| 2 |      1 | /*
 | 
|  |      2 | ** 2003 September 6
 | 
|  |      3 | **
 | 
|  |      4 | ** The author disclaims copyright to this source code.  In place of
 | 
|  |      5 | ** a legal notice, here is a blessing:
 | 
|  |      6 | **
 | 
|  |      7 | **    May you do good and not evil.
 | 
|  |      8 | **    May you find forgiveness for yourself and forgive others.
 | 
|  |      9 | **    May you share freely, never taking more than you give.
 | 
|  |     10 | **
 | 
|  |     11 | *************************************************************************
 | 
|  |     12 | ** This file contains code used for creating, destroying, and populating
 | 
|  |     13 | ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
 | 
|  |     14 | ** to version 2.8.7, all this code was combined into the vdbe.c source file.
 | 
|  |     15 | ** But that file was getting too big so this subroutines were split out.
 | 
|  |     16 | */
 | 
|  |     17 | #include "sqliteInt.h"
 | 
|  |     18 | #include <ctype.h>
 | 
|  |     19 | #include "vdbeInt.h"
 | 
|  |     20 | 
 | 
|  |     21 | 
 | 
|  |     22 | 
 | 
|  |     23 | /*
 | 
|  |     24 | ** When debugging the code generator in a symbolic debugger, one can
 | 
|  |     25 | ** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
 | 
|  |     26 | ** as they are added to the instruction stream.
 | 
|  |     27 | */
 | 
|  |     28 | #ifdef SQLITE_DEBUG
 | 
|  |     29 | int sqlite3_vdbe_addop_trace = 0;
 | 
|  |     30 | #endif
 | 
|  |     31 | 
 | 
|  |     32 | 
 | 
|  |     33 | /*
 | 
|  |     34 | ** Create a new virtual database engine.
 | 
|  |     35 | */
 | 
|  |     36 | Vdbe *sqlite3VdbeCreate(sqlite3 *db){
 | 
|  |     37 |   Vdbe *p;
 | 
|  |     38 |   p = (Vdbe*)sqlite3DbMallocZero(db, sizeof(Vdbe) );
 | 
|  |     39 |   if( p==0 ) return 0;
 | 
|  |     40 |   p->db = db;
 | 
|  |     41 |   if( db->pVdbe ){
 | 
|  |     42 |     db->pVdbe->pPrev = p;
 | 
|  |     43 |   }
 | 
|  |     44 |   p->pNext = db->pVdbe;
 | 
|  |     45 |   p->pPrev = 0;
 | 
|  |     46 |   db->pVdbe = p;
 | 
|  |     47 |   p->magic = VDBE_MAGIC_INIT;
 | 
|  |     48 |   return p;
 | 
|  |     49 | }
 | 
|  |     50 | 
 | 
|  |     51 | /*
 | 
|  |     52 | ** Remember the SQL string for a prepared statement.
 | 
|  |     53 | */
 | 
|  |     54 | void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
 | 
|  |     55 |   if( p==0 ) return;
 | 
|  |     56 |   assert( p->zSql==0 );
 | 
|  |     57 |   p->zSql = sqlite3DbStrNDup(p->db, z, n);
 | 
|  |     58 | }
 | 
|  |     59 | 
 | 
|  |     60 | /*
 | 
|  |     61 | ** Return the SQL associated with a prepared statement
 | 
|  |     62 | */
 | 
|  |     63 | EXPORT_C const char *sqlite3_sql(sqlite3_stmt *pStmt){
 | 
|  |     64 |   return ((Vdbe *)pStmt)->zSql;
 | 
|  |     65 | }
 | 
|  |     66 | 
 | 
|  |     67 | /*
 | 
|  |     68 | ** Swap all content between two VDBE structures.
 | 
|  |     69 | */
 | 
|  |     70 | void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
 | 
|  |     71 |   Vdbe tmp, *pTmp;
 | 
|  |     72 |   char *zTmp;
 | 
|  |     73 |   int nTmp;
 | 
|  |     74 |   tmp = *pA;
 | 
|  |     75 |   *pA = *pB;
 | 
|  |     76 |   *pB = tmp;
 | 
|  |     77 |   pTmp = pA->pNext;
 | 
|  |     78 |   pA->pNext = pB->pNext;
 | 
|  |     79 |   pB->pNext = pTmp;
 | 
|  |     80 |   pTmp = pA->pPrev;
 | 
|  |     81 |   pA->pPrev = pB->pPrev;
 | 
|  |     82 |   pB->pPrev = pTmp;
 | 
|  |     83 |   zTmp = pA->zSql;
 | 
|  |     84 |   pA->zSql = pB->zSql;
 | 
|  |     85 |   pB->zSql = zTmp;
 | 
|  |     86 |   nTmp = pA->nSql;
 | 
|  |     87 |   pA->nSql = pB->nSql;
 | 
|  |     88 |   pB->nSql = nTmp;
 | 
|  |     89 | }
 | 
|  |     90 | 
 | 
|  |     91 | #ifdef SQLITE_DEBUG
 | 
|  |     92 | /*
 | 
|  |     93 | ** Turn tracing on or off
 | 
|  |     94 | */
 | 
|  |     95 | void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
 | 
|  |     96 |   p->trace = trace;
 | 
|  |     97 | }
 | 
|  |     98 | #endif
 | 
|  |     99 | 
 | 
|  |    100 | /*
 | 
|  |    101 | ** Resize the Vdbe.aOp array so that it contains at least N
 | 
|  |    102 | ** elements.
 | 
|  |    103 | **
 | 
|  |    104 | ** If an out-of-memory error occurs while resizing the array,
 | 
|  |    105 | ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
 | 
|  |    106 | ** any opcodes already allocated can be correctly deallocated
 | 
|  |    107 | ** along with the rest of the Vdbe).
 | 
|  |    108 | */
 | 
|  |    109 | static void resizeOpArray(Vdbe *p, int N){
 | 
|  |    110 |   VdbeOp *pNew;
 | 
|  |    111 |   int oldSize = p->nOpAlloc;
 | 
|  |    112 |   pNew = (VdbeOp*)sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
 | 
|  |    113 |   if( pNew ){
 | 
|  |    114 |     p->nOpAlloc = N;
 | 
|  |    115 |     p->aOp = pNew;
 | 
|  |    116 |     if( N>oldSize ){
 | 
|  |    117 |       memset(&p->aOp[oldSize], 0, (N-oldSize)*sizeof(Op));
 | 
|  |    118 |     }
 | 
|  |    119 |   }
 | 
|  |    120 | }
 | 
|  |    121 | 
 | 
|  |    122 | /*
 | 
|  |    123 | ** Add a new instruction to the list of instructions current in the
 | 
|  |    124 | ** VDBE.  Return the address of the new instruction.
 | 
|  |    125 | **
 | 
|  |    126 | ** Parameters:
 | 
|  |    127 | **
 | 
|  |    128 | **    p               Pointer to the VDBE
 | 
|  |    129 | **
 | 
|  |    130 | **    op              The opcode for this instruction
 | 
|  |    131 | **
 | 
|  |    132 | **    p1, p2          First two of the three possible operands.
 | 
|  |    133 | **
 | 
|  |    134 | ** Use the sqlite3VdbeResolveLabel() function to fix an address and
 | 
|  |    135 | ** the sqlite3VdbeChangeP3() function to change the value of the P3
 | 
|  |    136 | ** operand.
 | 
|  |    137 | */
 | 
|  |    138 | int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
 | 
|  |    139 |   int i;
 | 
|  |    140 |   VdbeOp *pOp;
 | 
|  |    141 | 
 | 
|  |    142 |   i = p->nOp;
 | 
|  |    143 |   assert( p->magic==VDBE_MAGIC_INIT );
 | 
|  |    144 |   if( p->nOpAlloc<=i ){
 | 
|  |    145 |     resizeOpArray(p, p->nOpAlloc*2 + 100);
 | 
|  |    146 |     if( p->db->mallocFailed ){
 | 
|  |    147 |       return 0;
 | 
|  |    148 |     }
 | 
|  |    149 |   }
 | 
|  |    150 |   p->nOp++;
 | 
|  |    151 |   pOp = &p->aOp[i];
 | 
|  |    152 |   pOp->opcode = op;
 | 
|  |    153 |   pOp->p1 = p1;
 | 
|  |    154 |   pOp->p2 = p2;
 | 
|  |    155 |   pOp->p3 = 0;
 | 
|  |    156 |   pOp->p3type = P3_NOTUSED;
 | 
|  |    157 |   p->expired = 0;
 | 
|  |    158 | #ifdef SQLITE_DEBUG
 | 
|  |    159 |   if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
 | 
|  |    160 | #endif
 | 
|  |    161 |   return i;
 | 
|  |    162 | }
 | 
|  |    163 | 
 | 
|  |    164 | /*
 | 
|  |    165 | ** Add an opcode that includes the p3 value.
 | 
|  |    166 | */
 | 
|  |    167 | int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
 | 
|  |    168 |   int addr = sqlite3VdbeAddOp(p, op, p1, p2);
 | 
|  |    169 |   sqlite3VdbeChangeP3(p, addr, zP3, p3type);
 | 
|  |    170 |   return addr;
 | 
|  |    171 | }
 | 
|  |    172 | 
 | 
|  |    173 | /*
 | 
|  |    174 | ** Create a new symbolic label for an instruction that has yet to be
 | 
|  |    175 | ** coded.  The symbolic label is really just a negative number.  The
 | 
|  |    176 | ** label can be used as the P2 value of an operation.  Later, when
 | 
|  |    177 | ** the label is resolved to a specific address, the VDBE will scan
 | 
|  |    178 | ** through its operation list and change all values of P2 which match
 | 
|  |    179 | ** the label into the resolved address.
 | 
|  |    180 | **
 | 
|  |    181 | ** The VDBE knows that a P2 value is a label because labels are
 | 
|  |    182 | ** always negative and P2 values are suppose to be non-negative.
 | 
|  |    183 | ** Hence, a negative P2 value is a label that has yet to be resolved.
 | 
|  |    184 | **
 | 
|  |    185 | ** Zero is returned if a malloc() fails.
 | 
|  |    186 | */
 | 
|  |    187 | int sqlite3VdbeMakeLabel(Vdbe *p){
 | 
|  |    188 |   int i;
 | 
|  |    189 |   i = p->nLabel++;
 | 
|  |    190 |   assert( p->magic==VDBE_MAGIC_INIT );
 | 
|  |    191 |   if( i>=p->nLabelAlloc ){
 | 
|  |    192 |     p->nLabelAlloc = p->nLabelAlloc*2 + 10;
 | 
|  |    193 |     p->aLabel = (int*)sqlite3DbReallocOrFree(p->db, p->aLabel,
 | 
|  |    194 |                                     p->nLabelAlloc*sizeof(p->aLabel[0]));
 | 
|  |    195 |   }
 | 
|  |    196 |   if( p->aLabel ){
 | 
|  |    197 |     p->aLabel[i] = -1;
 | 
|  |    198 |   }
 | 
|  |    199 |   return -1-i;
 | 
|  |    200 | }
 | 
|  |    201 | 
 | 
|  |    202 | /*
 | 
|  |    203 | ** Resolve label "x" to be the address of the next instruction to
 | 
|  |    204 | ** be inserted.  The parameter "x" must have been obtained from
 | 
|  |    205 | ** a prior call to sqlite3VdbeMakeLabel().
 | 
|  |    206 | */
 | 
|  |    207 | void sqlite3VdbeResolveLabel(Vdbe *p, int x){
 | 
|  |    208 |   int j = -1-x;
 | 
|  |    209 |   assert( p->magic==VDBE_MAGIC_INIT );
 | 
|  |    210 |   assert( j>=0 && j<p->nLabel );
 | 
|  |    211 |   if( p->aLabel ){
 | 
|  |    212 |     p->aLabel[j] = p->nOp;
 | 
|  |    213 |   }
 | 
|  |    214 | }
 | 
|  |    215 | 
 | 
|  |    216 | /*
 | 
|  |    217 | ** Return non-zero if opcode 'op' is guarenteed not to push more values
 | 
|  |    218 | ** onto the VDBE stack than it pops off.
 | 
|  |    219 | */
 | 
|  |    220 | static int opcodeNoPush(u8 op){
 | 
|  |    221 |   /* The 10 NOPUSH_MASK_n constants are defined in the automatically
 | 
|  |    222 |   ** generated header file opcodes.h. Each is a 16-bit bitmask, one
 | 
|  |    223 |   ** bit corresponding to each opcode implemented by the virtual
 | 
|  |    224 |   ** machine in vdbe.c. The bit is true if the word "no-push" appears
 | 
|  |    225 |   ** in a comment on the same line as the "case OP_XXX:" in 
 | 
|  |    226 |   ** sqlite3VdbeExec() in vdbe.c.
 | 
|  |    227 |   **
 | 
|  |    228 |   ** If the bit is true, then the corresponding opcode is guarenteed not
 | 
|  |    229 |   ** to grow the stack when it is executed. Otherwise, it may grow the
 | 
|  |    230 |   ** stack by at most one entry.
 | 
|  |    231 |   **
 | 
|  |    232 |   ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
 | 
|  |    233 |   ** one bit for opcodes 16 to 31, and so on.
 | 
|  |    234 |   **
 | 
|  |    235 |   ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h 
 | 
|  |    236 |   ** because the file is generated by an awk program. Awk manipulates
 | 
|  |    237 |   ** all numbers as floating-point and we don't want to risk a rounding
 | 
|  |    238 |   ** error if someone builds with an awk that uses (for example) 32-bit 
 | 
|  |    239 |   ** IEEE floats.
 | 
|  |    240 |   */ 
 | 
|  |    241 |   static const u32 masks[5] = {
 | 
|  |    242 |     NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16),
 | 
|  |    243 |     NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16),
 | 
|  |    244 |     NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16),
 | 
|  |    245 |     NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16),
 | 
|  |    246 |     NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16)
 | 
|  |    247 |   };
 | 
|  |    248 |   assert( op<32*5 );
 | 
|  |    249 |   return (masks[op>>5] & (1<<(op&0x1F)));
 | 
|  |    250 | }
 | 
|  |    251 | 
 | 
|  |    252 | #ifndef NDEBUG
 | 
|  |    253 | int sqlite3VdbeOpcodeNoPush(u8 op){
 | 
|  |    254 |   return opcodeNoPush(op);
 | 
|  |    255 | }
 | 
|  |    256 | #endif
 | 
|  |    257 | 
 | 
|  |    258 | /*
 | 
|  |    259 | ** Loop through the program looking for P2 values that are negative.
 | 
|  |    260 | ** Each such value is a label.  Resolve the label by setting the P2
 | 
|  |    261 | ** value to its correct non-zero value.
 | 
|  |    262 | **
 | 
|  |    263 | ** This routine is called once after all opcodes have been inserted.
 | 
|  |    264 | **
 | 
|  |    265 | ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
 | 
|  |    266 | ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
 | 
|  |    267 | ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
 | 
|  |    268 | **
 | 
|  |    269 | ** The integer *pMaxStack is set to the maximum number of vdbe stack
 | 
|  |    270 | ** entries that static analysis reveals this program might need.
 | 
|  |    271 | **
 | 
|  |    272 | ** This routine also does the following optimization:  It scans for
 | 
|  |    273 | ** instructions that might cause a statement rollback.  Such instructions
 | 
|  |    274 | ** are:
 | 
|  |    275 | **
 | 
|  |    276 | **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
 | 
|  |    277 | **   *  OP_Destroy
 | 
|  |    278 | **   *  OP_VUpdate
 | 
|  |    279 | **   *  OP_VRename
 | 
|  |    280 | **
 | 
|  |    281 | ** If no such instruction is found, then every Statement instruction 
 | 
|  |    282 | ** is changed to a Noop.  In this way, we avoid creating the statement 
 | 
|  |    283 | ** journal file unnecessarily.
