90 | ** into a single structure named "mem".  This is to keep the
 | 
|  |     91 | ** static variables organized and to reduce namespace pollution
 | 
|  |     92 | ** when this module is combined with other in the amalgamation.
 | 
|  |     93 | */
 | 
|  |     94 | static struct {
 | 
|  |     95 |   /*
 | 
|  |     96 |   ** True if we are evaluating an out-of-memory callback.
 | 
|  |     97 |   */
 | 
|  |     98 |   int alarmBusy;
 | 
|  |     99 |   
 | 
|  |    100 |   /*
 | 
|  |    101 |   ** Mutex to control access to the memory allocation subsystem.
 | 
|  |    102 |   */
 | 
|  |    103 |   sqlite3_mutex *mutex;
 | 
|  |    104 |   
 | 
|  |    105 |   /*
 | 
|  |    106 |   ** The minimum amount of free space that we have seen.
 | 
|  |    107 |   */
 | 
|  |    108 |   int mnMaster;
 | 
|  |    109 | 
 | 
|  |    110 |   /*
 | 
|  |    111 |   ** iMaster is the index of the master chunk.  Most new allocations
 | 
|  |    112 |   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
 | 
|  |    113 |   ** of the current master.  iMaster is 0 if there is not master chunk.
 | 
|  |    114 |   ** The master chunk is not in either the aiHash[] or aiSmall[].
 | 
|  |    115 |   */
 | 
|  |    116 |   int iMaster;
 | 
|  |    117 |   int szMaster;
 | 
|  |    118 | 
 | 
|  |    119 |   /*
 | 
|  |    120 |   ** Array of lists of free blocks according to the block size 
 | 
|  |    121 |   ** for smaller chunks, or a hash on the block size for larger
 | 
|  |    122 |   ** chunks.
 | 
|  |    123 |   */
 | 
|  |    124 |   int aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
 | 
|  |    125 |   int aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
 | 
|  |    126 | 
 | 
|  |    127 |   /*
 | 
|  |    128 |   ** Memory available for allocation
 | 
|  |    129 |   */
 | 
|  |    130 |   Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
 | 
|  |    131 | } mem;
 | 
|  |    132 | 
 | 
|  |    133 | /*
 | 
|  |    134 | ** Unlink the chunk at mem.aPool[i] from list it is currently
 | 
|  |    135 | ** on.  *pRoot is the list that i is a member of.
 | 
|  |    136 | */
 | 
|  |    137 | static void memsys3UnlinkFromList(int i, int *pRoot){
 | 
|  |    138 |   int next = mem.aPool[i].u.list.next;
 | 
|  |    139 |   int prev = mem.aPool[i].u.list.prev;
 | 
|  |    140 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    141 |   if( prev==0 ){
 | 
|  |    142 |     *pRoot = next;
 | 
|  |    143 |   }else{
 | 
|  |    144 |     mem.aPool[prev].u.list.next = next;
 | 
|  |    145 |   }
 | 
|  |    146 |   if( next ){
 | 
|  |    147 |     mem.aPool[next].u.list.prev = prev;
 | 
|  |    148 |   }
 | 
|  |    149 |   mem.aPool[i].u.list.next = 0;
 | 
|  |    150 |   mem.aPool[i].u.list.prev = 0;
 | 
|  |    151 | }
 | 
|  |    152 | 
 | 
|  |    153 | /*
 | 
|  |    154 | ** Unlink the chunk at index i from 
 | 
|  |    155 | ** whatever list is currently a member of.
 | 
|  |    156 | */
 | 
|  |    157 | static void memsys3Unlink(int i){
 | 
|  |    158 |   int size, hash;
 | 
|  |    159 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    160 |   size = mem.aPool[i-1].u.hdr.size;
 | 
|  |    161 |   assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
 | 
|  |    162 |   assert( size>=2 );
 | 
|  |    163 |   if( size <= MX_SMALL ){
 | 
|  |    164 |     memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
 | 
|  |    165 |   }else{
 | 
|  |    166 |     hash = size % N_HASH;
 | 
|  |    167 |     memsys3UnlinkFromList(i, &mem.aiHash[hash]);
 | 
|  |    168 |   }
 | 
|  |    169 | }
 | 
|  |    170 | 
 | 
|  |    171 | /*
 | 
|  |    172 | ** Link the chunk at mem.aPool[i] so that is on the list rooted
 | 
|  |    173 | ** at *pRoot.
