|
1 // Boost rational.hpp header file ------------------------------------------// |
|
2 |
|
3 // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and |
|
4 // distribute this software is granted provided this copyright notice appears |
|
5 // in all copies. This software is provided "as is" without express or |
|
6 // implied warranty, and with no claim as to its suitability for any purpose. |
|
7 |
|
8 // See http://www.boost.org/libs/rational for documentation. |
|
9 |
|
10 // Credits: |
|
11 // Thanks to the boost mailing list in general for useful comments. |
|
12 // Particular contributions included: |
|
13 // Andrew D Jewell, for reminding me to take care to avoid overflow |
|
14 // Ed Brey, for many comments, including picking up on some dreadful typos |
|
15 // Stephen Silver contributed the test suite and comments on user-defined |
|
16 // IntType |
|
17 // Nickolay Mladenov, for the implementation of operator+= |
|
18 |
|
19 // Revision History |
|
20 // 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz) |
|
21 // 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config |
|
22 // (Joaquín M López Muñoz) |
|
23 // 27 Dec 05 Add Boolean conversion operator (Daryle Walker) |
|
24 // 28 Sep 02 Use _left versions of operators from operators.hpp |
|
25 // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel) |
|
26 // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams) |
|
27 // 05 Feb 01 Update operator>> to tighten up input syntax |
|
28 // 05 Feb 01 Final tidy up of gcd code prior to the new release |
|
29 // 27 Jan 01 Recode abs() without relying on abs(IntType) |
|
30 // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm, |
|
31 // tidy up a number of areas, use newer features of operators.hpp |
|
32 // (reduces space overhead to zero), add operator!, |
|
33 // introduce explicit mixed-mode arithmetic operations |
|
34 // 12 Jan 01 Include fixes to handle a user-defined IntType better |
|
35 // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David) |
|
36 // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++ |
|
37 // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not |
|
38 // affected (Beman Dawes) |
|
39 // 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer) |
|
40 // 14 Dec 99 Modifications based on comments from the boost list |
|
41 // 09 Dec 99 Initial Version (Paul Moore) |
|
42 |
|
43 #ifndef BOOST_RATIONAL_HPP |
|
44 #define BOOST_RATIONAL_HPP |
|
45 |
|
46 #include <iostream> // for std::istream and std::ostream |
|
47 #include <iomanip> // for std::noskipws |
|
48 #include <stdexcept> // for std::domain_error |
|
49 #include <string> // for std::string implicit constructor |
|
50 #include <boost/operators.hpp> // for boost::addable etc |
|
51 #include <cstdlib> // for std::abs |
|
52 #include <boost/call_traits.hpp> // for boost::call_traits |
|
53 #include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC |
|
54 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND |
|
55 |
|
56 namespace boost { |
|
57 |
|
58 // Note: We use n and m as temporaries in this function, so there is no value |
|
59 // in using const IntType& as we would only need to make a copy anyway... |
|
60 template <typename IntType> |
|
61 IntType gcd(IntType n, IntType m) |
|
62 { |
|
63 // Avoid repeated construction |
|
64 IntType zero(0); |
|
65 |
|
66 // This is abs() - given the existence of broken compilers with Koenig |
|
67 // lookup issues and other problems, I code this explicitly. (Remember, |
|
68 // IntType may be a user-defined type). |
|
69 if (n < zero) |
|
70 n = -n; |
|
71 if (m < zero) |
|
72 m = -m; |
|
73 |
|
74 // As n and m are now positive, we can be sure that %= returns a |
|
75 // positive value (the standard guarantees this for built-in types, |
|
