ossrv_pub/boost_apis/boost/rational.hpp
changeset 0 e4d67989cc36
equal deleted inserted replaced
-1:000000000000 0:e4d67989cc36
       
     1 //  Boost rational.hpp header file  ------------------------------------------//
       
     2 
       
     3 //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
       
     4 //  distribute this software is granted provided this copyright notice appears
       
     5 //  in all copies. This software is provided "as is" without express or
       
     6 //  implied warranty, and with no claim as to its suitability for any purpose.
       
     7 
       
     8 //  See http://www.boost.org/libs/rational for documentation.
       
     9 
       
    10 //  Credits:
       
    11 //  Thanks to the boost mailing list in general for useful comments.
       
    12 //  Particular contributions included:
       
    13 //    Andrew D Jewell, for reminding me to take care to avoid overflow
       
    14 //    Ed Brey, for many comments, including picking up on some dreadful typos
       
    15 //    Stephen Silver contributed the test suite and comments on user-defined
       
    16 //    IntType
       
    17 //    Nickolay Mladenov, for the implementation of operator+=
       
    18 
       
    19 //  Revision History
       
    20 //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
       
    21 //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
       
    22 //             (Joaquín M López Muñoz)
       
    23 //  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
       
    24 //  28 Sep 02  Use _left versions of operators from operators.hpp
       
    25 //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
       
    26 //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
       
    27 //  05 Feb 01  Update operator>> to tighten up input syntax
       
    28 //  05 Feb 01  Final tidy up of gcd code prior to the new release
       
    29 //  27 Jan 01  Recode abs() without relying on abs(IntType)
       
    30 //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
       
    31 //             tidy up a number of areas, use newer features of operators.hpp
       
    32 //             (reduces space overhead to zero), add operator!,
       
    33 //             introduce explicit mixed-mode arithmetic operations
       
    34 //  12 Jan 01  Include fixes to handle a user-defined IntType better
       
    35 //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
       
    36 //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
       
    37 //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
       
    38 //             affected (Beman Dawes)
       
    39 //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
       
    40 //  14 Dec 99  Modifications based on comments from the boost list
       
    41 //  09 Dec 99  Initial Version (Paul Moore)
       
    42 
       
    43 #ifndef BOOST_RATIONAL_HPP
       
    44 #define BOOST_RATIONAL_HPP
       
    45 
       
    46 #include <iostream>              // for std::istream and std::ostream
       
    47 #include <iomanip>               // for std::noskipws
       
    48 #include <stdexcept>             // for std::domain_error
       
    49 #include <string>                // for std::string implicit constructor
       
    50 #include <boost/operators.hpp>   // for boost::addable etc
       
    51 #include <cstdlib>               // for std::abs
       
    52 #include <boost/call_traits.hpp> // for boost::call_traits
       
    53 #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
       
    54 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
       
    55 
       
    56 namespace boost {
       
    57 
       
    58 // Note: We use n and m as temporaries in this function, so there is no value
       
    59 // in using const IntType& as we would only need to make a copy anyway...
       
    60 template <typename IntType>
       
    61 IntType gcd(IntType n, IntType m)
       
    62 {
       
    63     // Avoid repeated construction
       
    64     IntType zero(0);
       
    65 
       
    66     // This is abs() - given the existence of broken compilers with Koenig
       
    67     // lookup issues and other problems, I code this explicitly. (Remember,
       
    68     // IntType may be a user-defined type).
       
    69     if (n < zero)
       
    70         n = -n;
       
    71     if (m < zero)
       
    72         m = -m;
       
    73 
       
    74     // As n and m are now positive, we can be sure that %= returns a
       
    75     // positive value (the standard guarantees this for built-in types,
       
    76     // and we require it of user-defined types).
       