 | 
|  |    174 | */
 | 
|  |    175 | static void memsys3LinkIntoList(int i, int *pRoot){
 | 
|  |    176 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    177 |   mem.aPool[i].u.list.next = *pRoot;
 | 
|  |    178 |   mem.aPool[i].u.list.prev = 0;
 | 
|  |    179 |   if( *pRoot ){
 | 
|  |    180 |     mem.aPool[*pRoot].u.list.prev = i;
 | 
|  |    181 |   }
 | 
|  |    182 |   *pRoot = i;
 | 
|  |    183 | }
 | 
|  |    184 | 
 | 
|  |    185 | /*
 | 
|  |    186 | ** Link the chunk at index i into either the appropriate
 | 
|  |    187 | ** small chunk list, or into the large chunk hash table.
 | 
|  |    188 | */
 | 
|  |    189 | static void memsys3Link(int i){
 | 
|  |    190 |   int size, hash;
 | 
|  |    191 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    192 |   size = mem.aPool[i-1].u.hdr.size;
 | 
|  |    193 |   assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
 | 
|  |    194 |   assert( size>=2 );
 | 
|  |    195 |   if( size <= MX_SMALL ){
 | 
|  |    196 |     memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
 | 
|  |    197 |   }else{
 | 
|  |    198 |     hash = size % N_HASH;
 | 
|  |    199 |     memsys3LinkIntoList(i, &mem.aiHash[hash]);
 | 
|  |    200 |   }
 | 
|  |    201 | }
 | 
|  |    202 | 
 | 
|  |    203 | /*
 | 
|  |    204 | ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
 | 
|  |    205 | **
 | 
|  |    206 | ** Also:  Initialize the memory allocation subsystem the first time
 | 
|  |    207 | ** this routine is called.
 | 
|  |    208 | */
 | 
|  |    209 | static void memsys3Enter(void){
 | 
|  |    210 |   if( mem.mutex==0 ){
 | 
|  |    211 |     mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
 | 
|  |    212 |     mem.aPool[0].u.hdr.size = SQLITE_MEMORY_SIZE/8;
 | 
|  |    213 |     mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
 | 
|  |    214 |     mem.iMaster = 1;
 | 
|  |    215 |     mem.szMaster = SQLITE_MEMORY_SIZE/8;
 | 
|  |    216 |     mem.mnMaster = mem.szMaster;
 | 
|  |    217 |   }
 | 
|  |    218 |   sqlite3_mutex_enter(mem.mutex);
 | 
|  |    219 | }
 | 
|  |    220 | 
 | 
|  |    221 | /*
 | 
|  |    222 | ** Return the amount of memory currently checked out.
 | 
|  |    223 | */
 | 
|  |    224 | sqlite3_int64 sqlite3_memory_used(void){
 | 
|  |    225 |   sqlite3_int64 n;
 | 
|  |    226 |   memsys3Enter();
 | 
|  |    227 |   n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
 | 
|  |    228 |   sqlite3_mutex_leave(mem.mutex);  
 | 
|  |    229 |   return n;
 | 
|  |    230 | }
 | 
|  |    231 | 
 | 
|  |    232 | /*
 | 
|  |    233 | ** Return the maximum amount of memory that has ever been
 | 
|  |    234 | ** checked out since either the beginning of this process
 | 
|  |    235 | ** or since the most recent reset.
 | 
|  |    236 | */
 | 
|  |    237 | sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
 | 
|  |    238 |   sqlite3_int64 n;
 | 
|  |    239 |   memsys3Enter();
 | 
|  |    240 |   n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
 | 
|  |    241 |   if( resetFlag ){
 | 
|  |    242 |     mem.mnMaster = mem.szMaster;
 | 
|  |    243 |   }
 | 
|  |    244 |   sqlite3_mutex_leave(mem.mutex);  
 | 
|  |    245 |   return n;
 | 
|  |    246 | }
 | 
|  |    247 | 
 | 
|  |    248 | /*
 | 
|  |    249 | ** Change the alarm callback.
 | 
|  |    250 | **
 | 
|  |    251 | ** This is a no-op for the static memory allocator.  The purpose
 | 
|  |    252 | ** of the memory alarm is to support sqlite3_soft_heap_limit().
