|
1 """Bisection algorithms.""" |
|
2 |
|
3 def insort_right(a, x, lo=0, hi=None): |
|
4 """Insert item x in list a, and keep it sorted assuming a is sorted. |
|
5 |
|
6 If x is already in a, insert it to the right of the rightmost x. |
|
7 |
|
8 Optional args lo (default 0) and hi (default len(a)) bound the |
|
9 slice of a to be searched. |
|
10 """ |
|
11 |
|
12 if lo < 0: |
|
13 raise ValueError('lo must be non-negative') |
|
14 if hi is None: |
|
15 hi = len(a) |
|
16 while lo < hi: |
|
17 mid = (lo+hi)//2 |
|
18 if x < a[mid]: hi = mid |
|
19 else: lo = mid+1 |
|
20 a.insert(lo, x) |
|
21 |
|
22 insort = insort_right # backward compatibility |
|
23 |
|
24 def bisect_right(a, x, lo=0, hi=None): |
|
25 """Return the index where to insert item x in list a, assuming a is sorted. |
|
26 |
|
27 The return value i is such that all e in a[:i] have e <= x, and all e in |
|
28 a[i:] have e > x. So if x already appears in the list, a.insert(x) will |
|
29 insert just after the rightmost x already there. |
|
30 |
|
31 Optional args lo (default 0) and hi (default len(a)) bound the |
|
32 slice of a to be searched. |
|
33 """ |
|
34 |
|
35 if lo < 0: |
|
36 raise ValueError('lo must be non-negative') |
|
37 if hi is None: |
|
38 hi = len(a) |
|
39 while lo < hi: |
|
40 mid = (lo+hi)//2 |
|
41 if x < a[mid]: hi = mid |
|
42 else: lo = mid+1 |
|
43 return lo |
|
44 |
|
45 bisect = bisect_right # backward compatibility |
|
46 |
|
47 def insort_left(a, x, lo=0, hi=None): |
|
48 """Insert item x in list a, and keep it sorted assuming a is sorted. |
|
49 |
|
50 If x is already in a, insert it to the left of the leftmost x. |
|
51 |
|
52 Optional args lo (default 0) and hi (default len(a)) bound the |
|
53 slice of a to be searched. |
|
54 """ |
|
55 |
|
56 if lo < 0: |
|
57 raise ValueError('lo must be non-negative') |
|
58 if hi is None: |
|
59 hi = len(a) |
|
60 while lo < hi: |
|
61 mid = (lo+hi)//2 |
|
62 if a[mid] < x: lo = mid+1 |
|
63 else: hi = mid |
|
64 a.insert(lo, x) |
|
65 |
|
66 |
|
67 def bisect_left(a, x, lo=0, hi=None): |
|
68 """Return the index where to insert item x in list a, assuming a is sorted. |
|
69 |
|
70 The return value i is such that all e in a[:i] have e < x, and all e in |
|
71 a[i:] have e >= x. So if x already appears in the list, a.insert(x) will |
|
72 insert just before the leftmost x already there. |
|
73 |
|
74 Optional args lo (default 0) and hi (default len(a)) bound the |
|
75 slice of a to be searched. |
|
76 """ |
|
77 |
|
78 if lo < 0: |
|
79 raise ValueError('lo must be non-negative') |
|
80 if hi is None: |
|
81 hi = len(a) |
|
82 while lo < hi: |
|
83 mid = (lo+hi)//2 |
|
84 if a[mid] < x: lo = mid+1 |
|
85 else: hi = mid |
|
86 return lo |
|
87 |
|
88 # Overwrite above definitions with a fast C implementation |
|
89 try: |
|
90 from _bisect import bisect_right, bisect_left, insort_left, insort_right, insort, bisect |
|
91 except ImportError: |
|
92 pass |