JavaScriptCore/wtf/FastMalloc.cpp
changeset 0 4f2f89ce4247
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/JavaScriptCore/wtf/FastMalloc.cpp	Fri Sep 17 09:02:29 2010 +0300
@@ -0,0 +1,4499 @@
+// Copyright (c) 2005, 2007, Google Inc.
+// All rights reserved.
+// Copyright (C) 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
+// 
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+// 
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+// 
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+// Author: Sanjay Ghemawat <opensource@google.com>
+//
+// A malloc that uses a per-thread cache to satisfy small malloc requests.
+// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
+//
+// See doc/tcmalloc.html for a high-level
+// description of how this malloc works.
+//
+// SYNCHRONIZATION
+//  1. The thread-specific lists are accessed without acquiring any locks.
+//     This is safe because each such list is only accessed by one thread.
+//  2. We have a lock per central free-list, and hold it while manipulating
+//     the central free list for a particular size.
+//  3. The central page allocator is protected by "pageheap_lock".
+//  4. The pagemap (which maps from page-number to descriptor),
+//     can be read without holding any locks, and written while holding
+//     the "pageheap_lock".
+//  5. To improve performance, a subset of the information one can get
+//     from the pagemap is cached in a data structure, pagemap_cache_,
+//     that atomically reads and writes its entries.  This cache can be
+//     read and written without locking.
+//
+//     This multi-threaded access to the pagemap is safe for fairly
+//     subtle reasons.  We basically assume that when an object X is
+//     allocated by thread A and deallocated by thread B, there must
+//     have been appropriate synchronization in the handoff of object
+//     X from thread A to thread B.  The same logic applies to pagemap_cache_.
+//
+// THE PAGEID-TO-SIZECLASS CACHE
+// Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
+// returns 0 for a particular PageID then that means "no information," not that
+// the sizeclass is 0.  The cache may have stale information for pages that do
+// not hold the beginning of any free()'able object.  Staleness is eliminated
+// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
+// do_memalign() for all other relevant pages.
+//
+// TODO: Bias reclamation to larger addresses
+// TODO: implement mallinfo/mallopt
+// TODO: Better testing
+//
+// 9/28/2003 (new page-level allocator replaces ptmalloc2):
+// * malloc/free of small objects goes from ~300 ns to ~50 ns.
+// * allocation of a reasonably complicated struct
+//   goes from about 1100 ns to about 300 ns.
+
+#include "config.h"
+#include "FastMalloc.h"
+
+#include "Assertions.h"
+#include <limits>
+#if ENABLE(JSC_MULTIPLE_THREADS)
+#include <pthread.h>
+#endif
+
+#ifndef NO_TCMALLOC_SAMPLES
+#ifdef WTF_CHANGES
+#define NO_TCMALLOC_SAMPLES
+#endif
+#endif
+
+#if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG)
+#define FORCE_SYSTEM_MALLOC 0
+#else
+#define FORCE_SYSTEM_MALLOC 1
+#endif
+
+// Use a background thread to periodically scavenge memory to release back to the system
+// https://bugs.webkit.org/show_bug.cgi?id=27900: don't turn this on for Tiger until we have figured out why it caused a crash.
+#if defined(BUILDING_ON_TIGER)
+#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0
+#else
+#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
+#endif
+
+#ifndef NDEBUG
+namespace WTF {
+
+#if ENABLE(JSC_MULTIPLE_THREADS)
+static pthread_key_t isForbiddenKey;
+static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
+static void initializeIsForbiddenKey()
+{
+  pthread_key_create(&isForbiddenKey, 0);
+}
+
+#if !ASSERT_DISABLED
+static bool isForbidden()
+{
+    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
+    return !!pthread_getspecific(isForbiddenKey);
+}
+#endif
+
+void fastMallocForbid()
+{
+    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
+    pthread_setspecific(isForbiddenKey, &isForbiddenKey);
+}
+
+void fastMallocAllow()
+{
+    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
+    pthread_setspecific(isForbiddenKey, 0);
+}
+
+#else
+
+static bool staticIsForbidden;
+static bool isForbidden()
+{
+    return staticIsForbidden;
+}
+
+void fastMallocForbid()
+{
+    staticIsForbidden = true;
+}
+
+void fastMallocAllow()
+{
+    staticIsForbidden = false;
+}
+#endif // ENABLE(JSC_MULTIPLE_THREADS)
+
+} // namespace WTF
+#endif // NDEBUG
+
+#include <string.h>
+
+namespace WTF {
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+
+namespace Internal {
+
+void fastMallocMatchFailed(void*)
+{
+    CRASH();
+}
+
+} // namespace Internal
+
+#endif
+
+void* fastZeroedMalloc(size_t n) 
+{
+    void* result = fastMalloc(n);
+    memset(result, 0, n);
+    return result;
+}
+
+char* fastStrDup(const char* src)
+{
+    int len = strlen(src) + 1;
+    char* dup = static_cast<char*>(fastMalloc(len));
+
+    if (dup)
+        memcpy(dup, src, len);
+
+    return dup;
+}
+    
+TryMallocReturnValue tryFastZeroedMalloc(size_t n) 
+{
+    void* result;
+    if (!tryFastMalloc(n).getValue(result))
+        return 0;
+    memset(result, 0, n);
+    return result;
+}
+
+} // namespace WTF
+
+#if FORCE_SYSTEM_MALLOC
+
+#if PLATFORM(BREWMP)
+#include "brew/SystemMallocBrew.h"
+#endif
+
+#if OS(DARWIN)
+#include <malloc/malloc.h>
+#elif COMPILER(MSVC)
+#include <malloc.h>
+#endif
+
+namespace WTF {
+
+TryMallocReturnValue tryFastMalloc(size_t n) 
+{
+    ASSERT(!isForbidden());
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur...
+        return 0;
+
+    void* result = malloc(n + sizeof(AllocAlignmentInteger));
+    if (!result)
+        return 0;
+
+    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
+    result = static_cast<AllocAlignmentInteger*>(result) + 1;
+
+    return result;
+#else
+    return malloc(n);
+#endif
+}
+
+void* fastMalloc(size_t n) 
+{
+    ASSERT(!isForbidden());
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    TryMallocReturnValue returnValue = tryFastMalloc(n);
+    void* result;
+    returnValue.getValue(result);
+#else
+    void* result = malloc(n);
+#endif
+
+    if (!result) {
+#if PLATFORM(BREWMP)
+        // The behavior of malloc(0) is implementation defined.
+        // To make sure that fastMalloc never returns 0, retry with fastMalloc(1).
+        if (!n)
+            return fastMalloc(1);
+#endif
+        CRASH();
+    }
+
+    return result;
+}
+
+TryMallocReturnValue tryFastCalloc(size_t n_elements, size_t element_size)
+{
+    ASSERT(!isForbidden());
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    size_t totalBytes = n_elements * element_size;
+    if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes))
+        return 0;
+
+    totalBytes += sizeof(AllocAlignmentInteger);
+    void* result = malloc(totalBytes);
+    if (!result)
+        return 0;
+
+    memset(result, 0, totalBytes);
+    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
+    result = static_cast<AllocAlignmentInteger*>(result) + 1;
+    return result;
+#else
+    return calloc(n_elements, element_size);
+#endif
+}
+
+void* fastCalloc(size_t n_elements, size_t element_size)
+{
+    ASSERT(!isForbidden());
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    TryMallocReturnValue returnValue = tryFastCalloc(n_elements, element_size);
+    void* result;
+    returnValue.getValue(result);
+#else
+    void* result = calloc(n_elements, element_size);
+#endif
+
+    if (!result) {
+#if PLATFORM(BREWMP)
+        // If either n_elements or element_size is 0, the behavior of calloc is implementation defined.
+        // To make sure that fastCalloc never returns 0, retry with fastCalloc(1, 1).
+        if (!n_elements || !element_size)
+            return fastCalloc(1, 1);
+#endif
+        CRASH();
+    }
+
+    return result;
+}
+
+void fastFree(void* p)
+{
+    ASSERT(!isForbidden());
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    if (!p)
+        return;
+
+    AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
+    if (*header != Internal::AllocTypeMalloc)
+        Internal::fastMallocMatchFailed(p);
+    free(header);
+#else
+    free(p);
+#endif
+}
+
+TryMallocReturnValue tryFastRealloc(void* p, size_t n)
+{
+    ASSERT(!isForbidden());
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    if (p) {
+        if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur...
+            return 0;
+        AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
+        if (*header != Internal::AllocTypeMalloc)
+            Internal::fastMallocMatchFailed(p);
+        void* result = realloc(header, n + sizeof(AllocAlignmentInteger));
+        if (!result)
+            return 0;
+
+        // This should not be needed because the value is already there:
+        // *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
+        result = static_cast<AllocAlignmentInteger*>(result) + 1;
+        return result;
+    } else {
+        return fastMalloc(n);
+    }
+#else
+    return realloc(p, n);
+#endif
+}
+
+void* fastRealloc(void* p, size_t n)
+{
+    ASSERT(!isForbidden());
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    TryMallocReturnValue returnValue = tryFastRealloc(p, n);
+    void* result;
+    returnValue.getValue(result);
+#else
+    void* result = realloc(p, n);
+#endif
+
+    if (!result)
+        CRASH();
+    return result;
+}
+
+void releaseFastMallocFreeMemory() { }
+    
+FastMallocStatistics fastMallocStatistics()
+{
+    FastMallocStatistics statistics = { 0, 0, 0 };
+    return statistics;
+}
+
+size_t fastMallocSize(const void* p)
+{
+#if OS(DARWIN)
+    return malloc_size(p);
+#elif COMPILER(MSVC)
+    return _msize(const_cast<void*>(p));
+#else
+    return 1;
+#endif
+}
+
+} // namespace WTF
+
+#if OS(DARWIN)
+// This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
+// It will never be used in this case, so it's type and value are less interesting than its presence.
+extern "C" const int jscore_fastmalloc_introspection = 0;
+#endif
+
+#else // FORCE_SYSTEM_MALLOC
+
+#if HAVE(STDINT_H)
+#include <stdint.h>
+#elif HAVE(INTTYPES_H)
+#include <inttypes.h>
+#else
+#include <sys/types.h>
+#endif
+
+#include "AlwaysInline.h"
+#include "Assertions.h"
+#include "TCPackedCache.h"
+#include "TCPageMap.h"
+#include "TCSpinLock.h"
+#include "TCSystemAlloc.h"
+#include <algorithm>
+#include <errno.h>
+#include <limits>
+#include <pthread.h>
+#include <stdarg.h>
+#include <stddef.h>
+#include <stdio.h>
+#if OS(UNIX)
+#include <unistd.h>
+#endif
+#if COMPILER(MSVC)
+#ifndef WIN32_LEAN_AND_MEAN
+#define WIN32_LEAN_AND_MEAN
+#endif
+#include <windows.h>
+#endif
+
+#ifdef WTF_CHANGES
+
+#if OS(DARWIN)
+#include "MallocZoneSupport.h"
+#include <wtf/HashSet.h>
+#include <wtf/Vector.h>
+#endif
+#if HAVE(DISPATCH_H)
+#include <dispatch/dispatch.h>
+#endif
+
+
+#ifndef PRIuS
+#define PRIuS "zu"
+#endif
+
+// Calling pthread_getspecific through a global function pointer is faster than a normal
+// call to the function on Mac OS X, and it's used in performance-critical code. So we
+// use a function pointer. But that's not necessarily faster on other platforms, and we had
+// problems with this technique on Windows, so we'll do this only on Mac OS X.