 | 
|  |    253 | ** But with this memory allocator, the soft_heap_limit is really
 | 
|  |    254 | ** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
 | 
|  |    255 | */
 | 
|  |    256 | int sqlite3_memory_alarm(
 | 
|  |    257 |   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
 | 
|  |    258 |   void *pArg,
 | 
|  |    259 |   sqlite3_int64 iThreshold
 | 
|  |    260 | ){
 | 
|  |    261 |   return SQLITE_OK;
 | 
|  |    262 | }
 | 
|  |    263 | 
 | 
|  |    264 | /*
 | 
|  |    265 | ** Called when we are unable to satisfy an allocation of nBytes.
 | 
|  |    266 | */
 | 
|  |    267 | static void memsys3OutOfMemory(int nByte){
 | 
|  |    268 |   if( !mem.alarmBusy ){
 | 
|  |    269 |     mem.alarmBusy = 1;
 | 
|  |    270 |     assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    271 |     sqlite3_mutex_leave(mem.mutex);
 | 
|  |    272 |     sqlite3_release_memory(nByte);
 | 
|  |    273 |     sqlite3_mutex_enter(mem.mutex);
 | 
|  |    274 |     mem.alarmBusy = 0;
 | 
|  |    275 |   }
 | 
|  |    276 | }
 | 
|  |    277 | 
 | 
|  |    278 | /*
 | 
|  |    279 | ** Return the size of an outstanding allocation, in bytes.  The
 | 
|  |    280 | ** size returned omits the 8-byte header overhead.  This only
 | 
|  |    281 | ** works for chunks that are currently checked out.
 | 
|  |    282 | */
 | 
|  |    283 | static int memsys3Size(void *p){
 | 
|  |    284 |   Mem3Block *pBlock = (Mem3Block*)p;
 | 
|  |    285 |   assert( pBlock[-1].u.hdr.size<0 );
 | 
|  |    286 |   return (-1-pBlock[-1].u.hdr.size)*8;
 | 
|  |    287 | }
 | 
|  |    288 | 
 | 
|  |    289 | /*
 | 
|  |    290 | ** Chunk i is a free chunk that has been unlinked.  Adjust its 
 | 
|  |    291 | ** size parameters for check-out and return a pointer to the 
 | 
|  |    292 | ** user portion of the chunk.
 | 
|  |    293 | */
 | 
|  |    294 | static void *memsys3Checkout(int i, int nBlock){
 | 
|  |    295 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    296 |   assert( mem.aPool[i-1].u.hdr.size==nBlock );
 | 
|  |    297 |   assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
 | 
|  |    298 |   mem.aPool[i-1].u.hdr.size = -nBlock;
 | 
|  |    299 |   mem.aPool[i+nBlock-1].u.hdr.prevSize = -nBlock;
 | 
|  |    300 |   return &mem.aPool[i];
 | 
|  |    301 | }
 | 
|  |    302 | 
 | 
|  |    303 | /*
 | 
|  |    304 | ** Carve a piece off of the end of the mem.iMaster free chunk.
 | 
|  |    305 | ** Return a pointer to the new allocation.  Or, if the master chunk
 | 
|  |    306 | ** is not large enough, return 0.
 | 
|  |    307 | */
 | 
|  |    308 | static void *memsys3FromMaster(int nBlock){
 | 
|  |    309 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    310 |   assert( mem.szMaster>=nBlock );
 | 
|  |    311 |   if( nBlock>=mem.szMaster-1 ){
 | 
|  |    312 |     /* Use the entire master */
 | 
|  |    313 |     void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
 | 
|  |    314 |     mem.iMaster = 0;
 | 
|  |    315 |     mem.szMaster = 0;
 | 
|  |    316 |     mem.mnMaster = 0;
 | 
|  |    317 |     return p;
 | 
|  |    318 |   }else{
 | 
|  |    319 |     /* Split the master block.  Return the tail. */
 | 
|  |    320 |     int newi;
 | 
|  |    321 |     newi = mem.iMaster + mem.szMaster - nBlock;
 | 
|  |    322 |     assert( newi > mem.iMaster+1 );
 | 
|  |    323 |     mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = -nBlock;
 | 
|  |    324 |     mem.aPool[newi-1].u.hdr.size = -nBlock;
 | 
|  |    325 |     mem.szMaster -= nBlock;
 | 
|  |    326 |     mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
 | 
|  |    327 |     mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
 | 
|  |    328 |     if( mem.szMaster < mem.mnMaster ){
 | 
|  |    329 |       mem.mnMaster = mem.szMaster;
 | 
|  |    330 |     }
 | 
|  |    331 |     return (void*)&mem.aPool[newi];
 | 
|  |    332 |   }
 | 
|  |    333 | }
 | 
|  |    334 | 
 | 
|  |    335 | /*
 | 
|  |    336 | ** *pRoot is the head of a list of free chunks of the same size
 | 
|  |    337 | ** or same size hash.  In other words, *pRoot is an entry in either
 | 
|  |    338 | ** mem.aiSmall[] or mem.aiHash[].  