76 // and we require it of user-defined types). |
|
77 for(;;) { |
|
78 if(m == zero) |
|
79 return n; |
|
80 n %= m; |
|
81 if(n == zero) |
|
82 return m; |
|
83 m %= n; |
|
84 } |
|
85 } |
|
86 |
|
87 template <typename IntType> |
|
88 IntType lcm(IntType n, IntType m) |
|
89 { |
|
90 // Avoid repeated construction |
|
91 IntType zero(0); |
|
92 |
|
93 if (n == zero || m == zero) |
|
94 return zero; |
|
95 |
|
96 n /= gcd(n, m); |
|
97 n *= m; |
|
98 |
|
99 if (n < zero) |
|
100 n = -n; |
|
101 return n; |
|
102 } |
|
103 |
|
104 class bad_rational : public std::domain_error |
|
105 { |
|
106 public: |
|
107 explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} |
|
108 }; |
|
109 |
|
110 template <typename IntType> |
|
111 class rational; |
|
112 |
|
113 template <typename IntType> |
|
114 rational<IntType> abs(const rational<IntType>& r); |
|
115 |
|
116 template <typename IntType> |
|
117 class rational : |
|
118 less_than_comparable < rational<IntType>, |
|
119 equality_comparable < rational<IntType>, |
|
120 less_than_comparable2 < rational<IntType>, IntType, |
|
121 equality_comparable2 < rational<IntType>, IntType, |
|
122 addable < rational<IntType>, |
|
123 subtractable < rational<IntType>, |
|
124 multipliable < rational<IntType>, |
|
125 dividable < rational<IntType>, |
|
126 addable2 < rational<IntType>, IntType, |
|
127 subtractable2 < rational<IntType>, IntType, |
|
128 subtractable2_left < rational<IntType>, IntType, |
|
129 multipliable2 < rational<IntType>, IntType, |
|
130 dividable2 < rational<IntType>, IntType, |
|
131 dividable2_left < rational<IntType>, IntType, |
|
132 incrementable < rational<IntType>, |
|
133 decrementable < rational<IntType> |
|
134 > > > > > > > > > > > > > > > > |
|
135 { |
|
136 typedef typename boost::call_traits<IntType>::param_type param_type; |
|
137 |
|
138 struct helper { IntType parts[2]; }; |
|
139 typedef IntType (helper::* bool_type)[2]; |
|
140 |
|
141 public: |
|
142 typedef IntType int_type; |
|
143 rational() : num(0), den(1) {} |
|
144 rational(param_type n) : num(n), den(1) {} |
|
145 rational(param_type n, param_type d) : num(n), den(d) { normalize(); } |
|
146 |
|
147 // Default copy constructor and assignment are fine |
|
148 |
|
149 // Add assignment from IntType |
|
150 rational& operator=(param_type n) { return assign(n, 1); } |
|
151 |
|
152 // Assign in place |
|
153 rational& assign(param_type n, param_type d); |
|
154 |
|
155 // Access to representation |
|
156 IntType numerator() const { return num; } |
|
157 IntType denominator() const { return den; } |
|
158 |
|
159 // Arithmetic assignment operators |
|
160 rational& operator+= (const rational& r); |
|
161 rational& operator-= (const rational& r); |
|
162 rational& operator*= (const rational& r); |
|
163 rational& operator/= (const rational& r); |
|
164 |
|
165 rational& operator+= (param_type i); |
|
166 rational& operator-= (param_type i); |
|
167 rational& operator*= (param_type i); |
|
168 rational& operator/= (param_type i); |
|
169 |
|
170 // Increment and decrement |
|
171 const rational& operator++(); |
|
172 const rational& operator--(); |
|
173 |
|
174 // Operator not |
|
175 bool operator!() const { return !num; } |
|
176 |
|
177 // Boolean conversion |
|
178 |
|
179 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) |
|
180 // The "ISO C++ Template Parser" option in CW 8.3 chokes on the |
|
181 // following, hence we selectively disable that option for the |
|
182 // offending memfun. |
|
183 #pragma parse_mfunc_templ off |
|
184 #endif |
|
185 |
|
186 operator bool_type() const { return operator !() ? 0 : &helper::parts; } |
|
187 |
|
188 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003) |
|
189 #pragma parse_mfunc_templ reset |
|
190 #endif |
|
191 |
|
192 // Comparison operators |