+#if OS(DARWIN)
+static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
+#define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
+#endif
+
+#define DEFINE_VARIABLE(type, name, value, meaning) \
+  namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead {  \
+  type FLAGS_##name(value);                                \
+  char FLAGS_no##name;                                                        \
+  }                                                                           \
+  using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
+  
+#define DEFINE_int64(name, value, meaning) \
+  DEFINE_VARIABLE(int64_t, name, value, meaning)
+  
+#define DEFINE_double(name, value, meaning) \
+  DEFINE_VARIABLE(double, name, value, meaning)
+
+namespace WTF {
+
+#define malloc fastMalloc
+#define calloc fastCalloc
+#define free fastFree
+#define realloc fastRealloc
+
+#define MESSAGE LOG_ERROR
+#define CHECK_CONDITION ASSERT
+
+#if OS(DARWIN)
+struct Span;
+class TCMalloc_Central_FreeListPadded;
+class TCMalloc_PageHeap;
+class TCMalloc_ThreadCache;
+template <typename T> class PageHeapAllocator;
+
+class FastMallocZone {
+public:
+    static void init();
+
+    static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
+    static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
+    static boolean_t check(malloc_zone_t*) { return true; }
+    static void  print(malloc_zone_t*, boolean_t) { }
+    static void log(malloc_zone_t*, void*) { }
+    static void forceLock(malloc_zone_t*) { }
+    static void forceUnlock(malloc_zone_t*) { }
+    static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
+
+private:
+    FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
+    static size_t size(malloc_zone_t*, const void*);
+    static void* zoneMalloc(malloc_zone_t*, size_t);
+    static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
+    static void zoneFree(malloc_zone_t*, void*);
+    static void* zoneRealloc(malloc_zone_t*, void*, size_t);
+    static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
+    static void zoneDestroy(malloc_zone_t*) { }
+
+    malloc_zone_t m_zone;
+    TCMalloc_PageHeap* m_pageHeap;
+    TCMalloc_ThreadCache** m_threadHeaps;
+    TCMalloc_Central_FreeListPadded* m_centralCaches;
+    PageHeapAllocator<Span>* m_spanAllocator;
+    PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
+};
+
+#endif
+
+#endif
+
+#ifndef WTF_CHANGES
+// This #ifdef should almost never be set.  Set NO_TCMALLOC_SAMPLES if
+// you're porting to a system where you really can't get a stacktrace.
+#ifdef NO_TCMALLOC_SAMPLES
+// We use #define so code compiles even if you #include stacktrace.h somehow.
+# define GetStackTrace(stack, depth, skip)  (0)
+#else
+# include <google/stacktrace.h>
+#endif
+#endif
+
+// Even if we have support for thread-local storage in the compiler
+// and linker, the OS may not support it.  We need to check that at
+// runtime.  Right now, we have to keep a manual set of "bad" OSes.
+#if defined(HAVE_TLS)
+  static bool kernel_supports_tls = false;      // be conservative
+  static inline bool KernelSupportsTLS() {
+    return kernel_supports_tls;
+  }
+# if !HAVE_DECL_UNAME   // if too old for uname, probably too old for TLS
+    static void CheckIfKernelSupportsTLS() {
+      kernel_supports_tls = false;
+    }
+# else
+#   include <sys/utsname.h>    // DECL_UNAME checked for <sys/utsname.h> too
+    static void CheckIfKernelSupportsTLS() {
+      struct utsname buf;
+      if (uname(&buf) != 0) {   // should be impossible
+        MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
+        kernel_supports_tls = false;
+      } else if (strcasecmp(buf.sysname, "linux") == 0) {
+        // The linux case: the first kernel to support TLS was 2.6.0
+        if (buf.release[0] < '2' && buf.release[1] == '.')    // 0.x or 1.x
+          kernel_supports_tls = false;
+        else if (buf.release[0] == '2' && buf.release[1] == '.' &&
+                 buf.release[2] >= '0' && buf.release[2] < '6' &&
+                 buf.release[3] == '.')                       // 2.0 - 2.5
+          kernel_supports_tls = false;
+        else
+          kernel_supports_tls = true;
+      } else {        // some other kernel, we'll be optimisitic
+        kernel_supports_tls = true;
+      }
+      // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
+    }
+#  endif  // HAVE_DECL_UNAME
+#endif    // HAVE_TLS
+
+// __THROW is defined in glibc systems.  It means, counter-intuitively,
+// "This function will never throw an exception."  It's an optional
+// optimization tool, but we may need to use it to match glibc prototypes.
+#ifndef __THROW    // I guess we're not on a glibc system
+# define __THROW   // __THROW is just an optimization, so ok to make it ""
+#endif
+
+//-------------------------------------------------------------------
+// Configuration
+//-------------------------------------------------------------------
+
+// Not all possible combinations of the following parameters make
+// sense.  In particular, if kMaxSize increases, you may have to
+// increase kNumClasses as well.
+static const size_t kPageShift  = 12;
+static const size_t kPageSize   = 1 << kPageShift;
+static const size_t kMaxSize    = 8u * kPageSize;
+static const size_t kAlignShift = 3;
+static const size_t kAlignment  = 1 << kAlignShift;
+static const size_t kNumClasses = 68;
+
+// Allocates a big block of memory for the pagemap once we reach more than
+// 128MB
+static const size_t kPageMapBigAllocationThreshold = 128 << 20;
+
+// Minimum number of pages to fetch from system at a time.  Must be
+// significantly bigger than kPageSize to amortize system-call
+// overhead, and also to reduce external fragementation.  Also, we
+// should keep this value big because various incarnations of Linux
+// have small limits on the number of mmap() regions per
+// address-space.
+static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
+
+// Number of objects to move between a per-thread list and a central
+// list in one shot.  We want this to be not too small so we can
+// amortize the lock overhead for accessing the central list.  Making
+// it too big may temporarily cause unnecessary memory wastage in the
+// per-thread free list until the scavenger cleans up the list.
+static int num_objects_to_move[kNumClasses];
+
+// Maximum length we allow a per-thread free-list to have before we
+// move objects from it into the corresponding central free-list.  We
+// want this big to avoid locking the central free-list too often.  It
+// should not hurt to make this list somewhat big because the
+// scavenging code will shrink it down when its contents are not in use.
+static const int kMaxFreeListLength = 256;
+
+// Lower and upper bounds on the per-thread cache sizes
+static const size_t kMinThreadCacheSize = kMaxSize * 2;
+static const size_t kMaxThreadCacheSize = 2 << 20;
+
+// Default bound on the total amount of thread caches
+static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
+
+// For all span-lengths < kMaxPages we keep an exact-size list.
+// REQUIRED: kMaxPages >= kMinSystemAlloc;
+static const size_t kMaxPages = kMinSystemAlloc;
+
+/* The smallest prime > 2^n */
+static int primes_list[] = {
+    // Small values might cause high rates of sampling
+    // and hence commented out.
+    // 2, 5, 11, 17, 37, 67, 131, 257,
+    // 521, 1031, 2053, 4099, 8209, 16411,
+    32771, 65537, 131101, 262147, 524309, 1048583,
+    2097169, 4194319, 8388617, 16777259, 33554467 };
+
+// Twice the approximate gap between sampling actions.
+// I.e., we take one sample approximately once every
+//      tcmalloc_sample_parameter/2
+// bytes of allocation, i.e., ~ once every 128KB.
+// Must be a prime number.
+#ifdef NO_TCMALLOC_SAMPLES
+DEFINE_int64(tcmalloc_sample_parameter, 0,
+             "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
+static size_t sample_period = 0;
+#else
+DEFINE_int64(tcmalloc_sample_parameter, 262147,
+         "Twice the approximate gap between sampling actions."
+         " Must be a prime number. Otherwise will be rounded up to a "
+         " larger prime number");
+static size_t sample_period = 262147;
+#endif
+
+// Protects sample_period above
+static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
+
+// Parameters for controlling how fast memory is returned to the OS.
+
+DEFINE_double(tcmalloc_release_rate, 1,
+              "Rate at which we release unused memory to the system.  "
+              "Zero means we never release memory back to the system.  "
+              "Increase this flag to return memory faster; decrease it "
+              "to return memory slower.  Reasonable rates are in the "
+              "range [0,10]");
+
+//-------------------------------------------------------------------
+// Mapping from size to size_class and vice versa
+//-------------------------------------------------------------------
+
+// Sizes <= 1024 have an alignment >= 8.  So for such sizes we have an
+// array indexed by ceil(size/8).  Sizes > 1024 have an alignment >= 128.
+// So for these larger sizes we have an array indexed by ceil(size/128).
+//
+// We flatten both logical arrays into one physical array and use
+// arithmetic to compute an appropriate index.  The constants used by
+// ClassIndex() were selected to make the flattening work.
+//
+// Examples:
+//   Size       Expression                      Index
+//   -------------------------------------------------------
+//   0          (0 + 7) / 8                     0
+//   1          (1 + 7) / 8                     1
+//   ...
+//   1024       (1024 + 7) / 8                  128
+//   1025       (1025 + 127 + (120<<7)) / 128   129
+//   ...
+//   32768      (32768 + 127 + (120<<7)) / 128  376
+static const size_t kMaxSmallSize = 1024;
+static const int shift_amount[2] = { 3, 7 };  // For divides by 8 or 128
+static const int add_amount[2] = { 7, 127 + (120 << 7) };
+static unsigned char class_array[377];
+
+// Compute index of the class_array[] entry for a given size
+static inline int ClassIndex(size_t s) {
+  const int i = (s > kMaxSmallSize);
+  return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
+}
+
+// Mapping from size class to max size storable in that class
+static size_t class_to_size[kNumClasses];
+
+// Mapping from size class to number of pages to allocate at a time
+static size_t class_to_pages[kNumClasses];
+
+// TransferCache is used to cache transfers of num_objects_to_move[size_class]
+// back and forth between thread caches and the central cache for a given size
+// class.
+struct TCEntry {
+  void *head;  // Head of chain of objects.
+  void *tail;  // Tail of chain of objects.
+};
+// A central cache freelist can have anywhere from 0 to kNumTransferEntries
+// slots to put link list chains into.  To keep memory usage bounded the total
+// number of TCEntries across size classes is fixed.  Currently each size
+// class is initially given one TCEntry which also means that the maximum any
+// one class can have is kNumClasses.
+static const int kNumTransferEntries = kNumClasses;
+
+// Note: the following only works for "n"s that fit in 32-bits, but
+// that is fine since we only use it for small sizes.
+static inline int LgFloor(size_t n) {
+  int log = 0;
+  for (int i = 4; i >= 0; --i) {
+    int shift = (1 << i);
+    size_t x = n >> shift;
+    if (x != 0) {
+      n = x;
+      log += shift;
+    }
+  }
+  ASSERT(n == 1);
+  return log;
+}
+
+// Some very basic linked list functions for dealing with using void * as
+// storage.
+
+static inline void *SLL_Next(void *t) {
+  return *(reinterpret_cast<void**>(t));
+}
+
+static inline void SLL_SetNext(void *t, void *n) {
+  *(reinterpret_cast<void**>(t)) = n;
+}
+
+static inline void SLL_Push(void **list, void *element) {
+  SLL_SetNext(element, *list);
+  *list = element;
+}
+
+static inline void *SLL_Pop(void **list) {
+  void *result = *list;
+  *list = SLL_Next(*list);
+  return result;
+}
+
+
+// Remove N elements from a linked list to which head points.  head will be
+// modified to point to the new head.  start and end will point to the first
+// and last nodes of the range.  Note that end will point to NULL after this
+// function is called.
+static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
+  if (N == 0) {
+    *start = NULL;
+    *end = NULL;
+    return;
+  }
+
+  void *tmp = *head;
+  for (int i = 1; i < N; ++i) {
+    tmp = SLL_Next(tmp);
+  }
+
+  *start = *head;
+  *end = tmp;
+  *head = SLL_Next(tmp);
+  // Unlink range from list.
+  SLL_SetNext(tmp, NULL);
+}
+
+static inline void SLL_PushRange(void **head, void *start, void *end) {
+  if (!start) return;
+  SLL_SetNext(end, *head);
+  *head = start;
+}
+
+static inline size_t SLL_Size(void *head) {
+  int count = 0;
+  while (head) {
+    count++;
+    head = SLL_Next(head);
+  }
+  return count;
+}
+
+// Setup helper functions.