    77     for(;;) {
       
    78       if(m == zero)
       
    79         return n;
       
    80       n %= m;
       
    81       if(n == zero)
       
    82         return m;
       
    83       m %= n;
       
    84     }
       
    85 }
       
    86 
       
    87 template <typename IntType>
       
    88 IntType lcm(IntType n, IntType m)
       
    89 {
       
    90     // Avoid repeated construction
       
    91     IntType zero(0);
       
    92 
       
    93     if (n == zero || m == zero)
       
    94         return zero;
       
    95 
       
    96     n /= gcd(n, m);
       
    97     n *= m;
       
    98 
       
    99     if (n < zero)
       
   100         n = -n;
       
   101     return n;
       
   102 }
       
   103 
       
   104 class bad_rational : public std::domain_error
       
   105 {
       
   106 public:
       
   107     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
       
   108 };
       
   109 
       
   110 template <typename IntType>
       
   111 class rational;
       
   112 
       
   113 template <typename IntType>
       
   114 rational<IntType> abs(const rational<IntType>& r);
       
   115 
       
   116 template <typename IntType>
       
   117 class rational :
       
   118     less_than_comparable < rational<IntType>,
       
   119     equality_comparable < rational<IntType>,
       
   120     less_than_comparable2 < rational<IntType>, IntType,
       
   121     equality_comparable2 < rational<IntType>, IntType,
       
   122     addable < rational<IntType>,
       
   123     subtractable < rational<IntType>,
       
   124     multipliable < rational<IntType>,
       
   125     dividable < rational<IntType>,
       
   126     addable2 < rational<IntType>, IntType,
       
   127     subtractable2 < rational<IntType>, IntType,
       
   128     subtractable2_left < rational<IntType>, IntType,
       
   129     multipliable2 < rational<IntType>, IntType,
       
   130     dividable2 < rational<IntType>, IntType,
       
   131     dividable2_left < rational<IntType>, IntType,
       
   132     incrementable < rational<IntType>,
       
   133     decrementable < rational<IntType>
       
   134     > > > > > > > > > > > > > > > >
       
   135 {
       
   136     typedef typename boost::call_traits<IntType>::param_type param_type;
       
   137 
       
   138     struct helper { IntType parts[2]; };
       
   139     typedef IntType (helper::* bool_type)[2];
       
   140 
       
   141 public:
       
   142     typedef IntType int_type;
       
   143     rational() : num(0), den(1) {}
       
   144     rational(param_type n) : num(n), den(1) {}
       
   145     rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
       
   146 
       
   147     // Default copy constructor and assignment are fine
       
   148 
       
   149     // Add assignment from IntType
       
   150     rational& operator=(param_type n) { return assign(n, 1); }
       
   151 
       
   152     // Assign in place
       
   153     rational& assign(param_type n, param_type d);
       
   154 
       
   155     // Access to representation
       
   156     IntType numerator() const { return num; }
       
   157     IntType denominator() const { return den; }
       
   158 
       
   159     // Arithmetic assignment operators
       
   160     rational& operator+= (const rational& r);
       
   161     rational& operator-= (const rational& r);
       
   162     rational& operator*= (const rational& r);
       
   163     rational& operator/= (const rational& r);
       
   164 
       
   165     rational& operator+= (param_type i);
       
   166     rational& operator-= (param_type i);
       
   167     rational& operator*= (param_type i);
       
   168     rational& operator/= (param_type i);
       
   169 
       
   170     // Increment and decrement
       
   171     const rational& operator++();
       
   172     const rational& operator--();
       
   173 
       
   174     // Operator not
       
   175     bool operator!() const { return !num; }
       
   176 
       
   177     // Boolean conversion
       
   178     
       
   179 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
       
   180     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
       
   181     // following, hence we selectively disable that option for the
       
   182     // offending memfun.
       
   183 #pragma parse_mfunc_templ off
       
   184 #endif
       
   185 
       
   186     operator bool_type() const { return operator !() ? 0 : &helper::parts; }
       
   187 
       
   188 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
       
   189 #pragma parse_mfunc_templ reset
       
   190 #endif
       
   191 
       
   192     // Comparison operators
       
   193     bool operator< (const rational& r) const;
       
   194     bool operator== (const rational& r) const;
       
   195 
       
   196     bool operator< (param_type i) const;
       
   197     bool operator> (param_type i) const;
       
   198     bool operator== (param_type i) const;
       
   199 
       
   200 private:
       
   201     // Implementation - numerator and denominator (normalized).
       