 | 
|  |    284 | */
 | 
|  |    285 | static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
 | 
|  |    286 |   int i;
 | 
|  |    287 |   int nMaxArgs = 0;
 | 
|  |    288 |   int nMaxStack = p->nOp;
 | 
|  |    289 |   Op *pOp;
 | 
|  |    290 |   int *aLabel = p->aLabel;
 | 
|  |    291 |   int doesStatementRollback = 0;
 | 
|  |    292 |   int hasStatementBegin = 0;
 | 
|  |    293 |   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | 
|  |    294 |     u8 opcode = pOp->opcode;
 | 
|  |    295 | 
 | 
|  |    296 |     if( opcode==OP_Function || opcode==OP_AggStep 
 | 
|  |    297 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    298 |         || opcode==OP_VUpdate
 | 
|  |    299 | #endif
 | 
|  |    300 |     ){
 | 
|  |    301 |       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
 | 
|  |    302 |     }
 | 
|  |    303 |     if( opcode==OP_Halt ){
 | 
|  |    304 |       if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
 | 
|  |    305 |         doesStatementRollback = 1;
 | 
|  |    306 |       }
 | 
|  |    307 |     }else if( opcode==OP_Statement ){
 | 
|  |    308 |       hasStatementBegin = 1;
 | 
|  |    309 |     }else if( opcode==OP_Destroy ){
 | 
|  |    310 |       doesStatementRollback = 1;
 | 
|  |    311 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    312 |     }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
 | 
|  |    313 |       doesStatementRollback = 1;
 | 
|  |    314 |     }else if( opcode==OP_VFilter ){
 | 
|  |    315 |       int n;
 | 
|  |    316 |       assert( p->nOp - i >= 3 );
 | 
|  |    317 |       assert( pOp[-2].opcode==OP_Integer );
 | 
|  |    318 |       n = pOp[-2].p1;
 | 
|  |    319 |       if( n>nMaxArgs ) nMaxArgs = n;
 | 
|  |    320 | #endif
 | 
|  |    321 |     }
 | 
|  |    322 |     if( opcodeNoPush(opcode) ){
 | 
|  |    323 |       nMaxStack--;
 | 
|  |    324 |     }
 | 
|  |    325 | 
 | 
|  |    326 |     if( pOp->p2>=0 ) continue;
 | 
|  |    327 |     assert( -1-pOp->p2<p->nLabel );
 | 
|  |    328 |     pOp->p2 = aLabel[-1-pOp->p2];
 | 
|  |    329 |   }
 | 
|  |    330 |   sqlite3_free(p->aLabel);
 | 
|  |    331 |   p->aLabel = 0;
 | 
|  |    332 | 
 | 
|  |    333 |   *pMaxFuncArgs = nMaxArgs;
 | 
|  |    334 |   *pMaxStack = nMaxStack;
 | 
|  |    335 | 
 | 
|  |    336 |   /* If we never rollback a statement transaction, then statement
 | 
|  |    337 |   ** transactions are not needed.  So change every OP_Statement
 | 
|  |    338 |   ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
 | 
|  |    339 |   ** which can be expensive on some platforms.
 | 
|  |    340 |   */
 | 
|  |    341 |   if( hasStatementBegin && !doesStatementRollback ){
 | 
|  |    342 |     for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | 
|  |    343 |       if( pOp->opcode==OP_Statement ){
 | 
|  |    344 |         pOp->opcode = OP_Noop;
 | 
|  |    345 |       }
 | 
|  |    346 |     }
 | 
|  |    347 |   }
 | 
|  |    348 | }
 | 
|  |    349 | 
 | 
|  |    350 | /*
 | 
|  |    351 | ** Return the address of the next instruction to be inserted.
 | 
|  |    352 | */
 | 
|  |    353 | int sqlite3VdbeCurrentAddr(Vdbe *p){
 | 
|  |    354 |   assert( p->magic==VDBE_MAGIC_INIT );
 | 
|  |    355 |   return p->nOp;
 | 
|  |    356 | }
 | 
|  |    357 | 
 | 
|  |    358 | /*
 | 
|  |    359 | ** Add a whole list of operations to the operation stack.  Return the
 | 
|  |    360 | ** address of the first operation added.
 | 
|  |    361 | */
 | 
|  |    362 | int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
 | 
|  |    363 |   int addr;
 | 
|  |    364 |   assert( p->magic==VDBE_MAGIC_INIT );
 | 
|  |    365 |   if( p->nOp + nOp > p->nOpAlloc ){
 | 
|  |    366 |     resizeOpArray(p, p->nOp*2 + nOp);
 | 
|  |    367 |   }
 | 
|  |    368 |   if( p->db->mallocFailed ){
 | 
|  |    369 |     return 0;
 | 
|  |    370 |   }
 | 
|  |    371 |   addr = p->nOp;
 | 
|  |    372 |   if( nOp>0 ){
 | 
|  |    373 |     int i;
 | 
|  |    374 |     VdbeOpList const *pIn = aOp;
 | 
|  |    375 |     for(i=0; i<nOp; i++, pIn++){
 | 
|  |    376 |       int p2 = pIn->p2;
 | 
|  |    377 |       VdbeOp *pOut = &p->aOp[i+addr];
 | 
|  |    378 |       pOut->opcode = pIn->opcode;
 | 
|  |    379 |       pOut->p1 = pIn->p1;
 | 
|  |    380 |       pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
 | 
|  |    381 |       pOut->p3 = pIn->p3;
 | 
|  |    382 |       pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
 | 
|  |    383 | #ifdef SQLITE_DEBUG
 | 
|  |    384 |       if( sqlite3_vdbe_addop_trace ){
 | 
|  |    385 |         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
 | 
|  |    386 |       }
 | 
|  |    387 | #endif
 | 
|  |    388 |     }
 | 
|  |    389 |     p->nOp += nOp;
 | 
|  |    390 |   }
 | 
|  |    391 |   return addr;
 | 
|  |    392 | }
 | 
|  |    393 | 
 | 
|  |    394 | /*
 | 
|  |    395 | ** Change the value of the P1 operand for a specific instruction.
 | 
|  |    396 | ** This routine is useful when a large program is loaded from a
 | 
|  |    397 | ** static array using sqlite3VdbeAddOpList but we want to make a
 | 
|  |    398 | ** few minor changes to the program.
 | 
|  |    399 | */
 | 
|  |    400 | void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
 | 
|  |    401 |   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | 
|  |    402 |   if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | 
|  |    403 |     p->aOp[addr].p1 = val;
 | 
|  |    404 |   }
 | 
|  |    405 | }
 | 
|  |    406 | 
 | 
|  |    407 | /*
 | 
|  |    408 | ** Change the value of the P2 operand for a specific instruction.
 | 
|  |    409 | ** This routine is useful for setting a jump destination.
 | 
|  |    410 | */
 | 
|  |    411 | void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
 | 
|  |    412 |   assert( val>=0 );
 | 
|  |    413 |   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | 
|  |    414 |   if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | 
|  |    415 |     p->aOp[addr].p2 = val;
 | 
|  |    416 |   }
 | 
|  |    417 | }
 | 
|  |    418 | 
 | 
|  |    419 | /*
 | 
|  |    420 | ** Change the P2 operand of instruction addr so that it points to
 | 
|  |    421 | ** the address of the next instruction to be coded.
 | 
|  |    422 | */
 | 
|  |    423 | void sqlite3VdbeJumpHere(Vdbe *p, int addr){
 | 
|  |    424 |   sqlite3VdbeChangeP2(p, addr, p->nOp);
 | 
|  |    425 | }
 | 
|  |    426 | 
 | 
|  |    427 | 
 | 
|  |    428 | /*
 | 
|  |    429 | ** If the input FuncDef structure is ephemeral, then free it.  If
 | 
|  |    430 | ** the FuncDef is not ephermal, then do nothing.
 | 
|  |    431 | */
 | 
|  |    432 | static void freeEphemeralFunction(FuncDef *pDef){
 | 
|  |    433 |   if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
 | 
|  |    434 |     sqlite3_free(pDef);
 | 
|  |    435 |   }
 | 
|  |    436 | }
 | 
|  |    437 | 
 | 
|  |    438 | /*
 | 
|  |    439 | ** Delete a P3 value if necessary.
 | 
|  |    440 | */
 | 
|  |    441 | static void freeP3(int p3type, void *p3){
 | 
|  |    442 |   if( p3 ){
 | 
|  |    443 |     switch( p3type ){
 | 
|  |    444 |       case P3_REAL:
 | 
|  |    445 |       case P3_INT64:
 | 
|  |    446 |       case P3_MPRINTF:
 | 
|  |    447 |       case P3_DYNAMIC:
 | 
|  |    448 |       case P3_KEYINFO:
 | 
|  |    449 |       case P3_KEYINFO_HANDOFF: {
 | 
|  |    450 |         sqlite3_free(p3);
 | 
|  |    451 |         break;
 | 
|  |    452 |       }
 | 
|  |    453 |       case P3_VDBEFUNC: {
 | 
|  |    454 |         VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
 | 
|  |    455 |         freeEphemeralFunction(pVdbeFunc->pFunc);
 | 
|  |    456 |         sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
 | 
|  |    457 |         sqlite3_free(pVdbeFunc);
 | 
|  |    458 |         break;
 | 
|  |    459 |       }
 | 
|  |    460 |       case P3_FUNCDEF: {
 | 
|  |    461 |         freeEphemeralFunction((FuncDef*)p3);
 | 
|  |    462 |         break;
 | 
|  |    463 |       }
 | 
|  |    464 |       case P3_MEM: {
 | 
|  |    465 |         sqlite3ValueFree((sqlite3_value*)p3);
 | 
|  |    466 |         break;
 | 
|  |    467 |       }
 | 
|  |    468 |     }
 | 
|  |    469 |   }
 | 
|  |    470 | }
 | 
|  |    471 | 
 | 
|  |    472 | 
 | 
|  |    473 | /*
 | 
|  |    474 | ** Change N opcodes starting at addr to No-ops.
 | 
|  |    475 | */
 | 
|  |    476 | void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
 | 
|  |    477 |   if( p && p->aOp ){
 | 
|  |    478 |     VdbeOp *pOp = &p->aOp[addr];
 | 
|  |    479 |     while( N-- ){
 | 
|  |    480 |       freeP3(pOp->p3type, pOp->p3);
 | 
|  |    481 |       memset(pOp, 0, sizeof(pOp[0]));
 | 
|  |    482 |       pOp->opcode = OP_Noop;
 | 
|  |    483 |       pOp++;
 | 
|  |    484 |     }
 | 
|  |    485 |   }
 | 
|  |    486 | }
 | 
|  |    487 | 
 | 
|  |    488 | /*
 | 
|  |    489 | ** Change the value of the P3 operand for a specific instruction.
 | 
|  |    490 | ** This routine is useful when a large program is loaded from a
 | 
|  |    491 | ** static array using sqlite3VdbeAddOpList but we want to make a
 | 
|  |    492 | ** few minor changes to the program.
 | 
|  |    493 | **
 | 
|  |    494 | ** If n>=0 then the P3 operand is dynamic, meaning that a copy of
 | 
|  |    495 | ** the string is made into memory obtained from sqlite3_malloc().
 | 
|  |    496 | ** A value of n==0 means copy bytes of zP3 up to and including the
 | 
|  |    497 | ** first null byte.  If n>0 then copy n+1 bytes of zP3.
 | 
|  |    498 | **
 | 
|  |    499 | ** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
 | 
|  |    500 | ** A copy is made of the KeyInfo structure into memory obtained from
 | 
|  |    501 | ** sqlite3_malloc, to be freed when the Vdbe is finalized.
 | 
|  |    502 | ** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
 | 
|  |    503 | ** stored in memory that the caller has obtained from sqlite3_malloc. The 
 | 
|  |    504 | ** caller should not free the allocation, it will be freed when the Vdbe is
 | 
|  |    505 | ** finalized.
 | 
|  |    506 | ** 
 | 
|  |    507 | ** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
 | 
|  |    508 | ** to a string or structure that is guaranteed to exist for the lifetime of
 | 
|  |    509 | ** the Vdbe. In these cases we can just copy the pointer.
 | 
|  |    510 | **
 | 
|  |    511 | ** If addr<0 then change P3 on the most recently inserted instruction.
 | 
|  |    512 | */
 | 
|  |    513 | void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
 | 
|  |    514 |   Op *pOp;
 | 
|  |    515 |   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | 
|  |    516 |   if( p==0 || p->aOp==0 || p->db->mallocFailed ){
 | 
|  |    517 |     if (n != P3_KEYINFO) {
 | 
|  |    518 |       freeP3(n, (void*)*(char**)&zP3);
 | 
|  |    519 |     }
 | 
|  |    520 |     return;
 | 
|  |    521 |   }
 | 
|  |    522 |   if( addr<0 || addr>=p->nOp ){
 | 
|  |    523 |     addr = p->nOp - 1;
 | 
|  |    524 |     if( addr<0 ) return;
 | 
|  |    525 |   }
 | 
|  |    526 |   pOp = &p->aOp[addr];
 | 
|  |    527 |   freeP3(pOp->p3type, pOp->p3);
 | 
|  |    528 |   pOp->p3 = 0;
 | 
|  |    529 |   if( zP3==0 ){
 | 
|  |    530 |     pOp->p3 = 0;
 | 
|  |    531 |     pOp->p3type = P3_NOTUSED;
 | 
|  |    532 |   }else if( n==P3_KEYINFO ){
 | 
|  |    533 |     KeyInfo *pKeyInfo;
 | 
|  |    534 |     int nField, nByte;
 | 
|  |    535 | 
 | 
|  |    536 |     nField = ((KeyInfo*)zP3)->nField;
 | 
|  |    537 |     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
 | 
|  |    538 |     pKeyInfo = (KeyInfo*)sqlite3_malloc( nByte );
 | 
|  |    539 |     pOp->p3 = (char*)pKeyInfo;
 | 
|  |    540 |     if( pKeyInfo ){
 | 
|  |    541 |       unsigned char *aSortOrder;
 | 
|  |    542 |       memcpy(pKeyInfo, zP3, nByte);
 | 
|  |    543 |       aSortOrder = pKeyInfo->aSortOrder;
 | 
|  |    544 |       if( aSortOrder ){
 | 
|  |    545 |         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
 | 
|  |    546 |         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
 | 
|  |    547 |       }
 | 
|  |    548 |       pOp->p3type = P3_KEYINFO;
 | 
|  |    549 |     }else{
 | 
|  |    550 |       p->db->mallocFailed = 1;
 | 
|  |    551 |       pOp->p3type = P3_NOTUSED;
 | 
|  |    552 |     }
 | 
|  |    553 |   }else if( n==P3_KEYINFO_HANDOFF ){
 | 
|  |    554 |     pOp->p3 = (char*)zP3;
 | 
|  |    555 |     pOp->p3type = P3_KEYINFO;
 | 
|  |    556 |   }else if( n<0 ){
 | 
|  |    557 |     pOp->p3 = (char*)zP3;
 | 
|  |    558 |     pOp->p3type = n;
 | 
|  |    559 |   }else{
 | 
|  |    560 |     if( n==0 ) n = strlen(zP3);
 | 
|  |    561 |     pOp->p3 = sqlite3DbStrNDup(p->db, zP3, n);
 | 
|  |    562 |     pOp->p3type = P3_DYNAMIC;
 | 
|  |    563 |   }
 | 
|  |    564 | }
 | 
|  |    565 | 
 | 
|  |    566 | #ifndef NDEBUG
 | 
|  |    567 | /*
 | 
|  |    568 | ** Replace the P3 field of the most recently coded instruction with
 | 
|  |    569 | ** comment text.
 | 
|  |    570 | */
 | 
|  |    571 | void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
 | 
|  |    572 |   va_list ap;
 | 
|  |    573 |   assert( p->nOp>0 || p->aOp==0 );
 | 
|  |    574 |   assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || p->db->mallocFailed );
 | 
|  |    575 |   va_start(ap, zFormat);
 | 
|  |    576 |   sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(p->db, zFormat, ap), P3_DYNAMIC);
 | 
|  |    577 |   va_end(ap);
 | 
|  |    578 | }
 | 
|  |    579 | #endif
 | 
|  |    580 | 
 | 
|  |    581 | /*
 | 
|  |    582 | ** Return the opcode for a given address.