+
+static ALWAYS_INLINE size_t SizeClass(size_t size) {
+  return class_array[ClassIndex(size)];
+}
+
+// Get the byte-size for a specified class
+static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
+  return class_to_size[cl];
+}
+static int NumMoveSize(size_t size) {
+  if (size == 0) return 0;
+  // Use approx 64k transfers between thread and central caches.
+  int num = static_cast<int>(64.0 * 1024.0 / size);
+  if (num < 2) num = 2;
+  // Clamp well below kMaxFreeListLength to avoid ping pong between central
+  // and thread caches.
+  if (num > static_cast<int>(0.8 * kMaxFreeListLength))
+    num = static_cast<int>(0.8 * kMaxFreeListLength);
+
+  // Also, avoid bringing in too many objects into small object free
+  // lists.  There are lots of such lists, and if we allow each one to
+  // fetch too many at a time, we end up having to scavenge too often
+  // (especially when there are lots of threads and each thread gets a
+  // small allowance for its thread cache).
+  //
+  // TODO: Make thread cache free list sizes dynamic so that we do not
+  // have to equally divide a fixed resource amongst lots of threads.
+  if (num > 32) num = 32;
+
+  return num;
+}
+
+// Initialize the mapping arrays
+static void InitSizeClasses() {
+  // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
+  if (ClassIndex(0) < 0) {
+    MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
+    CRASH();
+  }
+  if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
+    MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
+    CRASH();
+  }
+
+  // Compute the size classes we want to use
+  size_t sc = 1;   // Next size class to assign
+  unsigned char alignshift = kAlignShift;
+  int last_lg = -1;
+  for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
+    int lg = LgFloor(size);
+    if (lg > last_lg) {
+      // Increase alignment every so often.
+      //
+      // Since we double the alignment every time size doubles and
+      // size >= 128, this means that space wasted due to alignment is
+      // at most 16/128 i.e., 12.5%.  Plus we cap the alignment at 256
+      // bytes, so the space wasted as a percentage starts falling for
+      // sizes > 2K.
+      if ((lg >= 7) && (alignshift < 8)) {
+        alignshift++;
+      }
+      last_lg = lg;
+    }
+
+    // Allocate enough pages so leftover is less than 1/8 of total.
+    // This bounds wasted space to at most 12.5%.
+    size_t psize = kPageSize;
+    while ((psize % size) > (psize >> 3)) {
+      psize += kPageSize;
+    }
+    const size_t my_pages = psize >> kPageShift;
+
+    if (sc > 1 && my_pages == class_to_pages[sc-1]) {
+      // See if we can merge this into the previous class without
+      // increasing the fragmentation of the previous class.
+      const size_t my_objects = (my_pages << kPageShift) / size;
+      const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
+                                  / class_to_size[sc-1];
+      if (my_objects == prev_objects) {
+        // Adjust last class to include this size
+        class_to_size[sc-1] = size;
+        continue;
+      }
+    }
+
+    // Add new class
+    class_to_pages[sc] = my_pages;
+    class_to_size[sc] = size;
+    sc++;
+  }
+  if (sc != kNumClasses) {
+    MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
+            sc, int(kNumClasses));
+    CRASH();
+  }
+
+  // Initialize the mapping arrays
+  int next_size = 0;
+  for (unsigned char c = 1; c < kNumClasses; c++) {
+    const size_t max_size_in_class = class_to_size[c];
+    for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
+      class_array[ClassIndex(s)] = c;
+    }
+    next_size = static_cast<int>(max_size_in_class + kAlignment);
+  }
+
+  // Double-check sizes just to be safe
+  for (size_t size = 0; size <= kMaxSize; size++) {
+    const size_t sc = SizeClass(size);
+    if (sc == 0) {
+      MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
+      CRASH();
+    }
+    if (sc > 1 && size <= class_to_size[sc-1]) {
+      MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
+              "\n", sc, size);
+      CRASH();
+    }
+    if (sc >= kNumClasses) {
+      MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
+      CRASH();
+    }
+    const size_t s = class_to_size[sc];
+    if (size > s) {
+     MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
+      CRASH();
+    }
+    if (s == 0) {
+      MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
+      CRASH();
+    }
+  }
+
+  // Initialize the num_objects_to_move array.
+  for (size_t cl = 1; cl  < kNumClasses; ++cl) {
+    num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
+  }
+
+#ifndef WTF_CHANGES
+  if (false) {
+    // Dump class sizes and maximum external wastage per size class
+    for (size_t cl = 1; cl  < kNumClasses; ++cl) {
+      const int alloc_size = class_to_pages[cl] << kPageShift;
+      const int alloc_objs = alloc_size / class_to_size[cl];
+      const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
+      const int max_waste = alloc_size - min_used;
+      MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
+              int(cl),
+              int(class_to_size[cl-1] + 1),
+              int(class_to_size[cl]),
+              int(class_to_pages[cl] << kPageShift),
+              max_waste * 100.0 / alloc_size
+              );
+    }
+  }
+#endif
+}
+
+// -------------------------------------------------------------------------
+// Simple allocator for objects of a specified type.  External locking
+// is required before accessing one of these objects.
+// -------------------------------------------------------------------------
+
+// Metadata allocator -- keeps stats about how many bytes allocated
+static uint64_t metadata_system_bytes = 0;
+static void* MetaDataAlloc(size_t bytes) {
+  void* result = TCMalloc_SystemAlloc(bytes, 0);
+  if (result != NULL) {
+    metadata_system_bytes += bytes;
+  }
+  return result;
+}
+
+template <class T>
+class PageHeapAllocator {
+ private:
+  // How much to allocate from system at a time
+  static const size_t kAllocIncrement = 32 << 10;
+
+  // Aligned size of T
+  static const size_t kAlignedSize
+  = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
+
+  // Free area from which to carve new objects
+  char* free_area_;
+  size_t free_avail_;
+
+  // Linked list of all regions allocated by this allocator
+  void* allocated_regions_;
+
+  // Free list of already carved objects
+  void* free_list_;
+
+  // Number of allocated but unfreed objects
+  int inuse_;
+
+ public:
+  void Init() {
+    ASSERT(kAlignedSize <= kAllocIncrement);
+    inuse_ = 0;
+    allocated_regions_ = 0;
+    free_area_ = NULL;
+    free_avail_ = 0;
+    free_list_ = NULL;
+  }
+
+  T* New() {
+    // Consult free list
+    void* result;
+    if (free_list_ != NULL) {
+      result = free_list_;
+      free_list_ = *(reinterpret_cast<void**>(result));
+    } else {
+      if (free_avail_ < kAlignedSize) {
+        // Need more room
+        char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
+        if (!new_allocation)
+          CRASH();
+
+        *(void**)new_allocation = allocated_regions_;
+        allocated_regions_ = new_allocation;
+        free_area_ = new_allocation + kAlignedSize;
+        free_avail_ = kAllocIncrement - kAlignedSize;
+      }
+      result = free_area_;
+      free_area_ += kAlignedSize;
+      free_avail_ -= kAlignedSize;
+    }
+    inuse_++;
+    return reinterpret_cast<T*>(result);
+  }
+
+  void Delete(T* p) {
+    *(reinterpret_cast<void**>(p)) = free_list_;
+    free_list_ = p;
+    inuse_--;
+  }
+
+  int inuse() const { return inuse_; }
+
+#if defined(WTF_CHANGES) && OS(DARWIN)
+  template <class Recorder>
+  void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
+  {
+      vm_address_t adminAllocation = reinterpret_cast<vm_address_t>(allocated_regions_);
+      while (adminAllocation) {
+          recorder.recordRegion(adminAllocation, kAllocIncrement);
+          adminAllocation = *reader(reinterpret_cast<vm_address_t*>(adminAllocation));
+      }
+  }
+#endif
+};
+
+// -------------------------------------------------------------------------
+// Span - a contiguous run of pages
+// -------------------------------------------------------------------------
+
+// Type that can hold a page number
+typedef uintptr_t PageID;
+
+// Type that can hold the length of a run of pages
+typedef uintptr_t Length;
+
+static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
+
+// Convert byte size into pages.  This won't overflow, but may return
+// an unreasonably large value if bytes is huge enough.
+static inline Length pages(size_t bytes) {
+  return (bytes >> kPageShift) +
+      ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
+}
+
+// Convert a user size into the number of bytes that will actually be
+// allocated
+static size_t AllocationSize(size_t bytes) {
+  if (bytes > kMaxSize) {
+    // Large object: we allocate an integral number of pages
+    ASSERT(bytes <= (kMaxValidPages << kPageShift));
+    return pages(bytes) << kPageShift;
+  } else {
+    // Small object: find the size class to which it belongs
+    return ByteSizeForClass(SizeClass(bytes));
+  }
+}
+
+// Information kept for a span (a contiguous run of pages).
+struct Span {
+  PageID        start;          // Starting page number
+  Length        length;         // Number of pages in span
+  Span*         next;           // Used when in link list
+  Span*         prev;           // Used when in link list
+  void*         objects;        // Linked list of free objects
+  unsigned int  free : 1;       // Is the span free
+#ifndef NO_TCMALLOC_SAMPLES
+  unsigned int  sample : 1;     // Sampled object?
+#endif
+  unsigned int  sizeclass : 8;  // Size-class for small objects (or 0)
+  unsigned int  refcount : 11;  // Number of non-free objects
+  bool decommitted : 1;
+
+#undef SPAN_HISTORY
+#ifdef SPAN_HISTORY
+  // For debugging, we can keep a log events per span
+  int nexthistory;
+  char history[64];
+  int value[64];
+#endif
+};
+
+#define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
+
+#ifdef SPAN_HISTORY
+void Event(Span* span, char op, int v = 0) {
+  span->history[span->nexthistory] = op;
+  span->value[span->nexthistory] = v;
+  span->nexthistory++;
+  if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
+}
+#else
+#define Event(s,o,v) ((void) 0)
+#endif
+
+// Allocator/deallocator for spans
+static PageHeapAllocator<Span> span_allocator;
+static Span* NewSpan(PageID p, Length len) {
+  Span* result = span_allocator.New();
+  memset(result, 0, sizeof(*result));
+  result->start = p;
+  result->length = len;
+#ifdef SPAN_HISTORY
+  result->nexthistory = 0;
+#endif
+  return result;
+}
+
+static inline void DeleteSpan(Span* span) {
+#ifndef NDEBUG
+  // In debug mode, trash the contents of deleted Spans
+  memset(span, 0x3f, sizeof(*span));
+#endif
+  span_allocator.Delete(span);
+}
+
+// -------------------------------------------------------------------------
+// Doubly linked list of spans.
+// -------------------------------------------------------------------------
+
+static inline void DLL_Init(Span* list) {
+  list->next = list;
+  list->prev = list;
+}
+
+static inline void DLL_Remove(Span* span) {
+  span->prev->next = span->next;
+  span->next->prev = span->prev;
+  span->prev = NULL;
+  span->next = NULL;
+}
+
+static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
+  return list->next == list;
+}
+
+static int DLL_Length(const Span* list) {
+  int result = 0;
+  for (Span* s = list->next; s != list; s = s->next) {
+    result++;
+  }
+  return result;
+}
+
+#if 0 /* Not needed at the moment -- causes compiler warnings if not used */
+static void DLL_Print(const char* label, const Span* list) {
+  MESSAGE("%-10s %p:", label, list);
+  for (const Span* s = list->next; s != list; s = s->next) {
+    MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
+  }
+  MESSAGE("\n");
+}
+#endif
+
+static inline void DLL_Prepend(Span* list, Span* span) {
+  ASSERT(span->next == NULL);
+  ASSERT(span->prev == NULL);
+  span->next = list->next;
+  span->prev = list;
+  list->next->prev = span;
+  list->next = span;
+}
+
+// -------------------------------------------------------------------------
+// Stack traces kept for sampled allocations
+//   The following state is protected by pageheap_lock_.