 | 
|  |    339 | **
 | 
|  |    340 | ** This routine examines all entries on the given list and tries
 | 
|  |    341 | ** to coalesce each entries with adjacent free chunks.  
 | 
|  |    342 | **
 | 
|  |    343 | ** If it sees a chunk that is larger than mem.iMaster, it replaces 
 | 
|  |    344 | ** the current mem.iMaster with the new larger chunk.  In order for
 | 
|  |    345 | ** this mem.iMaster replacement to work, the master chunk must be
 | 
|  |    346 | ** linked into the hash tables.  That is not the normal state of
 | 
|  |    347 | ** affairs, of course.  The calling routine must link the master
 | 
|  |    348 | ** chunk before invoking this routine, then must unlink the (possibly
 | 
|  |    349 | ** changed) master chunk once this routine has finished.
 | 
|  |    350 | */
 | 
|  |    351 | static void memsys3Merge(int *pRoot){
 | 
|  |    352 |   int iNext, prev, size, i;
 | 
|  |    353 | 
 | 
|  |    354 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    355 |   for(i=*pRoot; i>0; i=iNext){
 | 
|  |    356 |     iNext = mem.aPool[i].u.list.next;
 | 
|  |    357 |     size = mem.aPool[i-1].u.hdr.size;
 | 
|  |    358 |     assert( size>0 );
 | 
|  |    359 |     if( mem.aPool[i-1].u.hdr.prevSize>0 ){
 | 
|  |    360 |       memsys3UnlinkFromList(i, pRoot);
 | 
|  |    361 |       prev = i - mem.aPool[i-1].u.hdr.prevSize;
 | 
|  |    362 |       assert( prev>=0 );
 | 
|  |    363 |       if( prev==iNext ){
 | 
|  |    364 |         iNext = mem.aPool[prev].u.list.next;
 | 
|  |    365 |       }
 | 
|  |    366 |       memsys3Unlink(prev);
 | 
|  |    367 |       size = i + size - prev;
 | 
|  |    368 |       mem.aPool[prev-1].u.hdr.size = size;
 | 
|  |    369 |       mem.aPool[prev+size-1].u.hdr.prevSize = size;
 | 
|  |    370 |       memsys3Link(prev);
 | 
|  |    371 |       i = prev;
 | 
|  |    372 |     }
 | 
|  |    373 |     if( size>mem.szMaster ){
 | 
|  |    374 |       mem.iMaster = i;
 | 
|  |    375 |       mem.szMaster = size;
 | 
|  |    376 |     }
 | 
|  |    377 |   }
 | 
|  |    378 | }
 | 
|  |    379 | 
 | 
|  |    380 | /*
 | 
|  |    381 | ** Return a block of memory of at least nBytes in size.
 | 
|  |    382 | ** Return NULL if unable.
 | 
|  |    383 | */
 | 
|  |    384 | static void *memsys3Malloc(int nByte){
 | 
|  |    385 |   int i;
 | 
|  |    386 |   int nBlock;
 | 
|  |    387 |   int toFree;
 | 
|  |    388 | 
 | 
|  |    389 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    390 |   assert( sizeof(Mem3Block)==8 );
 | 
|  |    391 |   if( nByte<=0 ){
 | 
|  |    392 |     nBlock = 2;
 | 
|  |    393 |   }else{
 | 
|  |    394 |     nBlock = (nByte + 15)/8;
 | 
|  |    395 |   }
 | 
|  |    396 |   assert( nBlock >= 2 );
 | 
|  |    397 | 
 | 
|  |    398 |   /* STEP 1:
 | 
|  |    399 |   ** Look for an entry of the correct size in either the small
 | 
|  |    400 |   ** chunk table or in the large chunk hash table.  This is
 | 
|  |    401 |   ** successful most of the time (about 9 times out of 10).