 | 
|  |    583 | */
 | 
|  |    584 | VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
 | 
|  |    585 |   assert( p->magic==VDBE_MAGIC_INIT );
 | 
|  |    586 |   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
 | 
|  |    587 |   return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
 | 
|  |    588 | }
 | 
|  |    589 | 
 | 
|  |    590 | #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
 | 
|  |    591 |      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | 
|  |    592 | /*
 | 
|  |    593 | ** Compute a string that describes the P3 parameter for an opcode.
 | 
|  |    594 | ** Use zTemp for any required temporary buffer space.
 | 
|  |    595 | */
 | 
|  |    596 | static char *displayP3(Op *pOp, char *zTemp, int nTemp){
 | 
|  |    597 |   char *zP3;
 | 
|  |    598 |   assert( nTemp>=20 );
 | 
|  |    599 |   switch( pOp->p3type ){
 | 
|  |    600 |     case P3_KEYINFO: {
 | 
|  |    601 |       int i, j;
 | 
|  |    602 |       KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
 | 
|  |    603 |       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
 | 
|  |    604 |       i = strlen(zTemp);
 | 
|  |    605 |       for(j=0; j<pKeyInfo->nField; j++){
 | 
|  |    606 |         CollSeq *pColl = pKeyInfo->aColl[j];
 | 
|  |    607 |         if( pColl ){
 | 
|  |    608 |           int n = strlen(pColl->zName);
 | 
|  |    609 |           if( i+n>nTemp-6 ){
 | 
|  |    610 |             memcpy(&zTemp[i],",...",4);
 | 
|  |    611 |             break;
 | 
|  |    612 |           }
 | 
|  |    613 |           zTemp[i++] = ',';
 | 
|  |    614 |           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
 | 
|  |    615 |             zTemp[i++] = '-';
 | 
|  |    616 |           }
 | 
|  |    617 |           memcpy(&zTemp[i], pColl->zName,n+1);
 | 
|  |    618 |           i += n;
 | 
|  |    619 |         }else if( i+4<nTemp-6 ){
 | 
|  |    620 |           memcpy(&zTemp[i],",nil",4);
 | 
|  |    621 |           i += 4;
 | 
|  |    622 |         }
 | 
|  |    623 |       }
 | 
|  |    624 |       zTemp[i++] = ')';
 | 
|  |    625 |       zTemp[i] = 0;
 | 
|  |    626 |       assert( i<nTemp );
 | 
|  |    627 |       zP3 = zTemp;
 | 
|  |    628 |       break;
 | 
|  |    629 |     }
 | 
|  |    630 |     case P3_COLLSEQ: {
 | 
|  |    631 |       CollSeq *pColl = (CollSeq*)pOp->p3;
 | 
|  |    632 |       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
 | 
|  |    633 |       zP3 = zTemp;
 | 
|  |    634 |       break;
 | 
|  |    635 |     }
 | 
|  |    636 |     case P3_FUNCDEF: {
 | 
|  |    637 |       FuncDef *pDef = (FuncDef*)pOp->p3;
 | 
|  |    638 |       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
 | 
|  |    639 |       zP3 = zTemp;
 | 
|  |    640 |       break;
 | 
|  |    641 |     }
 | 
|  |    642 |     case P3_INT64: {
 | 
|  |    643 |       sqlite3_snprintf(nTemp, zTemp, "%lld", *(sqlite3_int64*)pOp->p3);
 | 
|  |    644 |       zP3 = zTemp;
 | 
|  |    645 |       break;
 | 
|  |    646 |     }
 | 
|  |    647 |     case P3_REAL: {
 | 
|  |    648 |       sqlite3_snprintf(nTemp, zTemp, "%.16g", *(double*)pOp->p3);
 | 
|  |    649 |       zP3 = zTemp;
 | 
|  |    650 |       break;
 | 
|  |    651 |     }
 | 
|  |    652 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    653 |     case P3_VTAB: {
 | 
|  |    654 |       sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3;
 | 
|  |    655 |       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
 | 
|  |    656 |       zP3 = zTemp;
 | 
|  |    657 |       break;
 | 
|  |    658 |     }
 | 
|  |    659 | #endif
 | 
|  |    660 |     default: {
 | 
|  |    661 |       zP3 = pOp->p3;
 | 
|  |    662 |       if( zP3==0 || pOp->opcode==OP_Noop ){
 | 
|  |    663 |         zP3 = "";
 | 
|  |    664 |       }
 | 
|  |    665 |     }
 | 
|  |    666 |   }
 | 
|  |    667 |   assert( zP3!=0 );
 | 
|  |    668 |   return zP3;
 | 
|  |    669 | }
 | 
|  |    670 | #endif
 | 
|  |    671 | 
 | 
|  |    672 | /*
 | 
|  |    673 | ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
 | 
|  |    674 | **
 | 
|  |    675 | */
 | 
|  |    676 | void sqlite3VdbeUsesBtree(Vdbe *p, int i){
 | 
|  |    677 |   int mask;
 | 
|  |    678 |   assert( i>=0 && i<p->db->nDb );
 | 
|  |    679 |   assert( i<sizeof(p->btreeMask)*8 );
 | 
|  |    680 |   mask = 1<<i;
 | 
|  |    681 |   if( (p->btreeMask & mask)==0 ){
 | 
|  |    682 |     p->btreeMask |= mask;
 | 
|  |    683 |     sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
 | 
|  |    684 |   }
 | 
|  |    685 | }
 | 
|  |    686 | 
 | 
|  |    687 | 
 | 
|  |    688 | #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | 
|  |    689 | /*
 | 
|  |    690 | ** Print a single opcode.  This routine is used for debugging only.
 | 
|  |    691 | */
 | 
|  |    692 | void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
 | 
|  |    693 |   char *zP3;
 | 
|  |    694 |   char zPtr[50];
 | 
|  |    695 |   static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
 | 
|  |    696 |   if( pOut==0 ) pOut = stdout;
 | 
|  |    697 |   zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
 | 
|  |    698 |   fprintf(pOut, zFormat1,
 | 
|  |    699 |       pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP3);
 | 
|  |    700 |   fflush(pOut);
 | 
|  |    701 | }
 | 
|  |    702 | #endif
 | 
|  |    703 | 
 | 
|  |    704 | /*
 | 
|  |    705 | ** Release an array of N Mem elements
 | 
|  |    706 | */
 | 
|  |    707 | static void releaseMemArray(Mem *p, int N){
 | 
|  |    708 |   if( p ){
 | 
|  |    709 |     while( N-->0 ){
 | 
|  |    710 |       assert( N<2 || p[0].db==p[1].db );
 | 
|  |    711 |       sqlite3VdbeMemRelease(p++);
 | 
|  |    712 |     }
 | 
|  |    713 |   }
 | 
|  |    714 | }
 | 
|  |    715 | 
 | 
|  |    716 | #ifndef SQLITE_OMIT_EXPLAIN
 | 
|  |    717 | /*
 | 
|  |    718 | ** Give a listing of the program in the virtual machine.
 | 
|  |    719 | **
 | 
|  |    720 | ** The interface is the same as sqlite3VdbeExec().  But instead of
 | 
|  |    721 | ** running the code, it invokes the callback once for each instruction.
 | 
|  |    722 | ** This feature is used to implement "EXPLAIN".
 | 
|  |    723 | */
 | 
|  |    724 | int sqlite3VdbeList(
 | 
|  |    725 |   Vdbe *p                   /* The VDBE */
 | 
|  |    726 | ){
 | 
|  |    727 |   sqlite3 *db = p->db;
 | 
|  |    728 |   int i;
 | 
|  |    729 |   int rc = SQLITE_OK;
 | 
|  |    730 | 
 | 
|  |    731 |   assert( p->explain );
 | 
|  |    732 |   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
 | 
|  |    733 |   assert( db->magic==SQLITE_MAGIC_BUSY );
 | 
|  |    734 |   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | 
|  |    735 | 
 | 
|  |    736 |   /* Even though this opcode does not put dynamic strings onto the
 | 
|  |    737 |   ** the stack, they may become dynamic if the user calls
 | 
|  |    738 |   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
 | 
|  |    739 |   */
 | 
|  |    740 |   if( p->pTos==&p->aStack[4] ){
 | 
|  |    741 |     releaseMemArray(p->aStack, 5);
 | 
|  |    742 |   }
 | 
|  |    743 |   p->resOnStack = 0;
 | 
|  |    744 | 
 | 
|  |    745 |   do{
 | 
|  |    746 |     i = p->pc++;
 | 
|  |    747 |   }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
 | 
|  |    748 |   if( i>=p->nOp ){
 | 
|  |    749 |     p->rc = SQLITE_OK;
 | 
|  |    750 |     rc = SQLITE_DONE;
 | 
|  |    751 |   }else if( db->u1.isInterrupted ){
 | 
|  |    752 |     p->rc = SQLITE_INTERRUPT;
 | 
|  |    753 |     rc = SQLITE_ERROR;
 | 
|  |    754 |     sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
 | 
|  |    755 |   }else{
 | 
|  |    756 |     Op *pOp = &p->aOp[i];
 | 
|  |    757 |     Mem *pMem = p->aStack;
 | 
|  |    758 |     pMem->flags = MEM_Int;
 | 
|  |    759 |     pMem->type = SQLITE_INTEGER;
 | 
|  |    760 |     pMem->u.i = i;                                /* Program counter */
 | 
|  |    761 |     pMem++;
 | 
|  |    762 | 
 | 
|  |    763 |     pMem->flags = MEM_Static|MEM_Str|MEM_Term;
 | 
|  |    764 |     pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
 | 
|  |    765 |     assert( pMem->z!=0 );
 | 
|  |    766 |     pMem->n = strlen(pMem->z);
 | 
|  |    767 |     pMem->type = SQLITE_TEXT;
 | 
|  |    768 |     pMem->enc = SQLITE_UTF8;
 | 
|  |    769 |     pMem++;
 | 
|  |    770 | 
 | 
|  |    771 |     pMem->flags = MEM_Int;
 | 
|  |    772 |     pMem->u.i = pOp->p1;                          /* P1 */
 | 
|  |    773 |     pMem->type = SQLITE_INTEGER;
 | 
|  |    774 |     pMem++;
 | 
|  |    775 | 
 | 
|  |    776 |     pMem->flags = MEM_Int;
 | 
|  |    777 |     pMem->u.i = pOp->p2;                          /* P2 */
 | 
|  |    778 |     pMem->type = SQLITE_INTEGER;
 | 
|  |    779 |     pMem++;
 | 
|  |    780 | 
 | 
|  |    781 |     pMem->flags = MEM_Ephem|MEM_Str|MEM_Term;   /* P3 */
 | 
|  |    782 |     pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
 | 
|  |    783 |     assert( pMem->z!=0 );
 | 
|  |    784 |     pMem->n = strlen(pMem->z);
 | 
|  |    785 |     pMem->type = SQLITE_TEXT;
 | 
|  |    786 |     pMem->enc = SQLITE_UTF8;
 | 
|  |    787 | 
 | 
|  |    788 |     p->nResColumn = 5 - 2*(p->explain-1);
 | 
|  |    789 |     p->pTos = pMem;
 | 
|  |    790 |     p->rc = SQLITE_OK;
 | 
|  |    791 |     p->resOnStack = 1;
 | 
|  |    792 |     rc = SQLITE_ROW;
 | 
|  |    793 |   }
 | 
|  |    794 |   return rc;
 | 
|  |    795 | }
 | 
|  |    796 | #endif /* SQLITE_OMIT_EXPLAIN */
 | 
|  |    797 | 
 | 
|  |    798 | #ifdef SQLITE_DEBUG
 | 
|  |    799 | /*
 | 
|  |    800 | ** Print the SQL that was used to generate a VDBE program.
 | 
|  |    801 | */
 | 
|  |    802 | void sqlite3VdbePrintSql(Vdbe *p){
 | 
|  |    803 |   int nOp = p->nOp;
 | 
|  |    804 |   VdbeOp *pOp;
 | 
|  |    805 |   if( nOp<1 ) return;
 | 
|  |    806 |   pOp = &p->aOp[nOp-1];
 | 
|  |    807 |   if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
 | 
|  |    808 |     const char *z = pOp->p3;
 | 
|  |    809 |     while( isspace(*(u8*)z) ) z++;
 | 
|  |    810 |     printf("SQL: [%s]\n", z);
 | 
|  |    811 |   }
 | 
|  |    812 | }
 | 
|  |    813 | #endif
 | 
|  |    814 | 
 | 
|  |    815 | #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
 | 
|  |    816 | /*
 | 
|  |    817 | ** Print an IOTRACE message showing SQL content.
 | 
|  |    818 | */
 | 
|  |    819 | void sqlite3VdbeIOTraceSql(Vdbe *p){
 | 
|  |    820 |   int nOp = p->nOp;
 | 
|  |    821 |   VdbeOp *pOp;
 | 
|  |    822 |   if( sqlite3_io_trace==0 ) return;
 | 
|  |    823 |   if( nOp<1 ) return;
 | 
|  |    824 |   pOp = &p->aOp[nOp-1];
 | 
|  |    825 |   if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
 | 
|  |    826 |     int i, j;
 | 
|  |    827 |     char z[1000];
 | 
|  |    828 |     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p3);
 | 
|  |    829 |     for(i=0; isspace((unsigned char)z[i]); i++){}
 | 
|  |    830 |     for(j=0; z[i]; i++){
 | 
|  |    831 |       if( isspace((unsigned char)z[i]) ){
 | 
|  |    832 |         if( z[i-1]!=' ' ){
 | 
|  |    833 |           z[j++] = ' ';
 | 
|  |    834 |         }
 | 
|  |    835 |       }else{
 | 
|  |    836 |         z[j++] = z[i];
 | 
|  |    837 |       }
 | 
|  |    838 |     }
 | 
|  |    839 |     z[j] = 0;
 | 
|  |    840 |     sqlite3_io_trace("SQL %s\n", z);
 | 
|  |    841 |   }
 | 
|  |    842 | }
 | 
|  |    843 | #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
 | 
|  |    844 | 
 | 
|  |    845 | 
 | 
|  |    846 | /*
 | 
|  |    847 | ** Prepare a virtual machine for execution.  This involves things such
 | 
|  |    848 | ** as allocating stack space and initializing the program counter.
 | 
|  |    849 | ** After the VDBE has be prepped, it can be executed by one or more
 | 
|  |    850 | ** calls to sqlite3VdbeExec().  
 | 
|  |    851 | **
 | 
|  |    852 | ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
 | 
|  |    853 | ** VDBE_MAGIC_RUN.
 | 
|  |    854 | */
 | 
|  |    855 | void sqlite3VdbeMakeReady(
 | 
|  |    856 |   Vdbe *p,                       /* The VDBE */
 | 
|  |    857 |   int nVar,                      /* Number of '?' see in the SQL statement */
 | 
|  |    858 |   int nMem,                      /* Number of memory cells to allocate */
 | 
|  |    859 |   int nCursor,                   /* Number of cursors to allocate */
 | 
|  |    860 |   int isExplain                  /* True if the EXPLAIN keywords is present */
 | 
|  |    861 | ){
 | 
|  |    862 |   int n;
 | 
|  |    863 |   sqlite3 *db = p->db;
 | 
|  |    864 | 
 | 
|  |    865 |   assert( p!=0 );
 | 
|  |    866 |   assert( p->magic==VDBE_MAGIC_INIT );
 | 
|  |    867 | 
 | 
|  |    868 |   /* There should be at least one opcode.
 | 
|  |    869 |   */
 | 
|  |    870 |   assert( p->nOp>0 );
 | 
|  |    871 | 
 | 
|  |    872 |   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
 | 
|  |    873 |    * is because the call to resizeOpArray() below may shrink the
 | 
|  |    874 |    * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
 | 
|  |    875 |    * state.
 | 
|  |    876 |    */
 | 
|  |    877 |   p->magic = VDBE_MAGIC_RUN;
 | 
|  |    878 | 
 | 
|  |    879 |   /* No instruction ever pushes more than a single element onto the
 | 
|  |    880 |   ** stack.  And the stack never grows on successive executions of the
 | 
|  |    881 |   ** same loop.  So the total number of instructions is an upper bound
 | 
|  |    882 |   ** on the maximum stack depth required.  (Added later:)  The
 | 
|  |    883 |   ** resolveP2Values() call computes a tighter upper bound on the
 | 
|  |    884 |   ** stack size.