|
193 bool operator< (const rational& r) const; |
|
194 bool operator== (const rational& r) const; |
|
195 |
|
196 bool operator< (param_type i) const; |
|
197 bool operator> (param_type i) const; |
|
198 bool operator== (param_type i) const; |
|
199 |
|
200 private: |
|
201 // Implementation - numerator and denominator (normalized). |
|
202 // Other possibilities - separate whole-part, or sign, fields? |
|
203 IntType num; |
|
204 IntType den; |
|
205 |
|
206 // Representation note: Fractions are kept in normalized form at all |
|
207 // times. normalized form is defined as gcd(num,den) == 1 and den > 0. |
|
208 // In particular, note that the implementation of abs() below relies |
|
209 // on den always being positive. |
|
210 void normalize(); |
|
211 }; |
|
212 |
|
213 // Assign in place |
|
214 template <typename IntType> |
|
215 inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d) |
|
216 { |
|
217 num = n; |
|
218 den = d; |
|
219 normalize(); |
|
220 return *this; |
|
221 } |
|
222 |
|
223 // Unary plus and minus |
|
224 template <typename IntType> |
|
225 inline rational<IntType> operator+ (const rational<IntType>& r) |
|
226 { |
|
227 return r; |
|
228 } |
|
229 |
|
230 template <typename IntType> |
|
231 inline rational<IntType> operator- (const rational<IntType>& r) |
|
232 { |
|
233 return rational<IntType>(-r.numerator(), r.denominator()); |
|
234 } |
|
235 |
|
236 // Arithmetic assignment operators |
|
237 template <typename IntType> |
|
238 rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r) |
|
239 { |
|
240 // This calculation avoids overflow, and minimises the number of expensive |
|
241 // calculations. Thanks to Nickolay Mladenov for this algorithm. |
|
242 // |
|
243 // Proof: |
|
244 // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. |
|
245 // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 |
|
246 // |
|
247 // The result is (a*d1 + c*b1) / (b1*d1*g). |
|
248 // Now we have to normalize this ratio. |
|
249 // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 |
|
250 // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. |
|
251 // But since gcd(a,b1)=1 we have h=1. |
|
252 // Similarly h|d1 leads to h=1. |
|
253 // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g |
|
254 // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) |
|
255 // Which proves that instead of normalizing the result, it is better to |
|
256 // divide num and den by gcd((a*d1 + c*b1), g) |
|
257 |
|
258 // Protect against self-modification |
|
259 IntType r_num = r.num; |
|
260 IntType r_den = r.den; |
|
261 |
|
262 IntType g = gcd(den, r_den); |
|
263 den /= g; // = b1 from the calculations above |
|
264 num = num * (r_den / g) + r_num * den; |
|
265 g = gcd(num, g); |
|
266 num /= g; |
|
267 den *= r_den/g; |
|
268 |
|
269 return *this; |
|
270 } |
|
271 |
|
272 template <typename IntType> |
|
273 rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r) |
|
274 { |
|
275 // Protect against self-modification |
|
276 IntType r_num = r.num; |
|
277 IntType r_den = r.den; |
|
278 |
|
279 // This calculation avoids overflow, and minimises the number of expensive |
|
280 // calculations. It corresponds exactly to the += case above |
|
281 IntType g = gcd(den, r_den); |
|
282 den /= g; |
|
283 num = num * (r_den / g) - r_num * den; |
|
284 g = gcd(num, g); |
|
285 num /= g; |
|
286 den *= r_den/g; |
|
287 |
|
288 return *this; |
|
289 } |
|
290 |
|
291 template <typename IntType> |
|
292 rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r) |
|
293 { |
|
294 // Protect against self-modification |
|
295 IntType r_num = r.num; |
|
296 IntType r_den = r.den; |
|
297 |
|
298 // Avoid overflow and preserve normalization |
|
299 IntType gcd1 = gcd<IntType>(num, r_den); |
|