   202     // Other possibilities - separate whole-part, or sign, fields?
       
   203     IntType num;
       
   204     IntType den;
       
   205 
       
   206     // Representation note: Fractions are kept in normalized form at all
       
   207     // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
       
   208     // In particular, note that the implementation of abs() below relies
       
   209     // on den always being positive.
       
   210     void normalize();
       
   211 };
       
   212 
       
   213 // Assign in place
       
   214 template <typename IntType>
       
   215 inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
       
   216 {
       
   217     num = n;
       
   218     den = d;
       
   219     normalize();
       
   220     return *this;
       
   221 }
       
   222 
       
   223 // Unary plus and minus
       
   224 template <typename IntType>
       
   225 inline rational<IntType> operator+ (const rational<IntType>& r)
       
   226 {
       
   227     return r;
       
   228 }
       
   229 
       
   230 template <typename IntType>
       
   231 inline rational<IntType> operator- (const rational<IntType>& r)
       
   232 {
       
   233     return rational<IntType>(-r.numerator(), r.denominator());
       
   234 }
       
   235 
       
   236 // Arithmetic assignment operators
       
   237 template <typename IntType>
       
   238 rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
       
   239 {
       
   240     // This calculation avoids overflow, and minimises the number of expensive
       
   241     // calculations. Thanks to Nickolay Mladenov for this algorithm.
       
   242     //
       
   243     // Proof:
       
   244     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
       
   245     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
       
   246     //
       
   247     // The result is (a*d1 + c*b1) / (b1*d1*g).
       
   248     // Now we have to normalize this ratio.
       
   249     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
       
   250     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
       
   251     // But since gcd(a,b1)=1 we have h=1.
       
   252     // Similarly h|d1 leads to h=1.
       
   253     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
       
   254     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
       
   255     // Which proves that instead of normalizing the result, it is better to
       
   256     // divide num and den by gcd((a*d1 + c*b1), g)
       
   257 
       
   258     // Protect against self-modification
       
   259     IntType r_num = r.num;
       
   260     IntType r_den = r.den;
       
   261 
       
   262     IntType g = gcd(den, r_den);
       
   263     den /= g;  // = b1 from the calculations above
       
   264     num = num * (r_den / g) + r_num * den;
       
   265     g = gcd(num, g);
       
   266     num /= g;
       
   267     den *= r_den/g;
       
   268 
       
   269     return *this;
       
   270 }
       
   271 
       
   272 template <typename IntType>
       
   273 rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
       
   274 {
       
   275     // Protect against self-modification
       
   276     IntType r_num = r.num;
       
   277     IntType r_den = r.den;
       
   278 
       
   279     // This calculation avoids overflow, and minimises the number of expensive
       
   280     // calculations. It corresponds exactly to the += case above
       
   281     IntType g = gcd(den, r_den);
       
   282     den /= g;
       
   283     num = num * (r_den / g) - r_num * den;
       
   284     g = gcd(num, g);
       
   285     num /= g;
       
   286     den *= r_den/g;
       
   287 
       
   288     return *this;
       
   289 }
       
   290 
       
   291 template <typename IntType>
       
   292 rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
       
   293 {
       
   294     // Protect against self-modification
       
   295     IntType r_num = r.num;
       
   296     IntType r_den = r.den;
       
   297 
       
   298     // Avoid overflow and preserve normalization
       
   299     IntType gcd1 = gcd<IntType>(num, r_den);
       
   300     IntType gcd2 = gcd<IntType>(r_num, den);
       
   301     num = (num/gcd1) * (r_num/gcd2);
       
   302     den = (den/gcd2) * (r_den/gcd1);
       
   303     return *this;
       
   304 }
       
   305 
       
   306 template <typename IntType>
       
   307 rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
       
   308 {
       
   309     // Protect against self-modification
       
   310     IntType r_num = r.num;
       
   311     IntType r_den = r.den;
       
   312 
       
   313     // Avoid repeated construction
       
   314     IntType zero(0);
       
   315 
       
   316     // Trap division by zero
       
   317     if (r_num == zero)
       