 | 
|  |    885 |   **
 | 
|  |    886 |   ** Allocation all the stack space we will ever need.
 | 
|  |    887 |   */
 | 
|  |    888 |   if( p->aStack==0 ){
 | 
|  |    889 |     int nArg;       /* Maximum number of args passed to a user function. */
 | 
|  |    890 |     int nStack;     /* Maximum number of stack entries required */
 | 
|  |    891 |     resolveP2Values(p, &nArg, &nStack);
 | 
|  |    892 |     resizeOpArray(p, p->nOp);
 | 
|  |    893 |     assert( nVar>=0 );
 | 
|  |    894 |     assert( nStack<p->nOp );
 | 
|  |    895 |     if( isExplain ){
 | 
|  |    896 |       nStack = 10;
 | 
|  |    897 |     }
 | 
|  |    898 |     p->aStack = (Mem*)sqlite3DbMallocZero(db,
 | 
|  |    899 |         nStack*sizeof(p->aStack[0])    /* aStack */
 | 
|  |    900 |       + nArg*sizeof(Mem*)              /* apArg */
 | 
|  |    901 |       + nVar*sizeof(Mem)               /* aVar */
 | 
|  |    902 |       + nVar*sizeof(char*)             /* azVar */
 | 
|  |    903 |       + nMem*sizeof(Mem)               /* aMem */
 | 
|  |    904 |       + nCursor*sizeof(Cursor*)        /* apCsr */
 | 
|  |    905 |     );
 | 
|  |    906 |     if( !db->mallocFailed ){
 | 
|  |    907 |       p->aMem = &p->aStack[nStack];
 | 
|  |    908 |       p->nMem = nMem;
 | 
|  |    909 |       p->aVar = &p->aMem[nMem];
 | 
|  |    910 |       p->nVar = nVar;
 | 
|  |    911 |       p->okVar = 0;
 | 
|  |    912 |       p->apArg = (Mem**)&p->aVar[nVar];
 | 
|  |    913 |       p->azVar = (char**)&p->apArg[nArg];
 | 
|  |    914 |       p->apCsr = (Cursor**)&p->azVar[nVar];
 | 
|  |    915 |       p->nCursor = nCursor;
 | 
|  |    916 |       for(n=0; n<nVar; n++){
 | 
|  |    917 |         p->aVar[n].flags = MEM_Null;
 | 
|  |    918 |         p->aVar[n].db = db;
 | 
|  |    919 |       }
 | 
|  |    920 |       for(n=0; n<nStack; n++){
 | 
|  |    921 |         p->aStack[n].db = db;
 | 
|  |    922 |       }
 | 
|  |    923 |     }
 | 
|  |    924 |   }
 | 
|  |    925 |   for(n=0; n<p->nMem; n++){
 | 
|  |    926 |     p->aMem[n].flags = MEM_Null;
 | 
|  |    927 |     p->aMem[n].db = db;
 | 
|  |    928 |   }
 | 
|  |    929 | 
 | 
|  |    930 |   p->pTos = &p->aStack[-1];
 | 
|  |    931 |   p->pc = -1;
 | 
|  |    932 |   p->rc = SQLITE_OK;
 | 
|  |    933 |   p->uniqueCnt = 0;
 | 
|  |    934 |   p->returnDepth = 0;
 | 
|  |    935 |   p->errorAction = OE_Abort;
 | 
|  |    936 |   p->popStack =  0;
 | 
|  |    937 |   p->explain |= isExplain;
 | 
|  |    938 |   p->magic = VDBE_MAGIC_RUN;
 | 
|  |    939 |   p->nChange = 0;
 | 
|  |    940 |   p->cacheCtr = 1;
 | 
|  |    941 |   p->minWriteFileFormat = 255;
 | 
|  |    942 |   p->openedStatement = 0;
 | 
|  |    943 | #ifdef VDBE_PROFILE
 | 
|  |    944 |   {
 | 
|  |    945 |     int i;
 | 
|  |    946 |     for(i=0; i<p->nOp; i++){
 | 
|  |    947 |       p->aOp[i].cnt = 0;
 | 
|  |    948 |       p->aOp[i].cycles = 0;
 | 
|  |    949 |     }
 | 
|  |    950 |   }
 | 
|  |    951 | #endif
 | 
|  |    952 | }
 | 
|  |    953 | 
 | 
|  |    954 | /*
 | 
|  |    955 | ** Close a VDBE cursor and release all the resources that cursor happens
 | 
|  |    956 | ** to hold.
 | 
|  |    957 | */
 | 
|  |    958 | void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
 | 
|  |    959 |   if( pCx==0 ){
 | 
|  |    960 |     return;
 | 
|  |    961 |   }
 | 
|  |    962 |   if( pCx->pCursor ){
 | 
|  |    963 |     sqlite3BtreeCloseCursor(pCx->pCursor);
 | 
|  |    964 |   }
 | 
|  |    965 |   if( pCx->pBt ){
 | 
|  |    966 |     sqlite3BtreeClose(pCx->pBt);
 | 
|  |    967 |   }
 | 
|  |    968 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    969 |   if( pCx->pVtabCursor ){
 | 
|  |    970 |     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
 | 
|  |    971 |     const sqlite3_module *pModule = pCx->pModule;
 | 
|  |    972 |     p->inVtabMethod = 1;
 | 
|  |    973 |     sqlite3SafetyOff(p->db);
 | 
|  |    974 |     pModule->xClose(pVtabCursor);
 | 
|  |    975 |     sqlite3SafetyOn(p->db);
 | 
|  |    976 |     p->inVtabMethod = 0;
 | 
|  |    977 |   }
 | 
|  |    978 | #endif
 | 
|  |    979 |   sqlite3_free(pCx->pData);
 | 
|  |    980 |   sqlite3_free(pCx->aType);
 | 
|  |    981 |   sqlite3_free(pCx);
 | 
|  |    982 | }
 | 
|  |    983 | 
 | 
|  |    984 | /*
 | 
|  |    985 | ** Close all cursors except for VTab cursors that are currently
 | 
|  |    986 | ** in use.
 | 
|  |    987 | */
 | 
|  |    988 | static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
 | 
|  |    989 |   int i;
 | 
|  |    990 |   if( p->apCsr==0 ) return;
 | 
|  |    991 |   for(i=0; i<p->nCursor; i++){
 | 
|  |    992 |     Cursor *pC = p->apCsr[i];
 | 
|  |    993 |     if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
 | 
|  |    994 |       sqlite3VdbeFreeCursor(p, pC);
 | 
|  |    995 |       p->apCsr[i] = 0;
 | 
|  |    996 |     }
 | 
|  |    997 |   }
 | 
|  |    998 | }
 | 
|  |    999 | 
 | 
|  |   1000 | /*
 | 
|  |   1001 | ** Clean up the VM after execution.
 | 
|  |   1002 | **
 | 
|  |   1003 | ** This routine will automatically close any cursors, lists, and/or
 | 
|  |   1004 | ** sorters that were left open.  It also deletes the values of
 | 
|  |   1005 | ** variables in the aVar[] array.
 | 
|  |   1006 | */
 | 
|  |   1007 | static void Cleanup(Vdbe *p){
 | 
|  |   1008 |   int i;
 | 
|  |   1009 |   if( p->aStack ){
 | 
|  |   1010 |     releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
 | 
|  |   1011 |     p->pTos = &p->aStack[-1];
 | 
|  |   1012 |   }
 | 
|  |   1013 |   closeAllCursorsExceptActiveVtabs(p);
 | 
|  |   1014 |   releaseMemArray(p->aMem, p->nMem);
 | 
|  |   1015 |   sqlite3VdbeFifoClear(&p->sFifo);
 | 
|  |   1016 |   if( p->contextStack ){
 | 
|  |   1017 |     for(i=0; i<p->contextStackTop; i++){
 | 
|  |   1018 |       sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
 | 
|  |   1019 |     }
 | 
|  |   1020 |     sqlite3_free(p->contextStack);
 | 
|  |   1021 |   }
 | 
|  |   1022 |   p->contextStack = 0;
 | 
|  |   1023 |   p->contextStackDepth = 0;
 | 
|  |   1024 |   p->contextStackTop = 0;
 | 
|  |   1025 |   sqlite3_free(p->zErrMsg);
 | 
|  |   1026 |   p->zErrMsg = 0;
 | 
|  |   1027 |   p->resOnStack = 0;
 | 
|  |   1028 | }
 | 
|  |   1029 | 
 | 
|  |   1030 | /*
 | 
|  |   1031 | ** Set the number of result columns that will be returned by this SQL
 | 
|  |   1032 | ** statement. This is now set at compile time, rather than during
 | 
|  |   1033 | ** execution of the vdbe program so that sqlite3_column_count() can
 | 
|  |   1034 | ** be called on an SQL statement before sqlite3_step().
 | 
|  |   1035 | */
 | 
|  |   1036 | void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
 | 
|  |   1037 |   Mem *pColName;
 | 
|  |   1038 |   int n;
 | 
|  |   1039 | 
 | 
|  |   1040 |   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | 
|  |   1041 |   sqlite3_free(p->aColName);
 | 
|  |   1042 |   n = nResColumn*COLNAME_N;
 | 
|  |   1043 |   p->nResColumn = nResColumn;
 | 
|  |   1044 |   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
 | 
|  |   1045 |   if( p->aColName==0 ) return;
 | 
|  |   1046 |   while( n-- > 0 ){
 | 
|  |   1047 |     pColName->flags = MEM_Null;
 | 
|  |   1048 |     pColName->db = p->db;
 | 
|  |   1049 |     pColName++;
 | 
|  |   1050 |   }
 | 
|  |   1051 | }
 | 
|  |   1052 | 
 | 
|  |   1053 | /*
 | 
|  |   1054 | ** Set the name of the idx'th column to be returned by the SQL statement.
 | 
|  |   1055 | ** zName must be a pointer to a nul terminated string.
 | 
|  |   1056 | **
 | 
|  |   1057 | ** This call must be made after a call to sqlite3VdbeSetNumCols().
 | 
|  |   1058 | **
 | 
|  |   1059 | ** If N==P3_STATIC  it means that zName is a pointer to a constant static
 | 
|  |   1060 | ** string and we can just copy the pointer. If it is P3_DYNAMIC, then 
 | 
|  |   1061 | ** the string is freed using sqlite3_free() when the vdbe is finished with
 | 
|  |   1062 | ** it. Otherwise, N bytes of zName are copied.
 | 
|  |   1063 | */
 | 
|  |   1064 | int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
 | 
|  |   1065 |   int rc;
 | 
|  |   1066 |   Mem *pColName;
 | 
|  |   1067 |   assert( idx<p->nResColumn );
 | 
|  |   1068 |   assert( var<COLNAME_N );
 | 
|  |   1069 |   if( p->db->mallocFailed ) return SQLITE_NOMEM;
 | 
|  |   1070 |   assert( p->aColName!=0 );
 | 
|  |   1071 |   pColName = &(p->aColName[idx+var*p->nResColumn]);
 | 
|  |   1072 |   if( N==P3_DYNAMIC || N==P3_STATIC ){
 | 
|  |   1073 |     rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
 | 
|  |   1074 |   }else{
 | 
|  |   1075 |     rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
 | 
|  |   1076 |   }
 | 
|  |   1077 |   if( rc==SQLITE_OK && N==P3_DYNAMIC ){
 | 
|  |   1078 |     pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
 | 
|  |   1079 |     pColName->xDel = 0;
 | 
|  |   1080 |   }
 | 
|  |   1081 |   return rc;
 | 
|  |   1082 | }
 | 
|  |   1083 | 
 | 
|  |   1084 | /*
 | 
|  |   1085 | ** A read or write transaction may or may not be active on database handle
 | 
|  |   1086 | ** db. If a transaction is active, commit it. If there is a
 | 
|  |   1087 | ** write-transaction spanning more than one database file, this routine
 | 
|  |   1088 | ** takes care of the master journal trickery.
 | 
|  |   1089 | */
 | 
|  |   1090 | static int vdbeCommit(sqlite3 *db){
 | 
|  |   1091 |   int i;
 | 
|  |   1092 |   int nTrans = 0;  /* Number of databases with an active write-transaction */
 | 
|  |   1093 |   int rc = SQLITE_OK;
 | 
|  |   1094 |   int needXcommit = 0;
 | 
|  |   1095 | 
 | 
|  |   1096 |   /* Before doing anything else, call the xSync() callback for any
 | 
|  |   1097 |   ** virtual module tables written in this transaction. This has to
 | 
|  |   1098 |   ** be done before determining whether a master journal file is 
 | 
|  |   1099 |   ** required, as an xSync() callback may add an attached database
 | 
|  |   1100 |   ** to the transaction.
 | 
|  |   1101 |   */
 | 
|  |   1102 |   rc = sqlite3VtabSync(db, rc);
 | 
|  |   1103 |   if( rc!=SQLITE_OK ){
 | 
|  |   1104 |     return rc;
 | 
|  |   1105 |   }
 | 
|  |   1106 | 
 | 
|  |   1107 |   /* This loop determines (a) if the commit hook should be invoked and
 | 
|  |   1108 |   ** (b) how many database files have open write transactions, not 
 | 
|  |   1109 |   ** including the temp database. (b) is important because if more than 
 | 
|  |   1110 |   ** one database file has an open write transaction, a master journal
 | 
|  |   1111 |   ** file is required for an atomic commit.
 | 
|  |   1112 |   */ 
 | 
|  |   1113 |   for(i=0; i<db->nDb; i++){ 
 | 
|  |   1114 |     Btree *pBt = db->aDb[i].pBt;
 | 
|  |   1115 |     if( sqlite3BtreeIsInTrans(pBt) ){
 | 
|  |   1116 |       needXcommit = 1;
 | 
|  |   1117 |       if( i!=1 ) nTrans++;
 | 
|  |   1118 |     }
 | 
|  |   1119 |   }
 | 
|  |   1120 | 
 | 
|  |   1121 |   /* If there are any write-transactions at all, invoke the commit hook */
 | 
|  |   1122 |   if( needXcommit && db->xCommitCallback ){
 | 
|  |   1123 |     sqlite3SafetyOff(db);
 | 
|  |   1124 |     rc = db->xCommitCallback(db->pCommitArg);
 | 
|  |   1125 |     sqlite3SafetyOn(db);
 | 
|  |   1126 |     if( rc ){
 | 
|  |   1127 |       return SQLITE_CONSTRAINT;
 | 
|  |   1128 |     }
 | 
|  |   1129 |   }
 | 
|  |   1130 | 
 | 
|  |   1131 |   /* The simple case - no more than one database file (not counting the
 | 
|  |   1132 |   ** TEMP database) has a transaction active.   There is no need for the
 | 
|  |   1133 |   ** master-journal.
 | 
|  |   1134 |   **
 | 
|  |   1135 |   ** If the return value of sqlite3BtreeGetFilename() is a zero length
 | 
|  |   1136 |   ** string, it means the main database is :memory:.  In that case we do
 | 
|  |   1137 |   ** not support atomic multi-file commits, so use the simple case then
 | 
|  |   1138 |   ** too.
 | 
|  |   1139 |   */
 | 
|  |   1140 |   if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
 | 
|  |   1141 |     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | 
|  |   1142 |       Btree *pBt = db->aDb[i].pBt;
 | 
|  |   1143 |       if( pBt ){
 | 
|  |   1144 |         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
 | 
|  |   1145 |       }
 | 
|  |   1146 |     }
 | 
|  |   1147 | 
 | 
|  |   1148 |     /* Do the commit only if all databases successfully complete phase 1. 
 | 
|  |   1149 |     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
 | 
|  |   1150 |     ** IO error while deleting or truncating a journal file. It is unlikely,
 | 
|  |   1151 |     ** but could happen. In this case abandon processing and return the error.