300 IntType gcd2 = gcd<IntType>(r_num, den); |
|
301 num = (num/gcd1) * (r_num/gcd2); |
|
302 den = (den/gcd2) * (r_den/gcd1); |
|
303 return *this; |
|
304 } |
|
305 |
|
306 template <typename IntType> |
|
307 rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r) |
|
308 { |
|
309 // Protect against self-modification |
|
310 IntType r_num = r.num; |
|
311 IntType r_den = r.den; |
|
312 |
|
313 // Avoid repeated construction |
|
314 IntType zero(0); |
|
315 |
|
316 // Trap division by zero |
|
317 if (r_num == zero) |
|
318 throw bad_rational(); |
|
319 if (num == zero) |
|
320 return *this; |
|
321 |
|
322 // Avoid overflow and preserve normalization |
|
323 IntType gcd1 = gcd<IntType>(num, r_num); |
|
324 IntType gcd2 = gcd<IntType>(r_den, den); |
|
325 num = (num/gcd1) * (r_den/gcd2); |
|
326 den = (den/gcd2) * (r_num/gcd1); |
|
327 |
|
328 if (den < zero) { |
|
329 num = -num; |
|
330 den = -den; |
|
331 } |
|
332 return *this; |
|
333 } |
|
334 |
|
335 // Mixed-mode operators |
|
336 template <typename IntType> |
|
337 inline rational<IntType>& |
|
338 rational<IntType>::operator+= (param_type i) |
|
339 { |
|
340 return operator+= (rational<IntType>(i)); |
|
341 } |
|
342 |
|
343 template <typename IntType> |
|
344 inline rational<IntType>& |
|
345 rational<IntType>::operator-= (param_type i) |
|
346 { |
|
347 return operator-= (rational<IntType>(i)); |
|
348 } |
|
349 |
|
350 template <typename IntType> |
|
351 inline rational<IntType>& |
|
352 rational<IntType>::operator*= (param_type i) |
|
353 { |
|
354 return operator*= (rational<IntType>(i)); |
|
355 } |
|
356 |
|
357 template <typename IntType> |
|
358 inline rational<IntType>& |
|
359 rational<IntType>::operator/= (param_type i) |
|
360 { |
|
361 return operator/= (rational<IntType>(i)); |
|
362 } |
|
363 |
|
364 // Increment and decrement |
|
365 template <typename IntType> |
|
366 inline const rational<IntType>& rational<IntType>::operator++() |
|
367 { |
|
368 // This can never denormalise the fraction |
|
369 num += den; |
|
370 return *this; |
|
371 } |
|
372 |
|
373 template <typename IntType> |
|
374 inline const rational<IntType>& rational<IntType>::operator--() |
|
375 { |
|
376 // This can never denormalise the fraction |
|
377 num -= den; |
|
378 return *this; |
|
379 } |
|
380 |
|
381 // Comparison operators |
|
382 template <typename IntType> |
|
383 bool rational<IntType>::operator< (const rational<IntType>& r) const |
|
384 { |
|
385 // Avoid repeated construction |
|
386 IntType zero(0); |
|
387 |
|
388 // If the two values have different signs, we don't need to do the |
|
389 // expensive calculations below. We take advantage here of the fact |
|
390 // that the denominator is always positive. |
|
391 if (num < zero && r.num >= zero) // -ve < +ve |
|
392 return true; |
|
393 if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero |
|
394 return false; |
|
395 |
|
396 // Avoid overflow |
|
397 IntType gcd1 = gcd<IntType>(num, r.num); |
|
398 IntType gcd2 = gcd<IntType>(r.den, den); |
|
399 return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1); |
|
400 } |
|
401 |
|
402 template <typename IntType> |
|
403 bool rational<IntType>::operator< (param_type i) const |
|
404 { |
|
405 // Avoid repeated construction |
|
406 IntType zero(0); |
|
407 |
|
408 // If the two values have different signs, we don't need to do the |
|
409 // expensive calculations below. We take advantage here of the fact |
|
410 // that the denominator is always positive. |
|
411 if (num < zero && i >= zero) // -ve < +ve |
|
412 return true; |
|
413 if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero |
|
414 return false; |
|
415 |
|
416 // Now, use the fact that n/d truncates towards zero as long as n and d |
|
417 // are both positive. |
|