   318         throw bad_rational();
       
   319     if (num == zero)
       
   320         return *this;
       
   321 
       
   322     // Avoid overflow and preserve normalization
       
   323     IntType gcd1 = gcd<IntType>(num, r_num);
       
   324     IntType gcd2 = gcd<IntType>(r_den, den);
       
   325     num = (num/gcd1) * (r_den/gcd2);
       
   326     den = (den/gcd2) * (r_num/gcd1);
       
   327 
       
   328     if (den < zero) {
       
   329         num = -num;
       
   330         den = -den;
       
   331     }
       
   332     return *this;
       
   333 }
       
   334 
       
   335 // Mixed-mode operators
       
   336 template <typename IntType>
       
   337 inline rational<IntType>&
       
   338 rational<IntType>::operator+= (param_type i)
       
   339 {
       
   340     return operator+= (rational<IntType>(i));
       
   341 }
       
   342 
       
   343 template <typename IntType>
       
   344 inline rational<IntType>&
       
   345 rational<IntType>::operator-= (param_type i)
       
   346 {
       
   347     return operator-= (rational<IntType>(i));
       
   348 }
       
   349 
       
   350 template <typename IntType>
       
   351 inline rational<IntType>&
       
   352 rational<IntType>::operator*= (param_type i)
       
   353 {
       
   354     return operator*= (rational<IntType>(i));
       
   355 }
       
   356 
       
   357 template <typename IntType>
       
   358 inline rational<IntType>&
       
   359 rational<IntType>::operator/= (param_type i)
       
   360 {
       
   361     return operator/= (rational<IntType>(i));
       
   362 }
       
   363 
       
   364 // Increment and decrement
       
   365 template <typename IntType>
       
   366 inline const rational<IntType>& rational<IntType>::operator++()
       
   367 {
       
   368     // This can never denormalise the fraction
       
   369     num += den;
       
   370     return *this;
       
   371 }
       
   372 
       
   373 template <typename IntType>
       
   374 inline const rational<IntType>& rational<IntType>::operator--()
       
   375 {
       
   376     // This can never denormalise the fraction
       
   377     num -= den;
       
   378     return *this;
       
   379 }
       
   380 
       
   381 // Comparison operators
       
   382 template <typename IntType>
       
   383 bool rational<IntType>::operator< (const rational<IntType>& r) const
       
   384 {
       
   385     // Avoid repeated construction
       
   386     IntType zero(0);
       
   387 
       
   388     // If the two values have different signs, we don't need to do the
       
   389     // expensive calculations below. We take advantage here of the fact
       
   390     // that the denominator is always positive.
       
   391     if (num < zero && r.num >= zero) // -ve < +ve
       
   392         return true;
       
   393     if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero
       
   394         return false;
       
   395 
       
   396     // Avoid overflow
       
   397     IntType gcd1 = gcd<IntType>(num, r.num);
       
   398     IntType gcd2 = gcd<IntType>(r.den, den);
       
   399     return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
       
   400 }
       
   401 
       
   402 template <typename IntType>
       
   403 bool rational<IntType>::operator< (param_type i) const
       
   404 {
       
   405     // Avoid repeated construction
       
   406     IntType zero(0);
       
   407 
       
   408     // If the two values have different signs, we don't need to do the
       
   409     // expensive calculations below. We take advantage here of the fact
       
   410     // that the denominator is always positive.
       
   411     if (num < zero && i >= zero) // -ve < +ve
       
   412         return true;
       
   413     if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero
       
   414         return false;
       
   415 
       
   416     // Now, use the fact that n/d truncates towards zero as long as n and d
       
   417     // are both positive.
       
   418     // Divide instead of multiplying to avoid overflow issues. Of course,
       
   419     // division may be slower, but accuracy is more important than speed...
       