 | 
|  |   1152 |     */
 | 
|  |   1153 |     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | 
|  |   1154 |       Btree *pBt = db->aDb[i].pBt;
 | 
|  |   1155 |       if( pBt ){
 | 
|  |   1156 |         rc = sqlite3BtreeCommitPhaseTwo(pBt);
 | 
|  |   1157 |       }
 | 
|  |   1158 |     }
 | 
|  |   1159 |     if( rc==SQLITE_OK ){
 | 
|  |   1160 |       sqlite3VtabCommit(db);
 | 
|  |   1161 |     }
 | 
|  |   1162 |   }
 | 
|  |   1163 | 
 | 
|  |   1164 |   /* The complex case - There is a multi-file write-transaction active.
 | 
|  |   1165 |   ** This requires a master journal file to ensure the transaction is
 | 
|  |   1166 |   ** committed atomicly.
 | 
|  |   1167 |   */
 | 
|  |   1168 | #ifndef SQLITE_OMIT_DISKIO
 | 
|  |   1169 |   else{
 | 
|  |   1170 |     sqlite3_vfs *pVfs = db->pVfs;
 | 
|  |   1171 |     int needSync = 0;
 | 
|  |   1172 |     char *zMaster = 0;   /* File-name for the master journal */
 | 
|  |   1173 |     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
 | 
|  |   1174 |     sqlite3_file *pMaster = 0;
 | 
|  |   1175 |     i64 offset = 0;
 | 
|  |   1176 | 
 | 
|  |   1177 |     /* Select a master journal file name */
 | 
|  |   1178 |     do {
 | 
|  |   1179 |       u32 random;
 | 
|  |   1180 |       sqlite3_free(zMaster);
 | 
|  |   1181 |       sqlite3Randomness(sizeof(random), &random);
 | 
|  |   1182 |       zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
 | 
|  |   1183 |       if( !zMaster ){
 | 
|  |   1184 |         return SQLITE_NOMEM;
 | 
|  |   1185 |       }
 | 
|  |   1186 |     }while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) );
 | 
|  |   1187 | 
 | 
|  |   1188 |     /* Open the master journal. */
 | 
|  |   1189 |     rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
 | 
|  |   1190 |         SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
 | 
|  |   1191 |         SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
 | 
|  |   1192 |     );
 | 
|  |   1193 |     if( rc!=SQLITE_OK ){
 | 
|  |   1194 |       sqlite3_free(zMaster);
 | 
|  |   1195 |       return rc;
 | 
|  |   1196 |     }
 | 
|  |   1197 |  
 | 
|  |   1198 |     /* Write the name of each database file in the transaction into the new
 | 
|  |   1199 |     ** master journal file. If an error occurs at this point close
 | 
|  |   1200 |     ** and delete the master journal file. All the individual journal files
 | 
|  |   1201 |     ** still have 'null' as the master journal pointer, so they will roll
 | 
|  |   1202 |     ** back independently if a failure occurs.
 | 
|  |   1203 |     */
 | 
|  |   1204 |     for(i=0; i<db->nDb; i++){
 | 
|  |   1205 |       Btree *pBt = db->aDb[i].pBt;
 | 
|  |   1206 |       if( i==1 ) continue;   /* Ignore the TEMP database */
 | 
|  |   1207 |       if( sqlite3BtreeIsInTrans(pBt) ){
 | 
|  |   1208 |         char const *zFile = sqlite3BtreeGetJournalname(pBt);
 | 
|  |   1209 |         if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
 | 
|  |   1210 |         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
 | 
|  |   1211 |           needSync = 1;
 | 
|  |   1212 |         }
 | 
|  |   1213 |         rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
 | 
|  |   1214 |         offset += strlen(zFile)+1;
 | 
|  |   1215 |         if( rc!=SQLITE_OK ){
 | 
|  |   1216 |           sqlite3OsCloseFree(pMaster);
 | 
|  |   1217 |           sqlite3OsDelete(pVfs, zMaster, 0);
 | 
|  |   1218 |           sqlite3_free(zMaster);
 | 
|  |   1219 |           return rc;
 | 
|  |   1220 |         }
 | 
|  |   1221 |       }
 | 
|  |   1222 |     }
 | 
|  |   1223 | 
 | 
|  |   1224 |     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
 | 
|  |   1225 |     ** flag is set this is not required.
 | 
|  |   1226 |     */
 | 
|  |   1227 |     zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
 | 
|  |   1228 |     if( (needSync 
 | 
|  |   1229 |      && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
 | 
|  |   1230 |      && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
 | 
|  |   1231 |       sqlite3OsCloseFree(pMaster);
 | 
|  |   1232 |       sqlite3OsDelete(pVfs, zMaster, 0);
 | 
|  |   1233 |       sqlite3_free(zMaster);
 | 
|  |   1234 |       return rc;
 | 
|  |   1235 |     }
 | 
|  |   1236 | 
 | 
|  |   1237 |     /* Sync all the db files involved in the transaction. The same call
 | 
|  |   1238 |     ** sets the master journal pointer in each individual journal. If
 | 
|  |   1239 |     ** an error occurs here, do not delete the master journal file.
 | 
|  |   1240 |     **
 | 
|  |   1241 |     ** If the error occurs during the first call to
 | 
|  |   1242 |     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
 | 
|  |   1243 |     ** master journal file will be orphaned. But we cannot delete it,
 | 
|  |   1244 |     ** in case the master journal file name was written into the journal
 | 
|  |   1245 |     ** file before the failure occured.
 | 
|  |   1246 |     */
 | 
|  |   1247 |     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | 
|  |   1248 |       Btree *pBt = db->aDb[i].pBt;
 | 
|  |   1249 |       if( pBt ){
 | 
|  |   1250 |         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
 | 
|  |   1251 |       }
 | 
|  |   1252 |     }
 | 
|  |   1253 |     sqlite3OsCloseFree(pMaster);
 | 
|  |   1254 |     if( rc!=SQLITE_OK ){
 | 
|  |   1255 |       sqlite3_free(zMaster);
 | 
|  |   1256 |       return rc;
 | 
|  |   1257 |     }
 | 
|  |   1258 | 
 | 
|  |   1259 |     /* Delete the master journal file. This commits the transaction. After
 | 
|  |   1260 |     ** doing this the directory is synced again before any individual
 | 
|  |   1261 |     ** transaction files are deleted.
 | 
|  |   1262 |     */
 | 
|  |   1263 |     rc = sqlite3OsDelete(pVfs, zMaster, 1);
 | 
|  |   1264 |     sqlite3_free(zMaster);
 | 
|  |   1265 |     zMaster = 0;
 | 
|  |   1266 |     if( rc ){
 | 
|  |   1267 |       return rc;
 | 
|  |   1268 |     }
 | 
|  |   1269 | 
 | 
|  |   1270 |     /* All files and directories have already been synced, so the following
 | 
|  |   1271 |     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
 | 
|  |   1272 |     ** deleting or truncating journals. If something goes wrong while
 | 
|  |   1273 |     ** this is happening we don't really care. The integrity of the
 | 
|  |   1274 |     ** transaction is already guaranteed, but some stray 'cold' journals
 | 
|  |   1275 |     ** may be lying around. Returning an error code won't help matters.
 | 
|  |   1276 |     */
 | 
|  |   1277 |     disable_simulated_io_errors();
 | 
|  |   1278 |     for(i=0; i<db->nDb; i++){ 
 | 
|  |   1279 |       Btree *pBt = db->aDb[i].pBt;
 | 
|  |   1280 |       if( pBt ){
 | 
|  |   1281 |         sqlite3BtreeCommitPhaseTwo(pBt);
 | 
|  |   1282 |       }
 | 
|  |   1283 |     }
 | 
|  |   1284 |     enable_simulated_io_errors();
 | 
|  |   1285 | 
 | 
|  |   1286 |     sqlite3VtabCommit(db);
 | 
|  |   1287 |   }
 | 
|  |   1288 | #endif
 | 
|  |   1289 | 
 | 
|  |   1290 |   return rc;
 | 
|  |   1291 | }
 | 
|  |   1292 | 
 | 
|  |   1293 | /* 
 | 
|  |   1294 | ** This routine checks that the sqlite3.activeVdbeCnt count variable
 | 
|  |   1295 | ** matches the number of vdbe's in the list sqlite3.pVdbe that are
 | 
|  |   1296 | ** currently active. An assertion fails if the two counts do not match.
 | 
|  |   1297 | ** This is an internal self-check only - it is not an essential processing
 | 
|  |   1298 | ** step.
 | 
|  |   1299 | **
 | 
|  |   1300 | ** This is a no-op if NDEBUG is defined.
 | 
|  |   1301 | */
 | 
|  |   1302 | #ifndef NDEBUG
 | 
|  |   1303 | static void checkActiveVdbeCnt(sqlite3 *db){
 | 
|  |   1304 |   Vdbe *p;
 | 
|  |   1305 |   int cnt = 0;
 | 
|  |   1306 |   p = db->pVdbe;
 | 
|  |   1307 |   while( p ){
 | 
|  |   1308 |     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
 | 
|  |   1309 |       cnt++;
 | 
|  |   1310 |     }
 | 
|  |   1311 |     p = p->pNext;
 | 
|  |   1312 |   }
 | 
|  |   1313 |   assert( cnt==db->activeVdbeCnt );
 | 
|  |   1314 | }
 | 
|  |   1315 | #else
 | 
|  |   1316 | #define checkActiveVdbeCnt(x)
 | 
|  |   1317 | #endif
 | 
|  |   1318 | 
 | 
|  |   1319 | /*
 | 
|  |   1320 | ** For every Btree that in database connection db which 
 | 
|  |   1321 | ** has been modified, "trip" or invalidate each cursor in
 | 
|  |   1322 | ** that Btree might have been modified so that the cursor
 | 
|  |   1323 | ** can never be used again.  This happens when a rollback
 | 
|  |   1324 | *** occurs.  We have to trip all the other cursors, even
 | 
|  |   1325 | ** cursor from other VMs in different database connections,
 | 
|  |   1326 | ** so that none of them try to use the data at which they
 | 
|  |   1327 | ** were pointing and which now may have been changed due
 | 
|  |   1328 | ** to the rollback.
 | 
|  |   1329 | **
 | 
|  |   1330 | ** Remember that a rollback can delete tables complete and
 | 
|  |   1331 | ** reorder rootpages.  So it is not sufficient just to save
 | 
|  |   1332 | ** the state of the cursor.  We have to invalidate the cursor
 | 
|  |   1333 | ** so that it is never used again.
 | 
|  |   1334 | */
 | 
|  |   1335 | static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
 | 
|  |   1336 |   int i;
 | 
|  |   1337 |   for(i=0; i<db->nDb; i++){
 | 
|  |   1338 |     Btree *p = db->aDb[i].pBt;
 | 
|  |   1339 |     if( p && sqlite3BtreeIsInTrans(p) ){
 | 
|  |   1340 |       sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
 | 
|  |   1341 |     }
 | 
|  |   1342 |   }
 | 
|  |   1343 | }
 | 
|  |   1344 | 
 | 
|  |   1345 | /*
 | 
|  |   1346 | ** This routine is called the when a VDBE tries to halt.  If the VDBE
 | 
|  |   1347 | ** has made changes and is in autocommit mode, then commit those
 | 
|  |   1348 | ** changes.  If a rollback is needed, then do the rollback.
 | 
|  |   1349 | **
 | 
|  |   1350 | ** This routine is the only way to move the state of a VM from
 | 
|  |   1351 | ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
 | 
|  |   1352 | ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
 | 
|  |   1353 | **
 | 
|  |   1354 | ** Return an error code.  If the commit could not complete because of
 | 
|  |   1355 | ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
 | 
|  |   1356 | ** means the close did not happen and needs to be repeated.
 | 
|  |   1357 | */
 | 
|  |   1358 | int sqlite3VdbeHalt(Vdbe *p){
 | 
|  |   1359 |   sqlite3 *db = p->db;
 | 
|  |   1360 |   int i;
 | 
|  |   1361 |   int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
 | 
|  |   1362 |   int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
 | 
|  |   1363 | 
 | 
|  |   1364 |   /* This function contains the logic that determines if a statement or
 | 
|  |   1365 |   ** transaction will be committed or rolled back as a result of the
 | 
|  |   1366 |   ** execution of this virtual machine. 
 | 
|  |   1367 |   **
 | 
|  |   1368 |   ** If any of the following errors occur:
 | 
|  |   1369 |   **
 | 
|  |   1370 |   **     SQLITE_NOMEM
 | 
|  |   1371 |   **     SQLITE_IOERR
 | 
|  |   1372 |   **     SQLITE_FULL
 | 
|  |   1373 |   **     SQLITE_INTERRUPT
 | 
|  |   1374 |   **
 | 
|  |   1375 |   ** Then the internal cache might have been left in an inconsistent
 | 
|  |   1376 |   ** state.  We need to rollback the statement transaction, if there is
 | 
|  |   1377 |   ** one, or the complete transaction if there is no statement transaction.
 | 
|  |   1378 |   */
 | 
|  |   1379 | 
 | 
|  |   1380 |   if( p->db->mallocFailed ){
 | 
|  |   1381 |     p->rc = SQLITE_NOMEM;
 | 
|  |   1382 |   }
 | 
|  |   1383 |   closeAllCursorsExceptActiveVtabs(p);
 | 
|  |   1384 |   if( p->magic!=VDBE_MAGIC_RUN ){
 | 
|  |   1385 |     return SQLITE_OK;
 | 
|  |   1386 |   }
 | 
|  |   1387 |   checkActiveVdbeCnt(db);
 | 
|  |   1388 | 
 | 
|  |   1389 |   /* No commit or rollback needed if the program never started */
 | 
|  |   1390 |   if( p->pc>=0 ){
 | 
|  |   1391 |     int mrc;   /* Primary error code from p->rc */
 | 
|  |   1392 | 
 | 
|  |   1393 |     /* Lock all btrees used by the statement */
 | 
|  |   1394 |     sqlite3BtreeMutexArrayEnter(&p->aMutex);
 | 
|  |   1395 | 
 | 
|  |   1396 |     /* Check for one of the special errors */
 | 
|  |   1397 |     mrc = p->rc & 0xff;
 | 
|  |   1398 |     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
 | 
|  |   1399 |                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
 | 
|  |   1400 |     if( isSpecialError ){
 | 
|  |   1401 |       /* This loop does static analysis of the query to see which of the
 | 
|  |   1402 |       ** following three categories it falls into:
 | 
|  |   1403 |       **
 | 
|  |   1404 |       **     Read-only
 | 
|  |   1405 |       **     Query with statement journal
 | 
|  |   1406 |       **     Query without statement journal
 | 
|  |   1407 |       **
 | 
|  |   1408 |       ** We could do something more elegant than this static analysis (i.e.
 | 
|  |   1409 |       ** store the type of query as part of the compliation phase), but 
 | 
|  |   1410 |       ** handling malloc() or IO failure is a fairly obscure edge case so 
 | 
|  |   1411 |       ** this is probably easier. Todo: Might be an opportunity to reduce 
 | 
|  |   1412 |       ** code size a very small amount though...
 | 
|  |   1413 |       */
 | 
|  |   1414 |       int notReadOnly = 0;
 | 
|  |   1415 |       int isStatement = 0;
 | 
|  |   1416 |       assert(p->aOp || p->nOp==0);
 | 
|  |   1417 |       for(i=0; i<p->nOp; i++){ 
 | 
|  |   1418 |         switch( p->aOp[i].opcode ){
 | 
|  |   1419 |           case OP_Transaction:
 | 
|  |   1420 |             notReadOnly |= p->aOp[i].p2;
 | 
|  |   1421 |             break;
 | 
|  |   1422 |           case OP_Statement:
 | 
|  |   1423 |             isStatement = 1;
 | 
|  |   1424 |             break;
 | 
|  |   1425 |         }
 | 
|  |   1426 |       }
 | 
|  |   1427 | 
 | 
|  |   1428 |    
 | 
|  |   1429 |       /* If the query was read-only, we need do no rollback at all. Otherwise,
 | 
|  |   1430 |       ** proceed with the special handling.