+// -------------------------------------------------------------------------
+
+// size/depth are made the same size as a pointer so that some generic
+// code below can conveniently cast them back and forth to void*.
+static const int kMaxStackDepth = 31;
+struct StackTrace {
+  uintptr_t size;          // Size of object
+  uintptr_t depth;         // Number of PC values stored in array below
+  void*     stack[kMaxStackDepth];
+};
+static PageHeapAllocator<StackTrace> stacktrace_allocator;
+static Span sampled_objects;
+
+// -------------------------------------------------------------------------
+// Map from page-id to per-page data
+// -------------------------------------------------------------------------
+
+// We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
+// We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
+// because sometimes the sizeclass is all the information we need.
+
+// Selector class -- general selector uses 3-level map
+template <int BITS> class MapSelector {
+ public:
+  typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
+  typedef PackedCache<BITS, uint64_t> CacheType;
+};
+
+#if defined(WTF_CHANGES)
+#if CPU(X86_64)
+// On all known X86-64 platforms, the upper 16 bits are always unused and therefore 
+// can be excluded from the PageMap key.
+// See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
+
+static const size_t kBitsUnusedOn64Bit = 16;
+#else
+static const size_t kBitsUnusedOn64Bit = 0;
+#endif
+
+// A three-level map for 64-bit machines
+template <> class MapSelector<64> {
+ public:
+  typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
+  typedef PackedCache<64, uint64_t> CacheType;
+};
+#endif
+
+// A two-level map for 32-bit machines
+template <> class MapSelector<32> {
+ public:
+  typedef TCMalloc_PageMap2<32 - kPageShift> Type;
+  typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
+};
+
+// -------------------------------------------------------------------------
+// Page-level allocator
+//  * Eager coalescing
+//
+// Heap for page-level allocation.  We allow allocating and freeing a
+// contiguous runs of pages (called a "span").
+// -------------------------------------------------------------------------
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+// The page heap maintains a free list for spans that are no longer in use by
+// the central cache or any thread caches. We use a background thread to
+// periodically scan the free list and release a percentage of it back to the OS.
+
+// If free_committed_pages_ exceeds kMinimumFreeCommittedPageCount, the
+// background thread:
+//     - wakes up
+//     - pauses for kScavengeDelayInSeconds
+//     - returns to the OS a percentage of the memory that remained unused during
+//       that pause (kScavengePercentage * min_free_committed_pages_since_last_scavenge_)
+// The goal of this strategy is to reduce memory pressure in a timely fashion
+// while avoiding thrashing the OS allocator.
+
+// Time delay before the page heap scavenger will consider returning pages to
+// the OS.
+static const int kScavengeDelayInSeconds = 2;
+
+// Approximate percentage of free committed pages to return to the OS in one
+// scavenge.
+static const float kScavengePercentage = .5f;
+
+// number of span lists to keep spans in when memory is returned.
+static const int kMinSpanListsWithSpans = 32;
+
+// Number of free committed pages that we want to keep around.  The minimum number of pages used when there
+// is 1 span in each of the first kMinSpanListsWithSpans spanlists.  Currently 528 pages.
+static const size_t kMinimumFreeCommittedPageCount = kMinSpanListsWithSpans * ((1.0f+kMinSpanListsWithSpans) / 2.0f);
+
+#endif
+
+class TCMalloc_PageHeap {
+ public:
+  void init();
+
+  // Allocate a run of "n" pages.  Returns zero if out of memory.
+  Span* New(Length n);
+
+  // Delete the span "[p, p+n-1]".
+  // REQUIRES: span was returned by earlier call to New() and
+  //           has not yet been deleted.
+  void Delete(Span* span);
+
+  // Mark an allocated span as being used for small objects of the
+  // specified size-class.
+  // REQUIRES: span was returned by an earlier call to New()
+  //           and has not yet been deleted.
+  void RegisterSizeClass(Span* span, size_t sc);
+
+  // Split an allocated span into two spans: one of length "n" pages
+  // followed by another span of length "span->length - n" pages.
+  // Modifies "*span" to point to the first span of length "n" pages.
+  // Returns a pointer to the second span.
+  //
+  // REQUIRES: "0 < n < span->length"
+  // REQUIRES: !span->free
+  // REQUIRES: span->sizeclass == 0
+  Span* Split(Span* span, Length n);
+
+  // Return the descriptor for the specified page.
+  inline Span* GetDescriptor(PageID p) const {
+    return reinterpret_cast<Span*>(pagemap_.get(p));
+  }
+
+#ifdef WTF_CHANGES
+  inline Span* GetDescriptorEnsureSafe(PageID p)
+  {
+      pagemap_.Ensure(p, 1);
+      return GetDescriptor(p);
+  }
+    
+  size_t ReturnedBytes() const;
+#endif
+
+  // Dump state to stderr
+#ifndef WTF_CHANGES
+  void Dump(TCMalloc_Printer* out);
+#endif
+
+  // Return number of bytes allocated from system
+  inline uint64_t SystemBytes() const { return system_bytes_; }
+
+  // Return number of free bytes in heap
+  uint64_t FreeBytes() const {
+    return (static_cast<uint64_t>(free_pages_) << kPageShift);
+  }
+
+  bool Check();
+  bool CheckList(Span* list, Length min_pages, Length max_pages);
+
+  // Release all pages on the free list for reuse by the OS:
+  void ReleaseFreePages();
+
+  // Return 0 if we have no information, or else the correct sizeclass for p.
+  // Reads and writes to pagemap_cache_ do not require locking.
+  // The entries are 64 bits on 64-bit hardware and 16 bits on
+  // 32-bit hardware, and we don't mind raciness as long as each read of
+  // an entry yields a valid entry, not a partially updated entry.
+  size_t GetSizeClassIfCached(PageID p) const {
+    return pagemap_cache_.GetOrDefault(p, 0);
+  }
+  void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
+
+ private:
+  // Pick the appropriate map and cache types based on pointer size
+  typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
+  typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
+  PageMap pagemap_;
+  mutable PageMapCache pagemap_cache_;
+
+  // We segregate spans of a given size into two circular linked
+  // lists: one for normal spans, and one for spans whose memory
+  // has been returned to the system.
+  struct SpanList {
+    Span        normal;
+    Span        returned;
+  };
+
+  // List of free spans of length >= kMaxPages
+  SpanList large_;
+
+  // Array mapping from span length to a doubly linked list of free spans
+  SpanList free_[kMaxPages];
+
+  // Number of pages kept in free lists
+  uintptr_t free_pages_;
+
+  // Bytes allocated from system
+  uint64_t system_bytes_;
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+  // Number of pages kept in free lists that are still committed.
+  Length free_committed_pages_;
+
+  // Minimum number of free committed pages since last scavenge. (Can be 0 if
+  // we've committed new pages since the last scavenge.)
+  Length min_free_committed_pages_since_last_scavenge_;
+#endif
+
+  bool GrowHeap(Length n);
+
+  // REQUIRES   span->length >= n
+  // Remove span from its free list, and move any leftover part of
+  // span into appropriate free lists.  Also update "span" to have
+  // length exactly "n" and mark it as non-free so it can be returned
+  // to the client.
+  //
+  // "released" is true iff "span" was found on a "returned" list.
+  void Carve(Span* span, Length n, bool released);
+
+  void RecordSpan(Span* span) {
+    pagemap_.set(span->start, span);
+    if (span->length > 1) {
+      pagemap_.set(span->start + span->length - 1, span);
+    }
+  }
+  
+    // Allocate a large span of length == n.  If successful, returns a
+  // span of exactly the specified length.  Else, returns NULL.
+  Span* AllocLarge(Length n);
+
+#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+  // Incrementally release some memory to the system.
+  // IncrementalScavenge(n) is called whenever n pages are freed.
+  void IncrementalScavenge(Length n);
+#endif
+
+  // Number of pages to deallocate before doing more scavenging
+  int64_t scavenge_counter_;
+
+  // Index of last free list we scavenged
+  size_t scavenge_index_;
+  
+#if defined(WTF_CHANGES) && OS(DARWIN)
+  friend class FastMallocZone;
+#endif
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+  void initializeScavenger();
+  ALWAYS_INLINE void signalScavenger();
+  void scavenge();
+  ALWAYS_INLINE bool shouldScavenge() const;
+
+#if !HAVE(DISPATCH_H)
+  static NO_RETURN_WITH_VALUE void* runScavengerThread(void*);
+  NO_RETURN void scavengerThread();
+
+  // Keeps track of whether the background thread is actively scavenging memory every kScavengeDelayInSeconds, or
+  // it's blocked waiting for more pages to be deleted.
+  bool m_scavengeThreadActive;
+
+  pthread_mutex_t m_scavengeMutex;
+  pthread_cond_t m_scavengeCondition;
+#else // !HAVE(DISPATCH_H)
+  void periodicScavenge();
+
+  dispatch_queue_t m_scavengeQueue;
+  dispatch_source_t m_scavengeTimer;
+  bool m_scavengingScheduled;
+#endif
+
+#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+};
+
+void TCMalloc_PageHeap::init()
+{
+  pagemap_.init(MetaDataAlloc);
+  pagemap_cache_ = PageMapCache(0);
+  free_pages_ = 0;
+  system_bytes_ = 0;
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+  free_committed_pages_ = 0;
+  min_free_committed_pages_since_last_scavenge_ = 0;
+#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+
+  scavenge_counter_ = 0;
+  // Start scavenging at kMaxPages list
+  scavenge_index_ = kMaxPages-1;
+  COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
+  DLL_Init(&large_.normal);
+  DLL_Init(&large_.returned);
+  for (size_t i = 0; i < kMaxPages; i++) {
+    DLL_Init(&free_[i].normal);
+    DLL_Init(&free_[i].returned);
+  }
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+  initializeScavenger();
+#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+}
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+
+#if !HAVE(DISPATCH_H)
+
+void TCMalloc_PageHeap::initializeScavenger()
+{
+  pthread_mutex_init(&m_scavengeMutex, 0);
+  pthread_cond_init(&m_scavengeCondition, 0);
+  m_scavengeThreadActive = true;
+  pthread_t thread;
+  pthread_create(&thread, 0, runScavengerThread, this);
+}
+
+void* TCMalloc_PageHeap::runScavengerThread(void* context)
+{
+  static_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
+#if COMPILER(MSVC)
+  // Without this, Visual Studio will complain that this method does not return a value.
+  return 0;
+#endif
+}
+
+ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
+{
+  if (!m_scavengeThreadActive && shouldScavenge())
+    pthread_cond_signal(&m_scavengeCondition);
+}
+
+#else // !HAVE(DISPATCH_H)
+
+void TCMalloc_PageHeap::initializeScavenger()
+{
+  m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger", NULL);
+  m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue);
+  dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, kScavengeDelayInSeconds * NSEC_PER_SEC);
+  dispatch_source_set_timer(m_scavengeTimer, startTime, kScavengeDelayInSeconds * NSEC_PER_SEC, 1000 * NSEC_PER_USEC);
+  dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); });
+  m_scavengingScheduled = false;
+}
+
+ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
+{
+  if (!m_scavengingScheduled && shouldScavenge()) {
+    m_scavengingScheduled = true;
+    dispatch_resume(m_scavengeTimer);
+  }
+}
+
+#endif
+
+void TCMalloc_PageHeap::scavenge()
+{
+    size_t pagesToRelease = min_free_committed_pages_since_last_scavenge_ * kScavengePercentage;
+    size_t targetPageCount = std::max<size_t>(kMinimumFreeCommittedPageCount, free_committed_pages_ - pagesToRelease);
+
+    while (free_committed_pages_ > targetPageCount) {
+        for (int i = kMaxPages; i > 0 && free_committed_pages_ >= targetPageCount; i--) {
+            SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
+            // If the span size is bigger than kMinSpanListsWithSpans pages return all the spans in the list, else return all but 1 span.  
+            // Return only 50% of a spanlist at a time so spans of size 1 are not the only ones left.