 | 
|  |    402 |   */
 | 
|  |    403 |   if( nBlock <= MX_SMALL ){
 | 
|  |    404 |     i = mem.aiSmall[nBlock-2];
 | 
|  |    405 |     if( i>0 ){
 | 
|  |    406 |       memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
 | 
|  |    407 |       return memsys3Checkout(i, nBlock);
 | 
|  |    408 |     }
 | 
|  |    409 |   }else{
 | 
|  |    410 |     int hash = nBlock % N_HASH;
 | 
|  |    411 |     for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
 | 
|  |    412 |       if( mem.aPool[i-1].u.hdr.size==nBlock ){
 | 
|  |    413 |         memsys3UnlinkFromList(i, &mem.aiHash[hash]);
 | 
|  |    414 |         return memsys3Checkout(i, nBlock);
 | 
|  |    415 |       }
 | 
|  |    416 |     }
 | 
|  |    417 |   }
 | 
|  |    418 | 
 | 
|  |    419 |   /* STEP 2:
 | 
|  |    420 |   ** Try to satisfy the allocation by carving a piece off of the end
 | 
|  |    421 |   ** of the master chunk.  This step usually works if step 1 fails.
 | 
|  |    422 |   */
 | 
|  |    423 |   if( mem.szMaster>=nBlock ){
 | 
|  |    424 |     return memsys3FromMaster(nBlock);
 | 
|  |    425 |   }
 | 
|  |    426 | 
 | 
|  |    427 | 
 | 
|  |    428 |   /* STEP 3:  
 | 
|  |    429 |   ** Loop through the entire memory pool.  Coalesce adjacent free
 | 
|  |    430 |   ** chunks.  Recompute the master chunk as the largest free chunk.
 | 
|  |    431 |   ** Then try again to satisfy the allocation by carving a piece off
 | 
|  |    432 |   ** of the end of the master chunk.  This step happens very
 | 
|  |    433 |   ** rarely (we hope!)
 | 
|  |    434 |   */
 | 
|  |    435 |   for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
 | 
|  |    436 |     memsys3OutOfMemory(toFree);
 | 
|  |    437 |     if( mem.iMaster ){
 | 
|  |    438 |       memsys3Link(mem.iMaster);
 | 
|  |    439 |       mem.iMaster = 0;
 | 
|  |    440 |       mem.szMaster = 0;
 | 
|  |    441 |     }
 | 
|  |    442 |     for(i=0; i<N_HASH; i++){
 | 
|  |    443 |       memsys3Merge(&mem.aiHash[i]);
 | 
|  |    444 |     }
 | 
|  |    445 |     for(i=0; i<MX_SMALL-1; i++){
 | 
|  |    446 |       memsys3Merge(&mem.aiSmall[i]);
 | 
|  |    447 |     }
 | 
|  |    448 |     if( mem.szMaster ){
 | 
|  |    449 |       memsys3Unlink(mem.iMaster);
 | 
|  |    450 |       if( mem.szMaster>=nBlock ){
 | 
|  |    451 |         return memsys3FromMaster(nBlock);
 | 
|  |    452 |       }
 | 
|  |    453 |     }
 | 
|  |    454 |   }
 | 
|  |    455 | 
 | 
|  |    456 |   /* If none of the above worked, then we fail. */
 | 
|  |    457 |   return 0;
 | 
|  |    458 | }
 | 
|  |    459 | 
 | 
|  |    460 | /*
 | 
|  |    461 | ** Free an outstanding memory allocation.