 | 
|  |   1431 |       */
 | 
|  |   1432 |       if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
 | 
|  |   1433 |         if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
 | 
|  |   1434 |           xFunc = sqlite3BtreeRollbackStmt;
 | 
|  |   1435 |           p->rc = SQLITE_BUSY;
 | 
|  |   1436 |         } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
 | 
|  |   1437 |           xFunc = sqlite3BtreeRollbackStmt;
 | 
|  |   1438 |         }else{
 | 
|  |   1439 |           /* We are forced to roll back the active transaction. Before doing
 | 
|  |   1440 |           ** so, abort any other statements this handle currently has active.
 | 
|  |   1441 |           */
 | 
|  |   1442 |           invalidateCursorsOnModifiedBtrees(db);
 | 
|  |   1443 |           sqlite3RollbackAll(db);
 | 
|  |   1444 |           db->autoCommit = 1;
 | 
|  |   1445 |         }
 | 
|  |   1446 |       }
 | 
|  |   1447 |     }
 | 
|  |   1448 |   
 | 
|  |   1449 |     /* If the auto-commit flag is set and this is the only active vdbe, then
 | 
|  |   1450 |     ** we do either a commit or rollback of the current transaction. 
 | 
|  |   1451 |     **
 | 
|  |   1452 |     ** Note: This block also runs if one of the special errors handled 
 | 
|  |   1453 |     ** above has occured. 
 | 
|  |   1454 |     */
 | 
|  |   1455 |     if( db->autoCommit && db->activeVdbeCnt==1 ){
 | 
|  |   1456 |       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
 | 
|  |   1457 |         /* The auto-commit flag is true, and the vdbe program was 
 | 
|  |   1458 |         ** successful or hit an 'OR FAIL' constraint. This means a commit 
 | 
|  |   1459 |         ** is required.
 | 
|  |   1460 |         */
 | 
|  |   1461 |         int rc = vdbeCommit(db);
 | 
|  |   1462 |         if( rc==SQLITE_BUSY ){
 | 
|  |   1463 |           sqlite3BtreeMutexArrayLeave(&p->aMutex);
 | 
|  |   1464 |           return SQLITE_BUSY;
 | 
|  |   1465 |         }else if( rc!=SQLITE_OK ){
 | 
|  |   1466 |           p->rc = rc;
 | 
|  |   1467 |           sqlite3RollbackAll(db);
 | 
|  |   1468 |         }else{
 | 
|  |   1469 |           sqlite3CommitInternalChanges(db);
 | 
|  |   1470 |         }
 | 
|  |   1471 |       }else{
 | 
|  |   1472 |         sqlite3RollbackAll(db);
 | 
|  |   1473 |       }
 | 
|  |   1474 |     }else if( !xFunc ){
 | 
|  |   1475 |       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
 | 
|  |   1476 |         if( p->openedStatement ){
 | 
|  |   1477 |           xFunc = sqlite3BtreeCommitStmt;
 | 
|  |   1478 |         } 
 | 
|  |   1479 |       }else if( p->errorAction==OE_Abort ){
 | 
|  |   1480 |         xFunc = sqlite3BtreeRollbackStmt;
 | 
|  |   1481 |       }else{
 | 
|  |   1482 |         invalidateCursorsOnModifiedBtrees(db);
 | 
|  |   1483 |         sqlite3RollbackAll(db);
 | 
|  |   1484 |         db->autoCommit = 1;
 | 
|  |   1485 |       }
 | 
|  |   1486 |     }
 | 
|  |   1487 |   
 | 
|  |   1488 |     /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
 | 
|  |   1489 |     ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
 | 
|  |   1490 |     ** and the return code is still SQLITE_OK, set the return code to the new
 | 
|  |   1491 |     ** error value.
 | 
|  |   1492 |     */
 | 
|  |   1493 |     assert(!xFunc ||
 | 
|  |   1494 |       xFunc==sqlite3BtreeCommitStmt ||
 | 
|  |   1495 |       xFunc==sqlite3BtreeRollbackStmt
 | 
|  |   1496 |     );
 | 
|  |   1497 |     for(i=0; xFunc && i<db->nDb; i++){ 
 | 
|  |   1498 |       int rc;
 | 
|  |   1499 |       Btree *pBt = db->aDb[i].pBt;
 | 
|  |   1500 |       if( pBt ){
 | 
|  |   1501 |         rc = xFunc(pBt);
 | 
|  |   1502 |         if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
 | 
|  |   1503 |           p->rc = rc;
 | 
|  |   1504 |           sqlite3SetString(&p->zErrMsg, 0);
 | 
|  |   1505 |         }
 | 
|  |   1506 |       }
 | 
|  |   1507 |     }
 | 
|  |   1508 |   
 | 
|  |   1509 |     /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
 | 
|  |   1510 |     ** set the change counter. 
 | 
|  |   1511 |     */
 | 
|  |   1512 |     if( p->changeCntOn && p->pc>=0 ){
 | 
|  |   1513 |       if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
 | 
|  |   1514 |         sqlite3VdbeSetChanges(db, p->nChange);
 | 
|  |   1515 |       }else{
 | 
|  |   1516 |         sqlite3VdbeSetChanges(db, 0);
 | 
|  |   1517 |       }
 | 
|  |   1518 |       p->nChange = 0;
 | 
|  |   1519 |     }
 | 
|  |   1520 |   
 | 
|  |   1521 |     /* Rollback or commit any schema changes that occurred. */
 | 
|  |   1522 |     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
 | 
|  |   1523 |       sqlite3ResetInternalSchema(db, 0);
 | 
|  |   1524 |       db->flags = (db->flags | SQLITE_InternChanges);
 | 
|  |   1525 |     }
 | 
|  |   1526 | 
 | 
|  |   1527 |     /* Release the locks */
 | 
|  |   1528 |     sqlite3BtreeMutexArrayLeave(&p->aMutex);
 | 
|  |   1529 |   }
 | 
|  |   1530 | 
 | 
|  |   1531 |   /* We have successfully halted and closed the VM.  Record this fact. */
 | 
|  |   1532 |   if( p->pc>=0 ){
 | 
|  |   1533 |     db->activeVdbeCnt--;
 | 
|  |   1534 |   }
 | 
|  |   1535 |   p->magic = VDBE_MAGIC_HALT;
 | 
|  |   1536 |   checkActiveVdbeCnt(db);
 | 
|  |   1537 |   if( p->db->mallocFailed ){
 | 
|  |   1538 |     p->rc = SQLITE_NOMEM;
 | 
|  |   1539 |   }
 | 
|  |   1540 |   checkActiveVdbeCnt(db);
 | 
|  |   1541 | 
 | 
|  |   1542 |   return SQLITE_OK;
 | 
|  |   1543 | }
 | 
|  |   1544 | 
 | 
|  |   1545 | 
 | 
|  |   1546 | /*
 | 
|  |   1547 | ** Each VDBE holds the result of the most recent sqlite3_step() call
 | 
|  |   1548 | ** in p->rc.  This routine sets that result back to SQLITE_OK.
 | 
|  |   1549 | */
 | 
|  |   1550 | void sqlite3VdbeResetStepResult(Vdbe *p){
 | 
|  |   1551 |   p->rc = SQLITE_OK;
 | 
|  |   1552 | }
 | 
|  |   1553 | 
 | 
|  |   1554 | /*
 | 
|  |   1555 | ** Clean up a VDBE after execution but do not delete the VDBE just yet.
 | 
|  |   1556 | ** Write any error messages into *pzErrMsg.  Return the result code.
 | 
|  |   1557 | **
 | 
|  |   1558 | ** After this routine is run, the VDBE should be ready to be executed
 | 
|  |   1559 | ** again.
 | 
|  |   1560 | **
 | 
|  |   1561 | ** To look at it another way, this routine resets the state of the
 | 
|  |   1562 | ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
 | 
|  |   1563 | ** VDBE_MAGIC_INIT.
 | 
|  |   1564 | */
 | 
|  |   1565 | int sqlite3VdbeReset(Vdbe *p){
 | 
|  |   1566 |   sqlite3 *db;
 | 
|  |   1567 |   db = p->db;
 | 
|  |   1568 | 
 | 
|  |   1569 |   /* If the VM did not run to completion or if it encountered an
 | 
|  |   1570 |   ** error, then it might not have been halted properly.  So halt
 | 
|  |   1571 |   ** it now.
 | 
|  |   1572 |   */
 | 
|  |   1573 |   sqlite3SafetyOn(db);
 | 
|  |   1574 |   sqlite3VdbeHalt(p);
 | 
|  |   1575 |   sqlite3SafetyOff(db);
 | 
|  |   1576 | 
 | 
|  |   1577 |   /* If the VDBE has be run even partially, then transfer the error code
 | 
|  |   1578 |   ** and error message from the VDBE into the main database structure.  But
 | 
|  |   1579 |   ** if the VDBE has just been set to run but has not actually executed any
 | 
|  |   1580 |   ** instructions yet, leave the main database error information unchanged.
 | 
|  |   1581 |   */
 | 
|  |   1582 |   if( p->pc>=0 ){
 | 
|  |   1583 |     if( p->zErrMsg ){
 | 
|  |   1584 |       sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
 | 
|  |   1585 |       db->errCode = p->rc;
 | 
|  |   1586 |       p->zErrMsg = 0;
 | 
|  |   1587 |     }else if( p->rc ){
 | 
|  |   1588 |       sqlite3Error(db, p->rc, 0);
 | 
|  |   1589 |     }else{
 | 
|  |   1590 |       sqlite3Error(db, SQLITE_OK, 0);
 | 
|  |   1591 |     }
 | 
|  |   1592 |   }else if( p->rc && p->expired ){
 | 
|  |   1593 |     /* The expired flag was set on the VDBE before the first call
 | 
|  |   1594 |     ** to sqlite3_step(). For consistency (since sqlite3_step() was
 | 
|  |   1595 |     ** called), set the database error in this case as well.
 | 
|  |   1596 |     */
 | 
|  |   1597 |     sqlite3Error(db, p->rc, 0);
 | 
|  |   1598 |     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
 | 
|  |   1599 |     p->zErrMsg = 0;
 | 
|  |   1600 |   }
 | 
|  |   1601 | 
 | 
|  |   1602 |   /* Reclaim all memory used by the VDBE
 | 
|  |   1603 |   */
 | 
|  |   1604 |   Cleanup(p);
 | 
|  |   1605 | 
 | 
|  |   1606 |   /* Save profiling information from this VDBE run.
 | 
|  |   1607 |   */
 | 
|  |   1608 |   assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack );
 | 
|  |   1609 | #ifdef VDBE_PROFILE
 | 
|  |   1610 |   {
 | 
|  |   1611 |     FILE *out = fopen("vdbe_profile.out", "a");
 | 
|  |   1612 |     if( out ){
 | 
|  |   1613 |       int i;
 | 
|  |   1614 |       fprintf(out, "---- ");
 | 
|  |   1615 |       for(i=0; i<p->nOp; i++){
 | 
|  |   1616 |         fprintf(out, "%02x", p->aOp[i].opcode);
 | 
|  |   1617 |       }
 | 
|  |   1618 |       fprintf(out, "\n");
 | 
|  |   1619 |       for(i=0; i<p->nOp; i++){
 | 
|  |   1620 |         fprintf(out, "%6d %10lld %8lld ",
 | 
|  |   1621 |            p->aOp[i].cnt,
 | 
|  |   1622 |            p->aOp[i].cycles,
 | 
|  |   1623 |            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
 | 
|  |   1624 |         );
 | 
|  |   1625 |         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
 | 
|  |   1626 |       }
 | 
|  |   1627 |       fclose(out);
 | 
|  |   1628 |     }
 | 
|  |   1629 |   }
 | 
|  |   1630 | #endif
 | 
|  |   1631 |   p->magic = VDBE_MAGIC_INIT;
 | 
|  |   1632 |   p->aborted = 0;
 | 
|  |   1633 |   return p->rc & db->errMask;
 | 
|  |   1634 | }
 | 
|  |   1635 |  
 | 
|  |   1636 | /*
 | 
|  |   1637 | ** Clean up and delete a VDBE after execution.  Return an integer which is
 | 
|  |   1638 | ** the result code.  Write any error message text into *pzErrMsg.
 | 
|  |   1639 | */
 | 
|  |   1640 | int sqlite3VdbeFinalize(Vdbe *p){
 | 
|  |   1641 |   int rc = SQLITE_OK;
 | 
|  |   1642 |   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
 | 
|  |   1643 |     rc = sqlite3VdbeReset(p);
 | 
|  |   1644 |     assert( (rc & p->db->errMask)==rc );
 | 
|  |   1645 |   }else if( p->magic!=VDBE_MAGIC_INIT ){
 | 
|  |   1646 |     return SQLITE_MISUSE;
 | 
|  |   1647 |   }
 | 
|  |   1648 |   sqlite3VdbeDelete(p);
 | 
|  |   1649 |   return rc;
 | 
|  |   1650 | }
 | 
|  |   1651 | 
 | 
|  |   1652 | /*
 | 
|  |   1653 | ** Call the destructor for each auxdata entry in pVdbeFunc for which
 | 
|  |   1654 | ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
 | 
|  |   1655 | ** are always destroyed.  To destroy all auxdata entries, call this
 | 
|  |   1656 | ** routine with mask==0.
 | 
|  |   1657 | */
 | 
|  |   1658 | void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
 | 
|  |   1659 |   int i;
 | 
|  |   1660 |   for(i=0; i<pVdbeFunc->nAux; i++){
 | 
|  |   1661 | 	  VdbeFunc::AuxData *pAux = &pVdbeFunc->apAux[i];
 | 
|  |   1662 |     if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
 | 
|  |   1663 |       if( pAux->xDelete ){
 | 
|  |   1664 |         pAux->xDelete(pAux->pAux);
 | 
|  |   1665 |       }
 | 
|  |   1666 |       pAux->pAux = 0;
 | 
|  |   1667 |     }
 | 
|  |   1668 |   }
 | 
|  |   1669 | }
 | 
|  |   1670 | 
 | 
|  |   1671 | /*
 | 
|  |   1672 | ** Delete an entire VDBE.
 | 
|  |   1673 | */
 | 
|  |   1674 | void sqlite3VdbeDelete(Vdbe *p){
 | 
|  |   1675 |   int i;
 | 
|  |   1676 |   if( p==0 ) return;
 | 
|  |   1677 |   Cleanup(p);
 | 
|  |   1678 |   if( p->pPrev ){
 | 
|  |   1679 |     p->pPrev->pNext = p->pNext;
 | 
|  |   1680 |   }else{
 | 
|  |   1681 |     assert( p->db->pVdbe==p );
 | 
|  |   1682 |     p->db->pVdbe = p->pNext;
 | 
|  |   1683 |   }
 | 
|  |   1684 |   if( p->pNext ){
 | 
|  |   1685 |     p->pNext->pPrev = p->pPrev;
 | 
|  |   1686 |   }
 | 
|  |   1687 |   if( p->aOp ){
 | 
|  |   1688 |     for(i=0; i<p->nOp; i++){
 | 
|  |   1689 |       Op *pOp = &p->aOp[i];
 | 
|  |   1690 |       freeP3(pOp->p3type, pOp->p3);
 | 
|  |   1691 |     }
 | 
|  |   1692 |     sqlite3_free(p->aOp);
 | 
|  |   1693 |   }
 | 
|  |   1694 |   releaseMemArray(p->aVar, p->nVar);
 | 
|  |   1695 |   sqlite3_free(p->aLabel);
 | 
|  |   1696 |   sqlite3_free(p->aStack);
 | 
|  |   1697 |   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | 
|  |   1698 |   sqlite3_free(p->aColName);
 | 
|  |   1699 |   sqlite3_free(p->zSql);
 | 
|  |   1700 |   p->magic = VDBE_MAGIC_DEAD;
 | 
|  |   1701 |   sqlite3_free(p);
 | 
|  |   1702 | }
 | 
|  |   1703 | 
 | 
|  |   1704 | /*
 | 
|  |   1705 | ** If a MoveTo operation is pending on the given cursor, then do that
 | 
|  |   1706 | ** MoveTo now.  Return an error code.  If no MoveTo is pending, this
 | 
|  |   1707 | ** routine does nothing and returns SQLITE_OK.