418 // Divide instead of multiplying to avoid overflow issues. Of course, |
|
419 // division may be slower, but accuracy is more important than speed... |
|
420 if (num > zero) |
|
421 return (num/den) < i; |
|
422 else |
|
423 return -i < (-num/den); |
|
424 } |
|
425 |
|
426 template <typename IntType> |
|
427 bool rational<IntType>::operator> (param_type i) const |
|
428 { |
|
429 // Trap equality first |
|
430 if (num == i && den == IntType(1)) |
|
431 return false; |
|
432 |
|
433 // Otherwise, we can use operator< |
|
434 return !operator<(i); |
|
435 } |
|
436 |
|
437 template <typename IntType> |
|
438 inline bool rational<IntType>::operator== (const rational<IntType>& r) const |
|
439 { |
|
440 return ((num == r.num) && (den == r.den)); |
|
441 } |
|
442 |
|
443 template <typename IntType> |
|
444 inline bool rational<IntType>::operator== (param_type i) const |
|
445 { |
|
446 return ((den == IntType(1)) && (num == i)); |
|
447 } |
|
448 |
|
449 // Normalisation |
|
450 template <typename IntType> |
|
451 void rational<IntType>::normalize() |
|
452 { |
|
453 // Avoid repeated construction |
|
454 IntType zero(0); |
|
455 |
|
456 if (den == zero) |
|
457 throw bad_rational(); |
|
458 |
|
459 // Handle the case of zero separately, to avoid division by zero |
|
460 if (num == zero) { |
|
461 den = IntType(1); |
|
462 return; |
|
463 } |
|
464 |
|
465 IntType g = gcd<IntType>(num, den); |
|
466 |
|
467 num /= g; |
|
468 den /= g; |
|
469 |
|
470 // Ensure that the denominator is positive |
|
471 if (den < zero) { |
|
472 num = -num; |
|
473 den = -den; |
|
474 } |
|
475 } |
|
476 |
|
477 namespace detail { |
|
478 |
|
479 // A utility class to reset the format flags for an istream at end |
|
480 // of scope, even in case of exceptions |
|
481 struct resetter { |
|
482 resetter(std::istream& is) : is_(is), f_(is.flags()) {} |
|
483 ~resetter() { is_.flags(f_); } |
|
484 std::istream& is_; |
|
485 std::istream::fmtflags f_; // old GNU c++ lib has no ios_base |
|
486 }; |
|
487 |
|
488 } |
|
489 |
|
490 // Input and output |
|
491 template <typename IntType> |
|
492 std::istream& operator>> (std::istream& is, rational<IntType>& r) |
|
493 { |
|
494 IntType n = IntType(0), d = IntType(1); |
|
495 char c = 0; |
|
496 detail::resetter sentry(is); |
|
497 |
|
498 is >> n; |
|
499 c = is.get(); |
|
500 |
|
501 if (c != '/') |
|
502 is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base |
|
503 |
|
504 #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT |
|
505 is >> std::noskipws; |
|
506 #else |
|
507 is.unsetf(ios::skipws); // compiles, but seems to have no effect. |
|
508 #endif |
|
509 is >> d; |
|
510 |
|
511 if (is) |
|
512 r.assign(n, d); |
|
513 |
|
514 return is; |
|
515 } |
|
516 |
|
517 // Add manipulators for output format? |
|
518 template <typename IntType> |
|
519 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r) |
|
520 { |
|
521 os << r.numerator() << '/' << r.denominator(); |
|
522 return os; |
|
523 } |
|
524 |
|
525 // Type conversion |
|
526 template <typename T, typename IntType> |
|
527 inline T rational_cast( |
|
528 const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) |
|
529 { |
|
530 return static_cast<T>(src.numerator())/src.denominator(); |
|
531 } |
|
532 |
|
533 // Do not use any abs() defined on IntType - it isn't worth it, given the |
|
534 // difficulties involved (Koenig lookup required, there may not *be* an abs() |
|
535 // defined, etc etc). |
|
536 template <typename IntType> |
|
537 inline rational<IntType> abs(const rational<IntType>& r) |
|
538 { |
|
539 if (r.numerator() >= IntType(0)) |
|
540 return r; |
|
541 |
|
542 return rational<IntType>(-r.numerator(), r.denominator()); |
|
543 } |
|
544 |
|
545 } // namespace boost |
|
546 |
|
547 #endif // BOOST_RATIONAL_HPP |
|
548 |