 | 
|  |    462 | */
 | 
|  |    463 | void memsys3Free(void *pOld){
 | 
|  |    464 |   Mem3Block *p = (Mem3Block*)pOld;
 | 
|  |    465 |   int i;
 | 
|  |    466 |   int size;
 | 
|  |    467 |   assert( sqlite3_mutex_held(mem.mutex) );
 | 
|  |    468 |   assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
 | 
|  |    469 |   i = p - mem.aPool;
 | 
|  |    470 |   size = -mem.aPool[i-1].u.hdr.size;
 | 
|  |    471 |   assert( size>=2 );
 | 
|  |    472 |   assert( mem.aPool[i+size-1].u.hdr.prevSize==-size );
 | 
|  |    473 |   mem.aPool[i-1].u.hdr.size = size;
 | 
|  |    474 |   mem.aPool[i+size-1].u.hdr.prevSize = size;
 | 
|  |    475 |   memsys3Link(i);
 | 
|  |    476 | 
 | 
|  |    477 |   /* Try to expand the master using the newly freed chunk */
 | 
|  |    478 |   if( mem.iMaster ){
 | 
|  |    479 |     while( mem.aPool[mem.iMaster-1].u.hdr.prevSize>0 ){
 | 
|  |    480 |       size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
 | 
|  |    481 |       mem.iMaster -= size;
 | 
|  |    482 |       mem.szMaster += size;
 | 
|  |    483 |       memsys3Unlink(mem.iMaster);
 | 
|  |    484 |       mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
 | 
|  |    485 |       mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
 | 
|  |    486 |     }
 | 
|  |    487 |     while( mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size>0 ){
 | 
|  |    488 |       memsys3Unlink(mem.iMaster+mem.szMaster);
 | 
|  |    489 |       mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size;
 | 
|  |    490 |       mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
 | 
|  |    491 |       mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
 | 
|  |    492 |     }
 | 
|  |    493 |   }
 | 
|  |    494 | }
 | 
|  |    495 | 
 | 
|  |    496 | /*
 | 
|  |    497 | ** Allocate nBytes of memory
 | 
|  |    498 | */
 | 
|  |    499 | void *sqlite3_malloc(int nBytes){
 | 
|  |    500 |   sqlite3_int64 *p = 0;
 | 
|  |    501 |   if( nBytes>0 ){
 | 
|  |    502 |     memsys3Enter();
 | 
|  |    503 |     p = memsys3Malloc(nBytes);
 | 
|  |    504 |     sqlite3_mutex_leave(mem.mutex);
 | 
|  |    505 |   }
 | 
|  |    506 |   return (void*)p; 
 | 
|  |    507 | }
 | 
|  |    508 | 
 | 
|  |    509 | /*
 | 
|  |    510 | ** Free memory.
 | 
|  |    511 | */
 | 
|  |    512 | void sqlite3_free(void *pPrior){
 | 
|  |    513 |   if( pPrior==0 ){
 | 
|  |    514 |     return;
 | 
|  |    515 |   }
 | 
|  |    516 |   assert( mem.mutex!=0 );
 | 
|  |    517 |   sqlite3_mutex_enter(mem.mutex);
 | 
|  |    518 |   memsys3Free(pPrior);
 | 
|  |    519 |   sqlite3_mutex_leave(mem.mutex);  
 | 
|  |    520 | }
 | 
|  |    521 | 
 | 
|  |    522 | /*
 | 
|  |    523 | ** Change the size of an existing memory allocation
 | 
|  |    524 | */
 | 
|  |    525 | void *sqlite3_realloc(void *pPrior, int nBytes){
 | 
|  |    526 |   int nOld;
 | 
|  |    527 |   void *p;
 | 
|  |    528 |   if( pPrior==0 ){
 | 
|  |    529 |     return sqlite3_malloc(nBytes);
 | 
|  |    530 |   }
 | 
|  |    531 |   if( nBytes<=0 ){
 | 
|  |    532 |     sqlite3_free(pPrior);
 | 
|  |    533 |     return 0;
 | 
|  |    534 |   }
 | 
|  |    535 |   assert( mem.mutex!=0 );
 | 
|  |    536 |   nOld = memsys3Size(pPrior);
 | 
|  |    537 |   if( nBytes<=nOld && nBytes>=nOld-128 ){
 | 
|  |    538 |     return pPrior;
 | 
|  |    539 |   }
 | 
|  |    540 |   sqlite3_mutex_enter(mem.mutex);
 | 
|  |    541 |   p = memsys3Malloc(nBytes);
 | 
|  |    542 |   if( p ){
 | 
|  |    543 |     if( nOld<nBytes ){
 | 
|  |    544 |       memcpy(p, pPrior, nOld);
 | 
|  |    545 |     }else{
 | 
|  |    546 |       memcpy(p, pPrior, nBytes);
 | 
|  |    547 |     }
 | 
|  |    548 |     memsys3Free(pPrior);
 | 
|  |    549 |   }
 | 
|  |    550 |   sqlite3_mutex_leave(mem.mutex);
 | 
|  |    551 |   return p;
 | 
|  |    552 | }
 | 
|  |    553 | 
 | 
|  |    554 | /*
 | 
|  |    555 | ** Open the file indicated and write a log of all unfreed memory 
 | 
|  |    556 | ** allocations into that log.