+            size_t numSpansToReturn = (i > kMinSpanListsWithSpans) ? DLL_Length(&slist->normal) : static_cast<size_t>(.5 * DLL_Length(&slist->normal));
+            for (int j = 0; static_cast<size_t>(j) < numSpansToReturn && !DLL_IsEmpty(&slist->normal) && free_committed_pages_ > targetPageCount; j++) {
+                Span* s = slist->normal.prev; 
+                DLL_Remove(s);
+                ASSERT(!s->decommitted);
+                if (!s->decommitted) {
+                    TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
+                                           static_cast<size_t>(s->length << kPageShift));
+                    ASSERT(free_committed_pages_ >= s->length);
+                    free_committed_pages_ -= s->length;
+                    s->decommitted = true;
+                }
+                DLL_Prepend(&slist->returned, s);
+            }
+        }
+    }
+
+    min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
+}
+
+ALWAYS_INLINE bool TCMalloc_PageHeap::shouldScavenge() const 
+{
+    return free_committed_pages_ > kMinimumFreeCommittedPageCount; 
+}
+
+#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+
+inline Span* TCMalloc_PageHeap::New(Length n) {
+  ASSERT(Check());
+  ASSERT(n > 0);
+
+  // Find first size >= n that has a non-empty list
+  for (Length s = n; s < kMaxPages; s++) {
+    Span* ll = NULL;
+    bool released = false;
+    if (!DLL_IsEmpty(&free_[s].normal)) {
+      // Found normal span
+      ll = &free_[s].normal;
+    } else if (!DLL_IsEmpty(&free_[s].returned)) {
+      // Found returned span; reallocate it
+      ll = &free_[s].returned;
+      released = true;
+    } else {
+      // Keep looking in larger classes
+      continue;
+    }
+
+    Span* result = ll->next;
+    Carve(result, n, released);
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+    // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
+    // free committed pages count.
+    ASSERT(free_committed_pages_ >= n);
+    free_committed_pages_ -= n;
+    if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_) 
+      min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
+#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+    ASSERT(Check());
+    free_pages_ -= n;
+    return result;
+  }
+
+  Span* result = AllocLarge(n);
+  if (result != NULL) {
+      ASSERT_SPAN_COMMITTED(result);
+      return result;
+  }
+
+  // Grow the heap and try again
+  if (!GrowHeap(n)) {
+    ASSERT(Check());
+    return NULL;
+  }
+
+  return AllocLarge(n);
+}
+
+Span* TCMalloc_PageHeap::AllocLarge(Length n) {
+  // find the best span (closest to n in size).
+  // The following loops implements address-ordered best-fit.
+  bool from_released = false;
+  Span *best = NULL;
+
+  // Search through normal list
+  for (Span* span = large_.normal.next;
+       span != &large_.normal;
+       span = span->next) {
+    if (span->length >= n) {
+      if ((best == NULL)
+          || (span->length < best->length)
+          || ((span->length == best->length) && (span->start < best->start))) {
+        best = span;
+        from_released = false;
+      }
+    }
+  }
+
+  // Search through released list in case it has a better fit
+  for (Span* span = large_.returned.next;
+       span != &large_.returned;
+       span = span->next) {
+    if (span->length >= n) {
+      if ((best == NULL)
+          || (span->length < best->length)
+          || ((span->length == best->length) && (span->start < best->start))) {
+        best = span;
+        from_released = true;
+      }
+    }
+  }
+
+  if (best != NULL) {
+    Carve(best, n, from_released);
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+    // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
+    // free committed pages count.
+    ASSERT(free_committed_pages_ >= n);
+    free_committed_pages_ -= n;
+    if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
+      min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
+#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+    ASSERT(Check());
+    free_pages_ -= n;
+    return best;
+  }
+  return NULL;
+}
+
+Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
+  ASSERT(0 < n);
+  ASSERT(n < span->length);
+  ASSERT(!span->free);
+  ASSERT(span->sizeclass == 0);
+  Event(span, 'T', n);
+
+  const Length extra = span->length - n;
+  Span* leftover = NewSpan(span->start + n, extra);
+  Event(leftover, 'U', extra);
+  RecordSpan(leftover);
+  pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
+  span->length = n;
+
+  return leftover;
+}
+
+inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
+  ASSERT(n > 0);
+  DLL_Remove(span);
+  span->free = 0;
+  Event(span, 'A', n);
+
+  if (released) {
+    // If the span chosen to carve from is decommited, commit the entire span at once to avoid committing spans 1 page at a time.
+    ASSERT(span->decommitted);
+    TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift), static_cast<size_t>(span->length << kPageShift));
+    span->decommitted = false;
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+    free_committed_pages_ += span->length;
+#endif
+  }
+  
+  const int extra = static_cast<int>(span->length - n);
+  ASSERT(extra >= 0);
+  if (extra > 0) {
+    Span* leftover = NewSpan(span->start + n, extra);
+    leftover->free = 1;
+    leftover->decommitted = false;
+    Event(leftover, 'S', extra);
+    RecordSpan(leftover);
+
+    // Place leftover span on appropriate free list
+    SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
+    Span* dst = &listpair->normal;
+    DLL_Prepend(dst, leftover);
+
+    span->length = n;
+    pagemap_.set(span->start + n - 1, span);
+  }
+}
+
+static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
+{
+    if (destination->decommitted && !other->decommitted) {
+        TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
+                               static_cast<size_t>(other->length << kPageShift));
+    } else if (other->decommitted && !destination->decommitted) {
+        TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
+                               static_cast<size_t>(destination->length << kPageShift));
+        destination->decommitted = true;
+    }
+}
+
+inline void TCMalloc_PageHeap::Delete(Span* span) {
+  ASSERT(Check());
+  ASSERT(!span->free);
+  ASSERT(span->length > 0);
+  ASSERT(GetDescriptor(span->start) == span);
+  ASSERT(GetDescriptor(span->start + span->length - 1) == span);
+  span->sizeclass = 0;
+#ifndef NO_TCMALLOC_SAMPLES
+  span->sample = 0;
+#endif
+
+  // Coalesce -- we guarantee that "p" != 0, so no bounds checking
+  // necessary.  We do not bother resetting the stale pagemap
+  // entries for the pieces we are merging together because we only
+  // care about the pagemap entries for the boundaries.
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+  // Track the total size of the neighboring free spans that are committed.
+  Length neighboringCommittedSpansLength = 0;
+#endif
+  const PageID p = span->start;
+  const Length n = span->length;
+  Span* prev = GetDescriptor(p-1);
+  if (prev != NULL && prev->free) {
+    // Merge preceding span into this span
+    ASSERT(prev->start + prev->length == p);
+    const Length len = prev->length;
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+    if (!prev->decommitted)
+        neighboringCommittedSpansLength += len;
+#endif
+    mergeDecommittedStates(span, prev);
+    DLL_Remove(prev);
+    DeleteSpan(prev);
+    span->start -= len;
+    span->length += len;
+    pagemap_.set(span->start, span);
+    Event(span, 'L', len);
+  }
+  Span* next = GetDescriptor(p+n);
+  if (next != NULL && next->free) {
+    // Merge next span into this span
+    ASSERT(next->start == p+n);
+    const Length len = next->length;
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+    if (!next->decommitted)
+        neighboringCommittedSpansLength += len;
+#endif
+    mergeDecommittedStates(span, next);
+    DLL_Remove(next);
+    DeleteSpan(next);
+    span->length += len;
+    pagemap_.set(span->start + span->length - 1, span);
+    Event(span, 'R', len);
+  }
+
+  Event(span, 'D', span->length);
+  span->free = 1;
+  if (span->decommitted) {
+    if (span->length < kMaxPages)
+      DLL_Prepend(&free_[span->length].returned, span);
+    else
+      DLL_Prepend(&large_.returned, span);
+  } else {
+    if (span->length < kMaxPages)
+      DLL_Prepend(&free_[span->length].normal, span);
+    else
+      DLL_Prepend(&large_.normal, span);
+  }
+  free_pages_ += n;
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+  if (span->decommitted) {
+      // If the merged span is decommitted, that means we decommitted any neighboring spans that were
+      // committed.  Update the free committed pages count.
+      free_committed_pages_ -= neighboringCommittedSpansLength;
+      if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
+            min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
+  } else {
+      // If the merged span remains committed, add the deleted span's size to the free committed pages count.
+      free_committed_pages_ += n;
+  }
+
+  // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
+  signalScavenger();
+#else
+  IncrementalScavenge(n);
+#endif
+
+  ASSERT(Check());
+}
+
+#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
+  // Fast path; not yet time to release memory
+  scavenge_counter_ -= n;
+  if (scavenge_counter_ >= 0) return;  // Not yet time to scavenge
+
+  // If there is nothing to release, wait for so many pages before
+  // scavenging again.  With 4K pages, this comes to 16MB of memory.
+  static const size_t kDefaultReleaseDelay = 1 << 8;
+
+  // Find index of free list to scavenge
+  size_t index = scavenge_index_ + 1;
+  for (size_t i = 0; i < kMaxPages+1; i++) {
+    if (index > kMaxPages) index = 0;
+    SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
+    if (!DLL_IsEmpty(&slist->normal)) {
+      // Release the last span on the normal portion of this list
+      Span* s = slist->normal.prev;
+      DLL_Remove(s);
+      TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
+                             static_cast<size_t>(s->length << kPageShift));
+      s->decommitted = true;
+      DLL_Prepend(&slist->returned, s);
+
+      scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
+
+      if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
+        scavenge_index_ = index - 1;
+      else
+        scavenge_index_ = index;
+      return;
+    }
+    index++;
+  }
+
+  // Nothing to scavenge, delay for a while
+  scavenge_counter_ = kDefaultReleaseDelay;
+}
+#endif
+
+void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
+  // Associate span object with all interior pages as well
+  ASSERT(!span->free);
+  ASSERT(GetDescriptor(span->start) == span);
+  ASSERT(GetDescriptor(span->start+span->length-1) == span);
+  Event(span, 'C', sc);
+  span->sizeclass = static_cast<unsigned int>(sc);
+  for (Length i = 1; i < span->length-1; i++) {
+    pagemap_.set(span->start+i, span);
+  }
+}
+    
+#ifdef WTF_CHANGES
+size_t TCMalloc_PageHeap::ReturnedBytes() const {
+    size_t result = 0;
+    for (unsigned s = 0; s < kMaxPages; s++) {
+        const int r_length = DLL_Length(&free_[s].returned);
+        unsigned r_pages = s * r_length;
+        result += r_pages << kPageShift;
+    }
+    
+    for (Span* s = large_.returned.next; s != &large_.returned; s = s->next)
+        result += s->length << kPageShift;
+    return result;
+}
+#endif
+
+#ifndef WTF_CHANGES
+static double PagesToMB(uint64_t pages) {
+  return (pages << kPageShift) / 1048576.0;
+}
+
+void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
+  int nonempty_sizes = 0;
+  for (int s = 0; s < kMaxPages; s++) {
+    if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
+      nonempty_sizes++;
+    }
+  }
+  out->printf("------------------------------------------------\n");
+  out->printf("PageHeap: %d sizes; %6.1f MB free\n",
+              nonempty_sizes, PagesToMB(free_pages_));
+  out->printf("------------------------------------------------\n");
+  uint64_t total_normal = 0;
+  uint64_t total_returned = 0;
+  for (int s = 0; s < kMaxPages; s++) {
+    const int n_length = DLL_Length(&free_[s].normal);
+    const int r_length = DLL_Length(&free_[s].returned);
+    if (n_length + r_length > 0) {
+      uint64_t n_pages = s * n_length;
+      uint64_t r_pages = s * r_length;
+      total_normal += n_pages;
+      total_returned += r_pages;
+      out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
+                  "; unmapped: %6.1f MB; %6.1f MB cum\n",
+                  s,
+                  (n_length + r_length),
+                  PagesToMB(n_pages + r_pages),
+                  PagesToMB(total_normal + total_returned),
+                  PagesToMB(r_pages),
+                  PagesToMB(total_returned));
+    }
+  }
+
+  uint64_t n_pages = 0;
+  uint64_t r_pages = 0;
+  int n_spans = 0;
+  int r_spans = 0;
+  out->printf("Normal large spans:\n");
+  for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
+    out->printf("   [ %6" PRIuS " pages ] %6.1f MB\n",
+                s->length, PagesToMB(s->length));
+    n_pages += s->length;
+    n_spans++;
+  }
+  out->printf("Unmapped large spans:\n");
+  for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
+    out->printf("   [ %6" PRIuS " pages ] %6.1f MB\n",
+                s->length, PagesToMB(s->length));
+    r_pages += s->length;
+    r_spans++;
+  }
+  total_normal += n_pages;
+  total_returned += r_pages;
+  out->printf(">255   large * %6u spans ~ %6.1f MB; %6.1f MB cum"
+              "; unmapped: %6.1f MB; %6.1f MB cum\n",
+              (n_spans + r_spans),
+              PagesToMB(n_pages + r_pages),
+              PagesToMB(total_normal + total_returned),
+              PagesToMB(r_pages),
+              PagesToMB(total_returned));
+}
+#endif
+
+bool TCMalloc_PageHeap::GrowHeap(Length n) {
+  ASSERT(kMaxPages >= kMinSystemAlloc);
+  if (n > kMaxValidPages) return false;
+  Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
+  size_t actual_size;
+  void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
+  if (ptr == NULL) {
+    if (n < ask) {
+      // Try growing just "n" pages
+      ask = n;
+      ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
+    }
+    if (ptr == NULL) return false;
+  }
+  ask = actual_size >> kPageShift;
+
+  uint64_t old_system_bytes = system_bytes_;
+  system_bytes_ += (ask << kPageShift);
+  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+  ASSERT(p > 0);
+
+  // If we have already a lot of pages allocated, just pre allocate a bunch of
+  // memory for the page map. This prevents fragmentation by pagemap metadata
+  // when a program keeps allocating and freeing large blocks.