 | 
|  |   1708 | */
 | 
|  |   1709 | int sqlite3VdbeCursorMoveto(Cursor *p){
 | 
|  |   1710 |   if( p->deferredMoveto ){
 | 
|  |   1711 |     int res, rc;
 | 
|  |   1712 | #ifdef SQLITE_TEST
 | 
|  |   1713 |     extern int sqlite3_search_count;
 | 
|  |   1714 | #endif
 | 
|  |   1715 |     assert( p->isTable );
 | 
|  |   1716 |     rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
 | 
|  |   1717 |     if( rc ) return rc;
 | 
|  |   1718 |     *p->pIncrKey = 0;
 | 
|  |   1719 |     p->lastRowid = keyToInt(p->movetoTarget);
 | 
|  |   1720 |     p->rowidIsValid = res==0;
 | 
|  |   1721 |     if( res<0 ){
 | 
|  |   1722 |       rc = sqlite3BtreeNext(p->pCursor, &res);
 | 
|  |   1723 |       if( rc ) return rc;
 | 
|  |   1724 |     }
 | 
|  |   1725 | #ifdef SQLITE_TEST
 | 
|  |   1726 |     sqlite3_search_count++;
 | 
|  |   1727 | #endif
 | 
|  |   1728 |     p->deferredMoveto = 0;
 | 
|  |   1729 |     p->cacheStatus = CACHE_STALE;
 | 
|  |   1730 |   }
 | 
|  |   1731 |   return SQLITE_OK;
 | 
|  |   1732 | }
 | 
|  |   1733 | 
 | 
|  |   1734 | /*
 | 
|  |   1735 | ** The following functions:
 | 
|  |   1736 | **
 | 
|  |   1737 | ** sqlite3VdbeSerialType()
 | 
|  |   1738 | ** sqlite3VdbeSerialTypeLen()
 | 
|  |   1739 | ** sqlite3VdbeSerialRead()
 | 
|  |   1740 | ** sqlite3VdbeSerialLen()
 | 
|  |   1741 | ** sqlite3VdbeSerialWrite()
 | 
|  |   1742 | **
 | 
|  |   1743 | ** encapsulate the code that serializes values for storage in SQLite
 | 
|  |   1744 | ** data and index records. Each serialized value consists of a
 | 
|  |   1745 | ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
 | 
|  |   1746 | ** integer, stored as a varint.
 | 
|  |   1747 | **
 | 
|  |   1748 | ** In an SQLite index record, the serial type is stored directly before
 | 
|  |   1749 | ** the blob of data that it corresponds to. In a table record, all serial
 | 
|  |   1750 | ** types are stored at the start of the record, and the blobs of data at
 | 
|  |   1751 | ** the end. Hence these functions allow the caller to handle the
 | 
|  |   1752 | ** serial-type and data blob seperately.
 | 
|  |   1753 | **
 | 
|  |   1754 | ** The following table describes the various storage classes for data:
 | 
|  |   1755 | **
 | 
|  |   1756 | **   serial type        bytes of data      type
 | 
|  |   1757 | **   --------------     ---------------    ---------------
 | 
|  |   1758 | **      0                     0            NULL
 | 
|  |   1759 | **      1                     1            signed integer
 | 
|  |   1760 | **      2                     2            signed integer
 | 
|  |   1761 | **      3                     3            signed integer
 | 
|  |   1762 | **      4                     4            signed integer
 | 
|  |   1763 | **      5                     6            signed integer
 | 
|  |   1764 | **      6                     8            signed integer
 | 
|  |   1765 | **      7                     8            IEEE float
 | 
|  |   1766 | **      8                     0            Integer constant 0
 | 
|  |   1767 | **      9                     0            Integer constant 1
 | 
|  |   1768 | **     10,11                               reserved for expansion
 | 
|  |   1769 | **    N>=12 and even       (N-12)/2        BLOB
 | 
|  |   1770 | **    N>=13 and odd        (N-13)/2        text
 | 
|  |   1771 | **
 | 
|  |   1772 | ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
 | 
|  |   1773 | ** of SQLite will not understand those serial types.
 | 
|  |   1774 | */
 | 
|  |   1775 | 
 | 
|  |   1776 | /*
 | 
|  |   1777 | ** Return the serial-type for the value stored in pMem.
 | 
|  |   1778 | */
 | 
|  |   1779 | u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
 | 
|  |   1780 |   int flags = pMem->flags;
 | 
|  |   1781 |   int n;
 | 
|  |   1782 | 
 | 
|  |   1783 |   if( flags&MEM_Null ){
 | 
|  |   1784 |     return 0;
 | 
|  |   1785 |   }
 | 
|  |   1786 |   if( flags&MEM_Int ){
 | 
|  |   1787 |     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
 | 
|  |   1788 | #   define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
 | 
|  |   1789 |     i64 i = pMem->u.i;
 | 
|  |   1790 |     u64 u;
 | 
|  |   1791 |     if( file_format>=4 && (i&1)==i ){
 | 
|  |   1792 |       return 8+i;
 | 
|  |   1793 |     }
 | 
|  |   1794 |     u = i<0 ? -i : i;
 | 
|  |   1795 |     if( u<=127 ) return 1;
 | 
|  |   1796 |     if( u<=32767 ) return 2;
 | 
|  |   1797 |     if( u<=8388607 ) return 3;
 | 
|  |   1798 |     if( u<=2147483647 ) return 4;
 | 
|  |   1799 |     if( u<=MAX_6BYTE ) return 5;
 | 
|  |   1800 |     return 6;
 | 
|  |   1801 |   }
 | 
|  |   1802 |   if( flags&MEM_Real ){
 | 
|  |   1803 |     return 7;
 | 
|  |   1804 |   }
 | 
|  |   1805 |   assert( flags&(MEM_Str|MEM_Blob) );
 | 
|  |   1806 |   n = pMem->n;
 | 
|  |   1807 |   if( flags & MEM_Zero ){
 | 
|  |   1808 |     n += pMem->u.i;
 | 
|  |   1809 |   }
 | 
|  |   1810 |   assert( n>=0 );
 | 
|  |   1811 |   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
 | 
|  |   1812 | }
 | 
|  |   1813 | 
 | 
|  |   1814 | /*
 | 
|  |   1815 | ** Return the length of the data corresponding to the supplied serial-type.
 | 
|  |   1816 | */
 | 
|  |   1817 | int sqlite3VdbeSerialTypeLen(u32 serial_type){
 | 
|  |   1818 |   if( serial_type>=12 ){
 | 
|  |   1819 |     return (serial_type-12)/2;
 | 
|  |   1820 |   }else{
 | 
|  |   1821 |     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
 | 
|  |   1822 |     return aSize[serial_type];
 | 
|  |   1823 |   }
 | 
|  |   1824 | }
 | 
|  |   1825 | 
 | 
|  |   1826 | /*
 | 
|  |   1827 | ** If we are on an architecture with mixed-endian floating 
 | 
|  |   1828 | ** points (ex: ARM7) then swap the lower 4 bytes with the 
 | 
|  |   1829 | ** upper 4 bytes.  Return the result.
 | 
|  |   1830 | **
 | 
|  |   1831 | ** For most architectures, this is a no-op.
 | 
|  |   1832 | **
 | 
|  |   1833 | ** (later):  It is reported to me that the mixed-endian problem
 | 
|  |   1834 | ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
 | 
|  |   1835 | ** that early versions of GCC stored the two words of a 64-bit
 | 
|  |   1836 | ** float in the wrong order.  And that error has been propagated
 | 
|  |   1837 | ** ever since.  The blame is not necessarily with GCC, though.
 | 
|  |   1838 | ** GCC might have just copying the problem from a prior compiler.
 | 
|  |   1839 | ** I am also told that newer versions of GCC that follow a different
 | 
|  |   1840 | ** ABI get the byte order right.
 | 
|  |   1841 | **
 | 
|  |   1842 | ** Developers using SQLite on an ARM7 should compile and run their
 | 
|  |   1843 | ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
 | 
|  |   1844 | ** enabled, some asserts below will ensure that the byte order of
 | 
|  |   1845 | ** floating point values is correct.
 | 
|  |   1846 | **
 | 
|  |   1847 | ** (2007-08-30)  Frank van Vugt has studied this problem closely
 | 
|  |   1848 | ** and has send his findings to the SQLite developers.  Frank
 | 
|  |   1849 | ** writes that some Linux kernels offer floating point hardware
 | 
|  |   1850 | ** emulation that uses only 32-bit mantissas instead of a full 
 | 
|  |   1851 | ** 48-bits as required by the IEEE standard.  (This is the
 | 
|  |   1852 | ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
 | 
|  |   1853 | ** byte swapping becomes very complicated.  To avoid problems,
 | 
|  |   1854 | ** the necessary byte swapping is carried out using a 64-bit integer
 | 
|  |   1855 | ** rather than a 64-bit float.  Frank assures us that the code here
 | 
|  |   1856 | ** works for him.  We, the developers, have no way to independently
 | 
|  |   1857 | ** verify this, but Frank seems to know what he is talking about
 | 
|  |   1858 | ** so we trust him.
 | 
|  |   1859 | */
 | 
|  |   1860 | #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
 | 
|  |   1861 | static u64 floatSwap(u64 in){
 | 
|  |   1862 |   union {
 | 
|  |   1863 |     u64 r;
 | 
|  |   1864 |     u32 i[2];
 | 
|  |   1865 |   } u;
 | 
|  |   1866 |   u32 t;
 | 
|  |   1867 | 
 | 
|  |   1868 |   u.r = in;
 | 
|  |   1869 |   t = u.i[0];
 | 
|  |   1870 |   u.i[0] = u.i[1];
 | 
|  |   1871 |   u.i[1] = t;
 | 
|  |   1872 |   return u.r;
 | 
|  |   1873 | }
 | 
|  |   1874 | # define swapMixedEndianFloat(X)  X = floatSwap(X)
 | 
|  |   1875 | #else
 | 
|  |   1876 | # define swapMixedEndianFloat(X)
 | 
|  |   1877 | #endif
 | 
|  |   1878 | 
 | 
|  |   1879 | /*
 | 
|  |   1880 | ** Write the serialized data blob for the value stored in pMem into 
 | 
|  |   1881 | ** buf. It is assumed that the caller has allocated sufficient space.
 | 
|  |   1882 | ** Return the number of bytes written.
 | 
|  |   1883 | **
 | 
|  |   1884 | ** nBuf is the amount of space left in buf[].  nBuf must always be
 | 
|  |   1885 | ** large enough to hold the entire field.  Except, if the field is
 | 
|  |   1886 | ** a blob with a zero-filled tail, then buf[] might be just the right
 | 
|  |   1887 | ** size to hold everything except for the zero-filled tail.  If buf[]
 | 
|  |   1888 | ** is only big enough to hold the non-zero prefix, then only write that
 | 
|  |   1889 | ** prefix into buf[].  But if buf[] is large enough to hold both the
 | 
|  |   1890 | ** prefix and the tail then write the prefix and set the tail to all
 | 
|  |   1891 | ** zeros.
 | 
|  |   1892 | **
 | 
|  |   1893 | ** Return the number of bytes actually written into buf[].  The number
 | 
|  |   1894 | ** of bytes in the zero-filled tail is included in the return value only
 | 
|  |   1895 | ** if those bytes were zeroed in buf[].
 | 
|  |   1896 | */ 
 | 
|  |   1897 | int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
 | 
|  |   1898 |   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
 | 
|  |   1899 |   int len;
 | 
|  |   1900 | 
 | 
|  |   1901 |   /* Integer and Real */
 | 
|  |   1902 |   if( serial_type<=7 && serial_type>0 ){
 | 
|  |   1903 |     u64 v;
 | 
|  |   1904 |     int i;
 | 
|  |   1905 |     if( serial_type==7 ){
 | 
|  |   1906 |       assert( sizeof(v)==sizeof(pMem->r) );
 | 
|  |   1907 |       memcpy(&v, &pMem->r, sizeof(v));
 | 
|  |   1908 |       swapMixedEndianFloat(v);
 | 
|  |   1909 |     }else{
 | 
|  |   1910 |       v = pMem->u.i;
 | 
|  |   1911 |     }
 | 
|  |   1912 |     len = i = sqlite3VdbeSerialTypeLen(serial_type);
 | 
|  |   1913 |     assert( len<=nBuf );
 | 
|  |   1914 |     while( i-- ){
 | 
|  |   1915 |       buf[i] = (v&0xFF);
 | 
|  |   1916 |       v >>= 8;
 | 
|  |   1917 |     }
 | 
|  |   1918 |     return len;
 | 
|  |   1919 |   }
 | 
|  |   1920 | 
 | 
|  |   1921 |   /* String or blob */
 | 
|  |   1922 |   if( serial_type>=12 ){
 | 
|  |   1923 |     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
 | 
|  |   1924 |              == sqlite3VdbeSerialTypeLen(serial_type) );
 | 
|  |   1925 |     assert( pMem->n<=nBuf );
 | 
|  |   1926 |     len = pMem->n;
 | 
|  |   1927 |     memcpy(buf, pMem->z, len);
 | 
|  |   1928 |     if( pMem->flags & MEM_Zero ){
 | 
|  |   1929 |       len += pMem->u.i;
 | 
|  |   1930 |       if( len>nBuf ){
 | 
|  |   1931 |         len = nBuf;
 | 
|  |   1932 |       }
 | 
|  |   1933 |       memset(&buf[pMem->n], 0, len-pMem->n);
 | 
|  |   1934 |     }
 | 
|  |   1935 |     return len;
 | 
|  |   1936 |   }
 | 
|  |   1937 | 
 | 
|  |   1938 |   /* NULL or constants 0 or 1 */
 | 
|  |   1939 |   return 0;
 | 
|  |   1940 | }
 | 
|  |   1941 | 
 | 
|  |   1942 | /*
 | 
|  |   1943 | ** Deserialize the data blob pointed to by buf as serial type serial_type
 | 
|  |   1944 | ** and store the result in pMem.  Return the number of bytes read.
 | 
|  |   1945 | */ 
 | 
|  |   1946 | int sqlite3VdbeSerialGet(
 | 
|  |   1947 |   const unsigned char *buf,     /* Buffer to deserialize from */
 | 
|  |   1948 |   u32 serial_type,              /* Serial type to deserialize */
 | 
|  |   1949 |   Mem *pMem                     /* Memory cell to write value into */
 | 
|  |   1950 | ){
 | 
|  |   1951 |   switch( serial_type ){
 | 
|  |   1952 |     case 10:   /* Reserved for future use */
 | 
|  |   1953 |     case 11:   /* Reserved for future use */
 | 
|  |   1954 |     case 0: {  /* NULL */
 | 
|  |   1955 |       pMem->flags = MEM_Null;
 | 
|  |   1956 |       break;
 | 
|  |   1957 |     }
 | 
|  |   1958 |     case 1: { /* 1-byte signed integer */
 | 
|  |   1959 |       pMem->u.i = (signed char)buf[0];
 | 
|  |   1960 |       pMem->flags = MEM_Int;
 | 
|  |   1961 |       return 1;
 | 
|  |   1962 |     }
 | 
|  |   1963 |     case 2: { /* 2-byte signed integer */
 | 
|  |   1964 |       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
 | 
|  |   1965 |       pMem->flags = MEM_Int;
 | 
|  |   1966 |       return 2;
 | 
|  |   1967 |     }
 | 
|  |   1968 |     case 3: { /* 3-byte signed integer */
 | 
|  |   1969 |       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
 | 
|  |   1970 |       pMem->flags = MEM_Int;
 | 
|  |   1971 |       return 3;
 | 
|  |   1972 |     }
 | 
|  |   1973 |     case 4: { /* 4-byte signed integer */
 | 
|  |   1974 |       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | 
|  |   1975 |       pMem->flags = MEM_Int;
 | 
|  |   1976 |       return 4;
 | 
|  |   1977 |     }
 | 
|  |   1978 |     case 5: { /* 6-byte signed integer */
 | 
|  |   1979 |       u64 x = (((signed char)buf[0])<<8) | buf[1];
 | 
|  |   1980 |       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
 | 
|  |   1981 |       x = (x<<32) | y;
 | 
|  |   1982 |       pMem->u.i = *(i64*)&x;
 | 
|  |   1983 |       pMem->flags = MEM_Int;
 | 
|  |   1984 |       return 6;
 | 
|  |   1985 |     }
 | 
|  |   1986 |     case 6:   /* 8-byte signed integer */
 | 
|  |   1987 |     case 7: { /* IEEE floating point */
 | 
|  |   1988 |       u64 x;
 | 
|  |   1989 |       u32 y;
 | 
|  |   1990 | #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
 | 
|  |   1991 |       /* Verify that integers and floating point values use the same
 | 
|  |   1992 |       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
 | 
|  |   1993 |       ** defined that 64-bit floating point values really are mixed
 | 
|  |   1994 |       ** endian.