 | 
|  |    557 | */
 | 
|  |    558 | void sqlite3_memdebug_dump(const char *zFilename){
 | 
|  |    559 | #ifdef SQLITE_DEBUG
 | 
|  |    560 |   FILE *out;
 | 
|  |    561 |   int i, j, size;
 | 
|  |    562 |   if( zFilename==0 || zFilename[0]==0 ){
 | 
|  |    563 |     out = stdout;
 | 
|  |    564 |   }else{
 | 
|  |    565 |     out = fopen(zFilename, "w");
 | 
|  |    566 |     if( out==0 ){
 | 
|  |    567 |       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
 | 
|  |    568 |                       zFilename);
 | 
|  |    569 |       return;
 | 
|  |    570 |     }
 | 
|  |    571 |   }
 | 
|  |    572 |   memsys3Enter();
 | 
|  |    573 |   fprintf(out, "CHUNKS:\n");
 | 
|  |    574 |   for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size){
 | 
|  |    575 |     size = mem.aPool[i-1].u.hdr.size;
 | 
|  |    576 |     if( size>=-1 && size<=1 ){
 | 
|  |    577 |       fprintf(out, "%p size error\n", &mem.aPool[i]);
 | 
|  |    578 |       assert( 0 );
 | 
|  |    579 |       break;
 | 
|  |    580 |     }
 | 
|  |    581 |     if( mem.aPool[i+(size<0?-size:size)-1].u.hdr.prevSize!=size ){
 | 
|  |    582 |       fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
 | 
|  |    583 |       assert( 0 );
 | 
|  |    584 |       break;
 | 
|  |    585 |     }
 | 
|  |    586 |     if( size<0 ){
 | 
|  |    587 |       size = -size;
 | 
|  |    588 |       fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], size*8-8);
 | 
|  |    589 |     }else{
 | 
|  |    590 |       fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], size*8-8,
 | 
|  |    591 |                   i==mem.iMaster ? " **master**" : "");
 | 
|  |    592 |     }
 | 
|  |    593 |   }
 | 
|  |    594 |   for(i=0; i<MX_SMALL-1; i++){
 | 
|  |    595 |     if( mem.aiSmall[i]==0 ) continue;
 | 
|  |    596 |     fprintf(out, "small(%2d):", i);
 | 
|  |    597 |     for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
 | 
|  |    598 |       fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
 | 
|  |    599 |     }
 | 
|  |    600 |     fprintf(out, "\n"); 
 | 
|  |    601 |   }
 | 
|  |    602 |   for(i=0; i<N_HASH; i++){
 | 
|  |    603 |     if( mem.aiHash[i]==0 ) continue;
 | 
|  |    604 |     fprintf(out, "hash(%2d):", i);
 | 
|  |    605 |     for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
 | 
|  |    606 |       fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
 | 
|  |    607 |     }
 | 
|  |    608 |     fprintf(out, "\n"); 
 | 
|  |    609 |   }
 | 
|  |    610 |   fprintf(out, "master=%d\n", mem.iMaster);
 | 
|  |    611 |   fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
 | 
|  |    612 |   fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
 | 
|  |    613 |   sqlite3_mutex_leave(mem.mutex);
 | 
|  |    614 |   if( out==stdout ){
 | 
|  |    615 |     fflush(stdout);
 | 
|  |    616 |   }else{
 | 
|  |    617 |     fclose(out);
 | 
|  |    618 |   }
 | 
|  |    619 | #endif
 | 
|  |    620 | }
 | 
|  |    621 | 
 | 
|  |    622 | 
 | 
|  |    623 | #endif /* !SQLITE_MEMORY_SIZE */
 |