+
+  if (old_system_bytes < kPageMapBigAllocationThreshold
+      && system_bytes_ >= kPageMapBigAllocationThreshold) {
+    pagemap_.PreallocateMoreMemory();
+  }
+
+  // Make sure pagemap_ has entries for all of the new pages.
+  // Plus ensure one before and one after so coalescing code
+  // does not need bounds-checking.
+  if (pagemap_.Ensure(p-1, ask+2)) {
+    // Pretend the new area is allocated and then Delete() it to
+    // cause any necessary coalescing to occur.
+    //
+    // We do not adjust free_pages_ here since Delete() will do it for us.
+    Span* span = NewSpan(p, ask);
+    RecordSpan(span);
+    Delete(span);
+    ASSERT(Check());
+    return true;
+  } else {
+    // We could not allocate memory within "pagemap_"
+    // TODO: Once we can return memory to the system, return the new span
+    return false;
+  }
+}
+
+bool TCMalloc_PageHeap::Check() {
+  ASSERT(free_[0].normal.next == &free_[0].normal);
+  ASSERT(free_[0].returned.next == &free_[0].returned);
+  CheckList(&large_.normal, kMaxPages, 1000000000);
+  CheckList(&large_.returned, kMaxPages, 1000000000);
+  for (Length s = 1; s < kMaxPages; s++) {
+    CheckList(&free_[s].normal, s, s);
+    CheckList(&free_[s].returned, s, s);
+  }
+  return true;
+}
+
+#if ASSERT_DISABLED
+bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
+  return true;
+}
+#else
+bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
+  for (Span* s = list->next; s != list; s = s->next) {
+    CHECK_CONDITION(s->free);
+    CHECK_CONDITION(s->length >= min_pages);
+    CHECK_CONDITION(s->length <= max_pages);
+    CHECK_CONDITION(GetDescriptor(s->start) == s);
+    CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
+  }
+  return true;
+}
+#endif
+
+static void ReleaseFreeList(Span* list, Span* returned) {
+  // Walk backwards through list so that when we push these
+  // spans on the "returned" list, we preserve the order.
+  while (!DLL_IsEmpty(list)) {
+    Span* s = list->prev;
+    DLL_Remove(s);
+    DLL_Prepend(returned, s);
+    TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
+                           static_cast<size_t>(s->length << kPageShift));
+  }
+}
+
+void TCMalloc_PageHeap::ReleaseFreePages() {
+  for (Length s = 0; s < kMaxPages; s++) {
+    ReleaseFreeList(&free_[s].normal, &free_[s].returned);
+  }
+  ReleaseFreeList(&large_.normal, &large_.returned);
+  ASSERT(Check());
+}
+
+//-------------------------------------------------------------------
+// Free list
+//-------------------------------------------------------------------
+
+class TCMalloc_ThreadCache_FreeList {
+ private:
+  void*    list_;       // Linked list of nodes
+  uint16_t length_;     // Current length
+  uint16_t lowater_;    // Low water mark for list length
+
+ public:
+  void Init() {
+    list_ = NULL;
+    length_ = 0;
+    lowater_ = 0;
+  }
+
+  // Return current length of list
+  int length() const {
+    return length_;
+  }
+
+  // Is list empty?
+  bool empty() const {
+    return list_ == NULL;
+  }
+
+  // Low-water mark management
+  int lowwatermark() const { return lowater_; }
+  void clear_lowwatermark() { lowater_ = length_; }
+
+  ALWAYS_INLINE void Push(void* ptr) {
+    SLL_Push(&list_, ptr);
+    length_++;
+  }
+
+  void PushRange(int N, void *start, void *end) {
+    SLL_PushRange(&list_, start, end);
+    length_ = length_ + static_cast<uint16_t>(N);
+  }
+
+  void PopRange(int N, void **start, void **end) {
+    SLL_PopRange(&list_, N, start, end);
+    ASSERT(length_ >= N);
+    length_ = length_ - static_cast<uint16_t>(N);
+    if (length_ < lowater_) lowater_ = length_;
+  }
+
+  ALWAYS_INLINE void* Pop() {
+    ASSERT(list_ != NULL);
+    length_--;
+    if (length_ < lowater_) lowater_ = length_;
+    return SLL_Pop(&list_);
+  }
+
+#ifdef WTF_CHANGES
+  template <class Finder, class Reader>
+  void enumerateFreeObjects(Finder& finder, const Reader& reader)
+  {
+      for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
+          finder.visit(nextObject);
+  }
+#endif
+};
+
+//-------------------------------------------------------------------
+// Data kept per thread
+//-------------------------------------------------------------------
+
+class TCMalloc_ThreadCache {
+ private:
+  typedef TCMalloc_ThreadCache_FreeList FreeList;
+#if COMPILER(MSVC)
+  typedef DWORD ThreadIdentifier;
+#else
+  typedef pthread_t ThreadIdentifier;
+#endif
+
+  size_t        size_;                  // Combined size of data
+  ThreadIdentifier tid_;                // Which thread owns it
+  bool          in_setspecific_;           // Called pthread_setspecific?
+  FreeList      list_[kNumClasses];     // Array indexed by size-class
+
+  // We sample allocations, biased by the size of the allocation
+  uint32_t      rnd_;                   // Cheap random number generator
+  size_t        bytes_until_sample_;    // Bytes until we sample next
+
+  // Allocate a new heap. REQUIRES: pageheap_lock is held.
+  static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
+
+  // Use only as pthread thread-specific destructor function.
+  static void DestroyThreadCache(void* ptr);
+ public:
+  // All ThreadCache objects are kept in a linked list (for stats collection)
+  TCMalloc_ThreadCache* next_;
+  TCMalloc_ThreadCache* prev_;
+
+  void Init(ThreadIdentifier tid);
+  void Cleanup();
+
+  // Accessors (mostly just for printing stats)
+  int freelist_length(size_t cl) const { return list_[cl].length(); }
+
+  // Total byte size in cache
+  size_t Size() const { return size_; }
+
+  void* Allocate(size_t size);
+  void Deallocate(void* ptr, size_t size_class);
+
+  void FetchFromCentralCache(size_t cl, size_t allocationSize);
+  void ReleaseToCentralCache(size_t cl, int N);
+  void Scavenge();
+  void Print() const;
+
+  // Record allocation of "k" bytes.  Return true iff allocation
+  // should be sampled
+  bool SampleAllocation(size_t k);
+
+  // Pick next sampling point
+  void PickNextSample(size_t k);
+
+  static void                  InitModule();
+  static void                  InitTSD();
+  static TCMalloc_ThreadCache* GetThreadHeap();
+  static TCMalloc_ThreadCache* GetCache();
+  static TCMalloc_ThreadCache* GetCacheIfPresent();
+  static TCMalloc_ThreadCache* CreateCacheIfNecessary();
+  static void                  DeleteCache(TCMalloc_ThreadCache* heap);
+  static void                  BecomeIdle();
+  static void                  RecomputeThreadCacheSize();
+
+#ifdef WTF_CHANGES
+  template <class Finder, class Reader>
+  void enumerateFreeObjects(Finder& finder, const Reader& reader)
+  {
+      for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
+          list_[sizeClass].enumerateFreeObjects(finder, reader);
+  }
+#endif
+};
+
+//-------------------------------------------------------------------
+// Data kept per size-class in central cache
+//-------------------------------------------------------------------
+
+class TCMalloc_Central_FreeList {
+ public:
+  void Init(size_t cl);
+
+  // These methods all do internal locking.
+
+  // Insert the specified range into the central freelist.  N is the number of
+  // elements in the range.
+  void InsertRange(void *start, void *end, int N);
+
+  // Returns the actual number of fetched elements into N.
+  void RemoveRange(void **start, void **end, int *N);
+
+  // Returns the number of free objects in cache.
+  size_t length() {
+    SpinLockHolder h(&lock_);
+    return counter_;
+  }
+
+  // Returns the number of free objects in the transfer cache.
+  int tc_length() {
+    SpinLockHolder h(&lock_);
+    return used_slots_ * num_objects_to_move[size_class_];
+  }
+
+#ifdef WTF_CHANGES
+  template <class Finder, class Reader>
+  void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
+  {
+    for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
+      ASSERT(!span->objects);
+
+    ASSERT(!nonempty_.objects);
+    static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
+
+    Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
+    Span* remoteSpan = nonempty_.next;
+
+    for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) {
+      for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject)))
+        finder.visit(nextObject);
+    }
+  }
+#endif
+
+ private:
+  // REQUIRES: lock_ is held
+  // Remove object from cache and return.
+  // Return NULL if no free entries in cache.
+  void* FetchFromSpans();
+
+  // REQUIRES: lock_ is held
+  // Remove object from cache and return.  Fetches
+  // from pageheap if cache is empty.  Only returns
+  // NULL on allocation failure.
+  void* FetchFromSpansSafe();
+
+  // REQUIRES: lock_ is held
+  // Release a linked list of objects to spans.
+  // May temporarily release lock_.
+  void ReleaseListToSpans(void *start);
+
+  // REQUIRES: lock_ is held
+  // Release an object to spans.
+  // May temporarily release lock_.
+  void ReleaseToSpans(void* object);
+
+  // REQUIRES: lock_ is held
+  // Populate cache by fetching from the page heap.
+  // May temporarily release lock_.
+  void Populate();
+
+  // REQUIRES: lock is held.
+  // Tries to make room for a TCEntry.  If the cache is full it will try to
+  // expand it at the cost of some other cache size.  Return false if there is
+  // no space.
+  bool MakeCacheSpace();
+
+  // REQUIRES: lock_ for locked_size_class is held.
+  // Picks a "random" size class to steal TCEntry slot from.  In reality it
+  // just iterates over the sizeclasses but does so without taking a lock.
+  // Returns true on success.
+  // May temporarily lock a "random" size class.
+  static bool EvictRandomSizeClass(size_t locked_size_class, bool force);
+
+  // REQUIRES: lock_ is *not* held.