 | 
|  |   1995 |       */
 | 
|  |   1996 |       static const u64 t1 = ((u64)0x3ff00000)<<32;
 | 
|  |   1997 |       static const double r1 = 1.0;
 | 
|  |   1998 |       u64 t2 = t1;
 | 
|  |   1999 |       swapMixedEndianFloat(t2);
 | 
|  |   2000 |       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
 | 
|  |   2001 | #endif
 | 
|  |   2002 | 
 | 
|  |   2003 |       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | 
|  |   2004 |       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
 | 
|  |   2005 |       x = (x<<32) | y;
 | 
|  |   2006 |       if( serial_type==6 ){
 | 
|  |   2007 |         pMem->u.i = *(i64*)&x;
 | 
|  |   2008 |         pMem->flags = MEM_Int;
 | 
|  |   2009 |       }else{
 | 
|  |   2010 |         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
 | 
|  |   2011 |         swapMixedEndianFloat(x);
 | 
|  |   2012 |         memcpy(&pMem->r, &x, sizeof(x));
 | 
|  |   2013 |         pMem->flags = MEM_Real;
 | 
|  |   2014 |       }
 | 
|  |   2015 |       return 8;
 | 
|  |   2016 |     }
 | 
|  |   2017 |     case 8:    /* Integer 0 */
 | 
|  |   2018 |     case 9: {  /* Integer 1 */
 | 
|  |   2019 |       pMem->u.i = serial_type-8;
 | 
|  |   2020 |       pMem->flags = MEM_Int;
 | 
|  |   2021 |       return 0;
 | 
|  |   2022 |     }
 | 
|  |   2023 |     default: {
 | 
|  |   2024 |       int len = (serial_type-12)/2;
 | 
|  |   2025 |       pMem->z = (char *)buf;
 | 
|  |   2026 |       pMem->n = len;
 | 
|  |   2027 |       pMem->xDel = 0;
 | 
|  |   2028 |       if( serial_type&0x01 ){
 | 
|  |   2029 |         pMem->flags = MEM_Str | MEM_Ephem;
 | 
|  |   2030 |       }else{
 | 
|  |   2031 |         pMem->flags = MEM_Blob | MEM_Ephem;
 | 
|  |   2032 |       }
 | 
|  |   2033 |       return len;
 | 
|  |   2034 |     }
 | 
|  |   2035 |   }
 | 
|  |   2036 |   return 0;
 | 
|  |   2037 | }
 | 
|  |   2038 | 
 | 
|  |   2039 | /*
 | 
|  |   2040 | ** The header of a record consists of a sequence variable-length integers.
 | 
|  |   2041 | ** These integers are almost always small and are encoded as a single byte.
 | 
|  |   2042 | ** The following macro takes advantage this fact to provide a fast decode
 | 
|  |   2043 | ** of the integers in a record header.  It is faster for the common case
 | 
|  |   2044 | ** where the integer is a single byte.  It is a little slower when the
 | 
|  |   2045 | ** integer is two or more bytes.  But overall it is faster.
 | 
|  |   2046 | **
 | 
|  |   2047 | ** The following expressions are equivalent:
 | 
|  |   2048 | **
 | 
|  |   2049 | **     x = sqlite3GetVarint32( A, &B );
 | 
|  |   2050 | **
 | 
|  |   2051 | **     x = GetVarint( A, B );
 | 
|  |   2052 | **
 | 
|  |   2053 | */
 | 
|  |   2054 | #define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
 | 
|  |   2055 | 
 | 
|  |   2056 | /*
 | 
|  |   2057 | ** This function compares the two table rows or index records specified by 
 | 
|  |   2058 | ** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
 | 
|  |   2059 | ** or positive integer if {nKey1, pKey1} is less than, equal to or 
 | 
|  |   2060 | ** greater than {nKey2, pKey2}.  Both Key1 and Key2 must be byte strings
 | 
|  |   2061 | ** composed by the OP_MakeRecord opcode of the VDBE.
 | 
|  |   2062 | */
 | 
|  |   2063 | int sqlite3VdbeRecordCompare(
 | 
|  |   2064 |   void *userData,
 | 
|  |   2065 |   int nKey1, const void *pKey1, 
 | 
|  |   2066 |   int nKey2, const void *pKey2
 | 
|  |   2067 | ){
 | 
|  |   2068 |   KeyInfo *pKeyInfo = (KeyInfo*)userData;
 | 
|  |   2069 |   u32 d1, d2;          /* Offset into aKey[] of next data element */
 | 
|  |   2070 |   u32 idx1, idx2;      /* Offset into aKey[] of next header element */
 | 
|  |   2071 |   u32 szHdr1, szHdr2;  /* Number of bytes in header */
 | 
|  |   2072 |   int i = 0;
 | 
|  |   2073 |   int nField;
 | 
|  |   2074 |   int rc = 0;
 | 
|  |   2075 |   const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | 
|  |   2076 |   const unsigned char *aKey2 = (const unsigned char *)pKey2;
 | 
|  |   2077 | 
 | 
|  |   2078 |   Mem mem1;
 | 
|  |   2079 |   Mem mem2;
 | 
|  |   2080 |   mem1.enc = pKeyInfo->enc;
 | 
|  |   2081 |   mem1.db = pKeyInfo->db;
 | 
|  |   2082 |   mem2.enc = pKeyInfo->enc;
 | 
|  |   2083 |   mem2.db = pKeyInfo->db;
 | 
|  |   2084 |   
 | 
|  |   2085 |   idx1 = GetVarint(aKey1, szHdr1);
 | 
|  |   2086 |   d1 = szHdr1;
 | 
|  |   2087 |   idx2 = GetVarint(aKey2, szHdr2);
 | 
|  |   2088 |   d2 = szHdr2;
 | 
|  |   2089 |   nField = pKeyInfo->nField;
 | 
|  |   2090 |   while( idx1<szHdr1 && idx2<szHdr2 ){
 | 
|  |   2091 |     u32 serial_type1;
 | 
|  |   2092 |     u32 serial_type2;
 | 
|  |   2093 | 
 | 
|  |   2094 |     /* Read the serial types for the next element in each key. */
 | 
|  |   2095 |     idx1 += GetVarint( aKey1+idx1, serial_type1 );
 | 
|  |   2096 |     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
 | 
|  |   2097 |     idx2 += GetVarint( aKey2+idx2, serial_type2 );
 | 
|  |   2098 |     if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
 | 
|  |   2099 | 
 | 
|  |   2100 |     /* Extract the values to be compared.
 | 
|  |   2101 |     */
 | 
|  |   2102 |     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
 | 
|  |   2103 |     d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
 | 
|  |   2104 | 
 | 
|  |   2105 |     /* Do the comparison
 | 
|  |   2106 |     */
 | 
|  |   2107 |     rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
 | 
|  |   2108 |     if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
 | 
|  |   2109 |     if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
 | 
|  |   2110 |     if( rc!=0 ){
 | 
|  |   2111 |       break;
 | 
|  |   2112 |     }
 | 
|  |   2113 |     i++;
 | 
|  |   2114 |   }
 | 
|  |   2115 | 
 | 
|  |   2116 |   /* One of the keys ran out of fields, but all the fields up to that point
 | 
|  |   2117 |   ** were equal. If the incrKey flag is true, then the second key is
 | 
|  |   2118 |   ** treated as larger.
 | 
|  |   2119 |   */
 | 
|  |   2120 |   if( rc==0 ){
 | 
|  |   2121 |     if( pKeyInfo->incrKey ){
 | 
|  |   2122 |       rc = -1;
 | 
|  |   2123 |     }else if( !pKeyInfo->prefixIsEqual ){
 | 
|  |   2124 |       if( d1<nKey1 ){
 | 
|  |   2125 |         rc = 1;
 | 
|  |   2126 |       }else if( d2<nKey2 ){
 | 
|  |   2127 |         rc = -1;
 | 
|  |   2128 |       }
 | 
|  |   2129 |     }
 | 
|  |   2130 |   }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
 | 
|  |   2131 |                && pKeyInfo->aSortOrder[i] ){
 | 
|  |   2132 |     rc = -rc;
 | 
|  |   2133 |   }
 | 
|  |   2134 | 
 | 
|  |   2135 |   return rc;
 | 
|  |   2136 | }
 | 
|  |   2137 | 
 | 
|  |   2138 | /*
 | 
|  |   2139 | ** The argument is an index entry composed using the OP_MakeRecord opcode.
 | 
|  |   2140 | ** The last entry in this record should be an integer (specifically
 | 
|  |   2141 | ** an integer rowid).  This routine returns the number of bytes in
 | 
|  |   2142 | ** that integer.
 | 
|  |   2143 | */
 | 
|  |   2144 | int sqlite3VdbeIdxRowidLen(const u8 *aKey){
 | 
|  |   2145 |   u32 szHdr;        /* Size of the header */
 | 
|  |   2146 |   u32 typeRowid;    /* Serial type of the rowid */
 | 
|  |   2147 | 
 | 
|  |   2148 |   sqlite3GetVarint32(aKey, &szHdr);
 | 
|  |   2149 |   sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
 | 
|  |   2150 |   return sqlite3VdbeSerialTypeLen(typeRowid);
 | 
|  |   2151 | }
 | 
|  |   2152 |   
 | 
|  |   2153 | 
 | 
|  |   2154 | /*
 | 
|  |   2155 | ** pCur points at an index entry created using the OP_MakeRecord opcode.
 | 
|  |   2156 | ** Read the rowid (the last field in the record) and store it in *rowid.
 | 
|  |   2157 | ** Return SQLITE_OK if everything works, or an error code otherwise.
 | 
|  |   2158 | */
 | 
|  |   2159 | int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
 | 
|  |   2160 |   i64 nCellKey = 0;
 | 
|  |   2161 |   int rc;
 | 
|  |   2162 |   u32 szHdr;        /* Size of the header */
 | 
|  |   2163 |   u32 typeRowid;    /* Serial type of the rowid */
 | 
|  |   2164 |   u32 lenRowid;     /* Size of the rowid */
 | 
|  |   2165 |   Mem m, v;
 | 
|  |   2166 | 
 | 
|  |   2167 |   sqlite3BtreeKeySize(pCur, &nCellKey);
 | 
|  |   2168 |   if( nCellKey<=0 ){
 | 
|  |   2169 |     return SQLITE_CORRUPT_BKPT;
 | 
|  |   2170 |   }
 | 
|  |   2171 |   rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
 | 
|  |   2172 |   if( rc ){
 | 
|  |   2173 |     return rc;
 | 
|  |   2174 |   }
 | 
|  |   2175 |   sqlite3GetVarint32((u8*)m.z, &szHdr);
 | 
|  |   2176 |   sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
 | 
|  |   2177 |   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
 | 
|  |   2178 |   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
 | 
|  |   2179 |   *rowid = v.u.i;
 | 
|  |   2180 |   sqlite3VdbeMemRelease(&m);
 | 
|  |   2181 |   return SQLITE_OK;
 | 
|  |   2182 | }
 | 
|  |   2183 | 
 | 
|  |   2184 | /*
 | 
|  |   2185 | ** Compare the key of the index entry that cursor pC is point to against
 | 
|  |   2186 | ** the key string in pKey (of length nKey).  Write into *pRes a number
 | 
|  |   2187 | ** that is negative, zero, or positive if pC is less than, equal to,
 | 
|  |   2188 | ** or greater than pKey.  Return SQLITE_OK on success.
 | 
|  |   2189 | **
 | 
|  |   2190 | ** pKey is either created without a rowid or is truncated so that it
 | 
|  |   2191 | ** omits the rowid at the end.  The rowid at the end of the index entry
 | 
|  |   2192 | ** is ignored as well.
 | 
|  |   2193 | */
 | 
|  |   2194 | int sqlite3VdbeIdxKeyCompare(
 | 
|  |   2195 |   Cursor *pC,                 /* The cursor to compare against */
 | 
|  |   2196 |   int nKey, const u8 *pKey,   /* The key to compare */
 | 
|  |   2197 |   int *res                    /* Write the comparison result here */
 | 
|  |   2198 | ){
 | 
|  |   2199 |   i64 nCellKey = 0;
 | 
|  |   2200 |   int rc;
 | 
|  |   2201 |   BtCursor *pCur = pC->pCursor;
 | 
|  |   2202 |   int lenRowid;
 | 
|  |   2203 |   Mem m;
 | 
|  |   2204 | 
 | 
|  |   2205 |   sqlite3BtreeKeySize(pCur, &nCellKey);
 | 
|  |   2206 |   if( nCellKey<=0 ){
 | 
|  |   2207 |     *res = 0;
 | 
|  |   2208 |     return SQLITE_OK;
 | 
|  |   2209 |   }
 | 
|  |   2210 |   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
 | 
|  |   2211 |   if( rc ){
 | 
|  |   2212 |     return rc;
 | 
|  |   2213 |   }
 | 
|  |   2214 |   lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
 | 
|  |   2215 |   *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
 | 
|  |   2216 |   sqlite3VdbeMemRelease(&m);
 | 
|  |   2217 |   return SQLITE_OK;
 | 
|  |   2218 | }
 | 
|  |   2219 | 
 | 
|  |   2220 | /*
 | 
|  |   2221 | ** This routine sets the value to be returned by subsequent calls to
 | 
|  |   2222 | ** sqlite3_changes() on the database handle 'db'. 
 | 
|  |   2223 | */
 | 
|  |   2224 | void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
 | 
|  |   2225 |   assert( sqlite3_mutex_held(db->mutex) );
 | 
|  |   2226 |   db->nChange = nChange;
 | 
|  |   2227 |   db->nTotalChange += nChange;
 | 
|  |   2228 | }
 | 
|  |   2229 | 
 | 
|  |   2230 | /*
 | 
|  |   2231 | ** Set a flag in the vdbe to update the change counter when it is finalised
 | 
|  |   2232 | ** or reset.
 | 
|  |   2233 | */
 | 
|  |   2234 | void sqlite3VdbeCountChanges(Vdbe *v){
 | 
|  |   2235 |   v->changeCntOn = 1;
 | 
|  |   2236 | }
 | 
|  |   2237 | 
 | 
|  |   2238 | /*
 | 
|  |   2239 | ** Mark every prepared statement associated with a database connection
 | 
|  |   2240 | ** as expired.
 | 
|  |   2241 | **
 | 
|  |   2242 | ** An expired statement means that recompilation of the statement is
 | 
|  |   2243 | ** recommend.  Statements expire when things happen that make their
 | 
|  |   2244 | ** programs obsolete.  Removing user-defined functions or collating
 | 
|  |   2245 | ** sequences, or changing an authorization function are the types of
 | 
|  |   2246 | ** things that make prepared statements obsolete.
 | 
|  |   2247 | */
 | 
|  |   2248 | void sqlite3ExpirePreparedStatements(sqlite3 *db){
 | 
|  |   2249 |   Vdbe *p;
 | 
|  |   2250 |   for(p = db->pVdbe; p; p=p->pNext){
 | 
|  |   2251 |     p->expired = 1;
 | 
|  |   2252 |   }
 | 
|  |   2253 | }
 | 
|  |   2254 | 
 | 
|  |   2255 | /*
 | 
|  |   2256 | ** Return the database associated with the Vdbe.
 | 
|  |   2257 | */
 | 
|  |   2258 | sqlite3 *sqlite3VdbeDb(Vdbe *v){
 | 
|  |   2259 |   return v->db;
 | 
|  |   2260 | }
 |