   420     if (num > zero)
       
   421         return (num/den) < i;
       
   422     else
       
   423         return -i < (-num/den);
       
   424 }
       
   425 
       
   426 template <typename IntType>
       
   427 bool rational<IntType>::operator> (param_type i) const
       
   428 {
       
   429     // Trap equality first
       
   430     if (num == i && den == IntType(1))
       
   431         return false;
       
   432 
       
   433     // Otherwise, we can use operator<
       
   434     return !operator<(i);
       
   435 }
       
   436 
       
   437 template <typename IntType>
       
   438 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
       
   439 {
       
   440     return ((num == r.num) && (den == r.den));
       
   441 }
       
   442 
       
   443 template <typename IntType>
       
   444 inline bool rational<IntType>::operator== (param_type i) const
       
   445 {
       
   446     return ((den == IntType(1)) && (num == i));
       
   447 }
       
   448 
       
   449 // Normalisation
       
   450 template <typename IntType>
       
   451 void rational<IntType>::normalize()
       
   452 {
       
   453     // Avoid repeated construction
       
   454     IntType zero(0);
       
   455 
       
   456     if (den == zero)
       
   457         throw bad_rational();
       
   458 
       
   459     // Handle the case of zero separately, to avoid division by zero
       
   460     if (num == zero) {
       
   461         den = IntType(1);
       
   462         return;
       
   463     }
       
   464 
       
   465     IntType g = gcd<IntType>(num, den);
       
   466 
       
   467     num /= g;
       
   468     den /= g;
       
   469 
       
   470     // Ensure that the denominator is positive
       
   471     if (den < zero) {
       
   472         num = -num;
       
   473         den = -den;
       
   474     }
       
   475 }
       
   476 
       
   477 namespace detail {
       
   478 
       
   479     // A utility class to reset the format flags for an istream at end
       
   480     // of scope, even in case of exceptions
       
   481     struct resetter {
       
   482         resetter(std::istream& is) : is_(is), f_(is.flags()) {}
       
   483         ~resetter() { is_.flags(f_); }
       
   484         std::istream& is_;
       
   485         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
       
   486     };
       
   487 
       
   488 }
       
   489 
       
   490 // Input and output
       
   491 template <typename IntType>
       
   492 std::istream& operator>> (std::istream& is, rational<IntType>& r)
       
   493 {
       
   494     IntType n = IntType(0), d = IntType(1);
       
   495     char c = 0;
       
   496     detail::resetter sentry(is);
       
   497 
       
   498     is >> n;
       
   499     c = is.get();
       
   500 
       
   501     if (c != '/')
       
   502         is.clear(std::istream::badbit);  // old GNU c++ lib has no ios_base
       
   503 
       
   504 #if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
       
   505     is >> std::noskipws;
       
   506 #else
       
   507     is.unsetf(ios::skipws); // compiles, but seems to have no effect.
       
   508 #endif
       
   509     is >> d;
       
   510 
       
   511     if (is)
       
   512         r.assign(n, d);
       
   513 
       
   514     return is;
       
   515 }
       
   516 
       
   517 // Add manipulators for output format?
       
   518 template <typename IntType>
       
   519 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
       
   520 {
       
   521     os << r.numerator() << '/' << r.denominator();
       
   522     return os;
       
   523 }
       
   524 
       
   525 // Type conversion
       
   526 template <typename T, typename IntType>
       
   527 inline T rational_cast(
       
   528     const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
       
   529 {
       
   530     return static_cast<T>(src.numerator())/src.denominator();
       
   531 }
       
   532 
       
   533 // Do not use any abs() defined on IntType - it isn't worth it, given the
       
   534 // difficulties involved (Koenig lookup required, there may not *be* an abs()
       
   535 // defined, etc etc).
       
   536 template <typename IntType>
       
   537 inline rational<IntType> abs(const rational<IntType>& r)
       
   538 {
       
   539     if (r.numerator() >= IntType(0))
       
   540         return r;
       
   541 
       
   542     return rational<IntType>(-r.numerator(), r.denominator());
       
   543 }
       
   544 
       
   545 } // namespace boost
       
   546 
       
   547 #endif  // BOOST_RATIONAL_HPP
       
   548