+  // Tries to shrink the Cache.  If force is true it will relase objects to
+  // spans if it allows it to shrink the cache.  Return false if it failed to
+  // shrink the cache.  Decrements cache_size_ on succeess.
+  // May temporarily take lock_.  If it takes lock_, the locked_size_class
+  // lock is released to the thread from holding two size class locks
+  // concurrently which could lead to a deadlock.
+  bool ShrinkCache(int locked_size_class, bool force);
+
+  // This lock protects all the data members.  cached_entries and cache_size_
+  // may be looked at without holding the lock.
+  SpinLock lock_;
+
+  // We keep linked lists of empty and non-empty spans.
+  size_t   size_class_;     // My size class
+  Span     empty_;          // Dummy header for list of empty spans
+  Span     nonempty_;       // Dummy header for list of non-empty spans
+  size_t   counter_;        // Number of free objects in cache entry
+
+  // Here we reserve space for TCEntry cache slots.  Since one size class can
+  // end up getting all the TCEntries quota in the system we just preallocate
+  // sufficient number of entries here.
+  TCEntry tc_slots_[kNumTransferEntries];
+
+  // Number of currently used cached entries in tc_slots_.  This variable is
+  // updated under a lock but can be read without one.
+  int32_t used_slots_;
+  // The current number of slots for this size class.  This is an
+  // adaptive value that is increased if there is lots of traffic
+  // on a given size class.
+  int32_t cache_size_;
+};
+
+// Pad each CentralCache object to multiple of 64 bytes
+class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
+ private:
+  char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
+};
+
+//-------------------------------------------------------------------
+// Global variables
+//-------------------------------------------------------------------
+
+// Central cache -- a collection of free-lists, one per size-class.
+// We have a separate lock per free-list to reduce contention.
+static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
+
+// Page-level allocator
+static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
+static AllocAlignmentInteger pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(AllocAlignmentInteger) - 1) / sizeof(AllocAlignmentInteger)];
+static bool phinited = false;
+
+// Avoid extra level of indirection by making "pageheap" be just an alias
+// of pageheap_memory.
+typedef union {
+    void* m_memory;
+    TCMalloc_PageHeap* m_pageHeap;
+} PageHeapUnion;
+
+static inline TCMalloc_PageHeap* getPageHeap()
+{
+    PageHeapUnion u = { &pageheap_memory[0] };
+    return u.m_pageHeap;
+}
+
+#define pageheap getPageHeap()
+
+#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
+
+#if !HAVE(DISPATCH_H)
+#if OS(WINDOWS)
+static void sleep(unsigned seconds)
+{
+    ::Sleep(seconds * 1000);
+}
+#endif
+
+void TCMalloc_PageHeap::scavengerThread()
+{
+#if HAVE(PTHREAD_SETNAME_NP)
+  pthread_setname_np("JavaScriptCore: FastMalloc scavenger");
+#endif
+
+  while (1) {
+      if (!shouldScavenge()) {
+          pthread_mutex_lock(&m_scavengeMutex);
+          m_scavengeThreadActive = false;
+          // Block until there are enough free committed pages to release back to the system.
+          pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
+          m_scavengeThreadActive = true;
+          pthread_mutex_unlock(&m_scavengeMutex);
+      }
+      sleep(kScavengeDelayInSeconds);
+      {
+          SpinLockHolder h(&pageheap_lock);
+          pageheap->scavenge();
+      }
+  }
+}
+
+#else
+
+void TCMalloc_PageHeap::periodicScavenge()
+{
+  {
+    SpinLockHolder h(&pageheap_lock);
+    pageheap->scavenge();
+  }
+
+  if (!shouldScavenge()) {
+    m_scavengingScheduled = false;
+    dispatch_suspend(m_scavengeTimer);
+  }
+}
+#endif // HAVE(DISPATCH_H)
+
+#endif
+
+// If TLS is available, we also store a copy
+// of the per-thread object in a __thread variable
+// since __thread variables are faster to read
+// than pthread_getspecific().  We still need
+// pthread_setspecific() because __thread
+// variables provide no way to run cleanup
+// code when a thread is destroyed.
+#ifdef HAVE_TLS
+static __thread TCMalloc_ThreadCache *threadlocal_heap;
+#endif
+// Thread-specific key.  Initialization here is somewhat tricky
+// because some Linux startup code invokes malloc() before it
+// is in a good enough state to handle pthread_keycreate().
+// Therefore, we use TSD keys only after tsd_inited is set to true.
+// Until then, we use a slow path to get the heap object.
+static bool tsd_inited = false;
+static pthread_key_t heap_key;
+#if COMPILER(MSVC)
+DWORD tlsIndex = TLS_OUT_OF_INDEXES;
+#endif
+
+static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
+{
+    // still do pthread_setspecific when using MSVC fast TLS to
+    // benefit from the delete callback.
+    pthread_setspecific(heap_key, heap);
+#if COMPILER(MSVC)
+    TlsSetValue(tlsIndex, heap);
+#endif
+}
+
+// Allocator for thread heaps
+static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
+
+// Linked list of heap objects.  Protected by pageheap_lock.
+static TCMalloc_ThreadCache* thread_heaps = NULL;
+static int thread_heap_count = 0;
+
+// Overall thread cache size.  Protected by pageheap_lock.
+static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
+
+// Global per-thread cache size.  Writes are protected by
+// pageheap_lock.  Reads are done without any locking, which should be
+// fine as long as size_t can be written atomically and we don't place
+// invariants between this variable and other pieces of state.
+static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
+
+//-------------------------------------------------------------------
+// Central cache implementation
+//-------------------------------------------------------------------
+
+void TCMalloc_Central_FreeList::Init(size_t cl) {
+  lock_.Init();
+  size_class_ = cl;
+  DLL_Init(&empty_);
+  DLL_Init(&nonempty_);
+  counter_ = 0;
+
+  cache_size_ = 1;
+  used_slots_ = 0;
+  ASSERT(cache_size_ <= kNumTransferEntries);
+}
+
+void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
+  while (start) {
+    void *next = SLL_Next(start);
+    ReleaseToSpans(start);
+    start = next;
+  }
+}
+
+ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
+  const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
+  Span* span = pageheap->GetDescriptor(p);
+  ASSERT(span != NULL);
+  ASSERT(span->refcount > 0);
+
+  // If span is empty, move it to non-empty list
+  if (span->objects == NULL) {
+    DLL_Remove(span);
+    DLL_Prepend(&nonempty_, span);
+    Event(span, 'N', 0);
+  }
+
+  // The following check is expensive, so it is disabled by default
+  if (false) {
+    // Check that object does not occur in list
+    unsigned got = 0;
+    for (void* p = span->objects; p != NULL; p = *((void**) p)) {
+      ASSERT(p != object);
+      got++;
+    }
+    ASSERT(got + span->refcount ==
+           (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
+  }
+
+  counter_++;
+  span->refcount--;
+  if (span->refcount == 0) {
+    Event(span, '#', 0);
+    counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
+    DLL_Remove(span);
+
+    // Release central list lock while operating on pageheap
+    lock_.Unlock();
+    {
+      SpinLockHolder h(&pageheap_lock);
+      pageheap->Delete(span);
+    }
+    lock_.Lock();
+  } else {
+    *(reinterpret_cast<void**>(object)) = span->objects;
+    span->objects = object;
+  }
+}
+
+ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
+    size_t locked_size_class, bool force) {
+  static int race_counter = 0;
+  int t = race_counter++;  // Updated without a lock, but who cares.
+  if (t >= static_cast<int>(kNumClasses)) {
+    while (t >= static_cast<int>(kNumClasses)) {
+      t -= kNumClasses;
+    }
+    race_counter = t;
+  }
+  ASSERT(t >= 0);
+  ASSERT(t < static_cast<int>(kNumClasses));
+  if (t == static_cast<int>(locked_size_class)) return false;
+  return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
+}
+
+bool TCMalloc_Central_FreeList::MakeCacheSpace() {
+  // Is there room in the cache?
+  if (used_slots_ < cache_size_) return true;
+  // Check if we can expand this cache?
+  if (cache_size_ == kNumTransferEntries) return false;
+  // Ok, we'll try to grab an entry from some other size class.
+  if (EvictRandomSizeClass(size_class_, false) ||
+      EvictRandomSizeClass(size_class_, true)) {
+    // Succeeded in evicting, we're going to make our cache larger.
+    cache_size_++;
+    return true;
+  }
+  return false;
+}
+
+
+namespace {
+class LockInverter {
+ private:
+  SpinLock *held_, *temp_;
+ public:
+  inline explicit LockInverter(SpinLock* held, SpinLock *temp)
+    : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
+  inline ~LockInverter() { temp_->Unlock(); held_->Lock();  }
+};
+}
+
+bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
+  // Start with a quick check without taking a lock.
+  if (cache_size_ == 0) return false;
+  // We don't evict from a full cache unless we are 'forcing'.
+  if (force == false && used_slots_ == cache_size_) return false;
+
+  // Grab lock, but first release the other lock held by this thread.  We use
+  // the lock inverter to ensure that we never hold two size class locks
+  // concurrently.  That can create a deadlock because there is no well
+  // defined nesting order.
+  LockInverter li(&central_cache[locked_size_class].lock_, &lock_);
+  ASSERT(used_slots_ <= cache_size_);
+  ASSERT(0 <= cache_size_);
+  if (cache_size_ == 0) return false;
+  if (used_slots_ == cache_size_) {
+    if (force == false) return false;
+    // ReleaseListToSpans releases the lock, so we have to make all the
+    // updates to the central list before calling it.
+    cache_size_--;
+    used_slots_--;
+    ReleaseListToSpans(tc_slots_[used_slots_].head);
+    return true;
+  }
+  cache_size_--;
+  return true;
+}
+
+void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
+  SpinLockHolder h(&lock_);
+  if (N == num_objects_to_move[size_class_] &&
+    MakeCacheSpace()) {
+    int slot = used_slots_++;
+    ASSERT(slot >=0);
+    ASSERT(slot < kNumTransferEntries);
+    TCEntry *entry = &tc_slots_[slot];
+    entry->head = start;
+    entry->tail = end;
+    return;
+  }
+  ReleaseListToSpans(start);
+}
+
+void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
+  int num = *N;
+  ASSERT(num > 0);
+
+  SpinLockHolder h(&lock_);
+  if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
+    int slot = --used_slots_;
+    ASSERT(slot >= 0);
+    TCEntry *entry = &tc_slots_[slot];
+    *start = entry->head;
+    *end = entry->tail;
+    return;
+  }
+
+  // TODO: Prefetch multiple TCEntries?
+  void *tail = FetchFromSpansSafe();
+  if (!tail) {
+    // We are completely out of memory.
+    *start = *end = NULL;
+    *N = 0;
+    return;
+  }
+
+  SLL_SetNext(tail, NULL);
+  void *head = tail;
+  int count = 1;
+  while (count < num) {
+    void *t = FetchFromSpans();
+    if (!t) break;
+    SLL_Push(&head, t);
+    count++;
+  }
+  *start = head;
+  *end = tail;
+  *N = count;
+}
+
+
+void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
+  void *t = FetchFromSpans();
+  if (!t) {
+    Populate();
+    t = FetchFromSpans();
+  }
+  return t;
+}
+
+void* TCMalloc_Central_FreeList::FetchFromSpans() {
+  if (DLL_IsEmpty(&nonempty_)) return NULL;
+  Span* span = nonempty_.next;
+
+  ASSERT(span->objects != NULL);
+  ASSERT_SPAN_COMMITTED(span);
+  span->refcount++;
+  void* result = span->objects;
+  span->objects = *(reinterpret_cast<void**>(result));
+  if (span->objects == NULL) {
+    // Move to empty list
+    DLL_Remove(span);
+    DLL_Prepend(&empty_, span);
+    Event(span, 'E', 0);
+  }
+  counter_--;
+  return result;
+}
+
+// Fetch memory from the system and add to the central cache freelist.
+ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
+  // Release central list lock while operating on pageheap
+  lock_.Unlock();
+  const size_t npages = class_to_pages[size_class_];
+
+  Span* span;
+  {
+    SpinLockHolder h(&pageheap_lock);
+    span = pageheap->New(npages);
+    if (span) pageheap->RegisterSizeClass(span, size_class_);
+  }
+  if (span == NULL) {
+    MESSAGE("allocation failed: %d\n", errno);
+    lock_.Lock();
+    return;
+  }
+  ASSERT_SPAN_COMMITTED(span);
+  ASSERT(span->length == npages);
+  // Cache sizeclass info eagerly.  Locking is not necessary.
+  // (Instead of being eager, we could just replace any stale info
+  // about this span, but that seems to be no better in practice.)
+  for (size_t i = 0; i < npages; i++) {
+    pageheap->CacheSizeClass(span->start + i, size_class_);
+  }
+
+  // Split the block into pieces and add to the free-list
+  // TODO: coloring of objects to avoid cache conflicts?
+  void** tail = &span->objects;
+  char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
+  char* limit = ptr + (npages << kPageShift);
+  const size_t size = ByteSizeForClass(size_class_);
+  int num = 0;
+  char* nptr;
+  while ((nptr = ptr + size) <= limit) {
+    *tail = ptr;
+    tail = reinterpret_cast<void**>(ptr);
+    ptr = nptr;
+    num++;
+  }
+  ASSERT(ptr <= limit);
+  *tail = NULL;
+  span->refcount = 0; // No sub-object in use yet
+
+  // Add span to list of non-empty spans
+  lock_.Lock();
+  DLL_Prepend(&nonempty_, span);
+  counter_ += num;
+}
+
+//-------------------------------------------------------------------
+// TCMalloc_ThreadCache implementation
+//-------------------------------------------------------------------
+
+inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
+  if (bytes_until_sample_ < k) {
+    PickNextSample(k);
+    return true;
+  } else {
+    bytes_until_sample_ -= k;
+    return false;
+  }
+}
+
+void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
+  size_ = 0;
+  next_ = NULL;
+  prev_ = NULL;
+  tid_  = tid;
+  in_setspecific_ = false;
+  for (size_t cl = 0; cl < kNumClasses; ++cl) {
+    list_[cl].Init();
+  }
+
+  // Initialize RNG -- run it for a bit to get to good values
+  bytes_until_sample_ = 0;
+  rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
+  for (int i = 0; i < 100; i++) {
+    PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
+  }
+}
+
+void TCMalloc_ThreadCache::Cleanup() {
+  // Put unused memory back into central cache
+  for (size_t cl = 0; cl < kNumClasses; ++cl) {
+    if (list_[cl].length() > 0) {
+      ReleaseToCentralCache(cl, list_[cl].length());
+    }
+  }
+}
+
+ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
+  ASSERT(size <= kMaxSize);
+  const size_t cl = SizeClass(size);
+  FreeList* list = &list_[cl];
+  size_t allocationSize = ByteSizeForClass(cl);
+  if (list->empty()) {
+    FetchFromCentralCache(cl, allocationSize);
+    if (list->empty()) return NULL;
+  }
+  size_ -= allocationSize;
+  return list->Pop();
+}
+
+inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
+  size_ += ByteSizeForClass(cl);
+  FreeList* list = &list_[cl];
+  list->Push(ptr);
+  // If enough data is free, put back into central cache
+  if (list->length() > kMaxFreeListLength) {
+    ReleaseToCentralCache(cl, num_objects_to_move[cl]);
+  }
+  if (size_ >= per_thread_cache_size) Scavenge();
+}
+
+// Remove some objects of class "cl" from central cache and add to thread heap
+ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
+  int fetch_count = num_objects_to_move[cl];
+  void *start, *end;
+  central_cache[cl].RemoveRange(&start, &end, &fetch_count);
+  list_[cl].PushRange(fetch_count, start, end);
+  size_ += allocationSize * fetch_count;
+}
+
+// Remove some objects of class "cl" from thread heap and add to central cache
+inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
+  ASSERT(N > 0);
+  FreeList* src = &list_[cl];
+  if (N > src->length()) N = src->length();
+  size_ -= N*ByteSizeForClass(cl);
+
+  // We return prepackaged chains of the correct size to the central cache.
+  // TODO: Use the same format internally in the thread caches?
+  int batch_size = num_objects_to_move[cl];
+  while (N > batch_size) {
+    void *tail, *head;
+    src->PopRange(batch_size, &head, &tail);
+    central_cache[cl].InsertRange(head, tail, batch_size);
+    N -= batch_size;
+  }
+  void *tail, *head;
+  src->PopRange(N, &head, &tail);
+  central_cache[cl].InsertRange(head, tail, N);
+}
+
+// Release idle memory to the central cache
+inline void TCMalloc_ThreadCache::Scavenge() {
+  // If the low-water mark for the free list is L, it means we would
+  // not have had to allocate anything from the central cache even if
+  // we had reduced the free list size by L.  We aim to get closer to
+  // that situation by dropping L/2 nodes from the free list.  This
+  // may not release much memory, but if so we will call scavenge again
+  // pretty soon and the low-water marks will be high on that call.
+  //int64 start = CycleClock::Now();
+
+  for (size_t cl = 0; cl < kNumClasses; cl++) {
+    FreeList* list = &list_[cl];
+    const int lowmark = list->lowwatermark();
+    if (lowmark > 0) {
+      const int drop = (lowmark > 1) ? lowmark/2 : 1;
+      ReleaseToCentralCache(cl, drop);
+    }
+    list->clear_lowwatermark();
+  }
+
+  //int64 finish = CycleClock::Now();
+  //CycleTimer ct;
+  //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
+}
+
+void TCMalloc_ThreadCache::PickNextSample(size_t k) {
+  // Make next "random" number
+  // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
+  static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
+  uint32_t r = rnd_;
+  rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
+
+  // Next point is "rnd_ % (sample_period)".  I.e., average
+  // increment is "sample_period/2".
+  const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
+  static int last_flag_value = -1;
+
+  if (flag_value != last_flag_value) {
+    SpinLockHolder h(&sample_period_lock);
+    int i;
+    for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
+      if (primes_list[i] >= flag_value) {
+        break;
+      }
+    }
+    sample_period = primes_list[i];
+    last_flag_value = flag_value;
+  }
+
+  bytes_until_sample_ += rnd_ % sample_period;
+
+  if (k > (static_cast<size_t>(-1) >> 2)) {
+    // If the user has asked for a huge allocation then it is possible
+    // for the code below to loop infinitely.  Just return (note that
+    // this throws off the sampling accuracy somewhat, but a user who
+    // is allocating more than 1G of memory at a time can live with a
+    // minor inaccuracy in profiling of small allocations, and also
+    // would rather not wait for the loop below to terminate).
+    return;
+  }
+
+  while (bytes_until_sample_ < k) {
+    // Increase bytes_until_sample_ by enough average sampling periods
+    // (sample_period >> 1) to allow us to sample past the current
+    // allocation.
+    bytes_until_sample_ += (sample_period >> 1);
+  }
+
+  bytes_until_sample_ -= k;
+}
+
+void TCMalloc_ThreadCache::InitModule() {
+  // There is a slight potential race here because of double-checked
+  // locking idiom.  However, as long as the program does a small
+  // allocation before switching to multi-threaded mode, we will be
+  // fine.  We increase the chances of doing such a small allocation
+  // by doing one in the constructor of the module_enter_exit_hook
+  // object declared below.
+  SpinLockHolder h(&pageheap_lock);
+  if (!phinited) {
+#ifdef WTF_CHANGES
+    InitTSD();
+#endif
+    InitSizeClasses();
+    threadheap_allocator.Init();
+    span_allocator.Init();
+    span_allocator.New(); // Reduce cache conflicts
+    span_allocator.New(); // Reduce cache conflicts
+    stacktrace_allocator.Init();
+    DLL_Init(&sampled_objects);
+    for (size_t i = 0; i < kNumClasses; ++i) {
+      central_cache[i].Init(i);
+    }
+    pageheap->init();
+    phinited = 1;
+#if defined(WTF_CHANGES) && OS(DARWIN)
+    FastMallocZone::init();
+#endif
+  }
+}
+
+inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
+  // Create the heap and add it to the linked list
+  TCMalloc_ThreadCache *heap = threadheap_allocator.New();
+  heap->Init(tid);
+  heap->next_ = thread_heaps;
+  heap->prev_ = NULL;
+  if (thread_heaps != NULL) thread_heaps->prev_ = heap;
+  thread_heaps = heap;
+  thread_heap_count++;
+  RecomputeThreadCacheSize();
+  return heap;
+}
+
+inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
+#ifdef HAVE_TLS
+    // __thread is faster, but only when the kernel supports it
+  if (KernelSupportsTLS())
+    return threadlocal_heap;
+#elif COMPILER(MSVC)
+    return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
+#else
+    return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
+#endif
+}
+
+inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
+  TCMalloc_ThreadCache* ptr = NULL;
+  if (!tsd_inited) {
+    InitModule();
+  } else {
+    ptr = GetThreadHeap();
+  }
+  if (ptr == NULL) ptr = CreateCacheIfNecessary();
+  return ptr;
+}
+
+// In deletion paths, we do not try to create a thread-cache.  This is
+// because we may be in the thread destruction code and may have
+// already cleaned up the cache for this thread.
+inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
+  if (!tsd_inited) return NULL;
+  void* const p = GetThreadHeap();
+  return reinterpret_cast<TCMalloc_ThreadCache*>(p);
+}
+
+void TCMalloc_ThreadCache::InitTSD() {
+  ASSERT(!tsd_inited);
+  pthread_key_create(&heap_key, DestroyThreadCache);
+#if COMPILER(MSVC)
+  tlsIndex = TlsAlloc();
+#endif
+  tsd_inited = true;
+    
+#if !COMPILER(MSVC)
+  // We may have used a fake pthread_t for the main thread.  Fix it.
+  pthread_t zero;
+  memset(&zero, 0, sizeof(zero));
+#endif
+#ifndef WTF_CHANGES
+  SpinLockHolder h(&pageheap_lock);
+#else
+  ASSERT(pageheap_lock.IsHeld());
+#endif
+  for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
+#if COMPILER(MSVC)
+    if (h->tid_ == 0) {
+      h->tid_ = GetCurrentThreadId();
+    }
+#else
+    if (pthread_equal(h->tid_, zero)) {
+      h->tid_ = pthread_self();
+    }
+#endif
+  }
+}
+
+TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
+  // Initialize per-thread data if necessary
+  TCMalloc_ThreadCache* heap = NULL;
+  {
+    SpinLockHolder h(&pageheap_lock);
+
+#if COMPILER(MSVC)
+    DWORD me;
+    if (!tsd_inited) {
+      me = 0;
+    } else {
+      me = GetCurrentThreadId();
+    }
+#else
+    // Early on in glibc's life, we cannot even call pthread_self()
+    pthread_t me;
+    if (!tsd_inited) {
+      memset(&me, 0, sizeof(me));
+    } else {
+      me = pthread_self();
+    }
+#endif
+
+    // This may be a recursive malloc call from pthread_setspecific()
+    // In that case, the heap for this thread has already been created
+    // and added to the linked list.  So we search for that first.
+    for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
+#if COMPILER(MSVC)
+      if (h->tid_ == me) {
+#else
+      if (pthread_equal(h->tid_, me)) {
+#endif
+        heap = h;
+        break;
+      }
+    }
+
+    if (heap == NULL) heap = NewHeap(me);
+  }
+
+  // We call pthread_setspecific() outside the lock because it may
+  // call malloc() recursively.  The recursive call will never get
+  // here again because it will find the already allocated heap in the
+  // linked list of heaps.
+  if (!heap->in_setspecific_ && tsd_inited) {
+    heap->in_setspecific_ = true;
+    setThreadHeap(heap);
+  }
+  return heap;
+}
+
+void TCMalloc_ThreadCache::BecomeIdle() {
+  if (!tsd_inited) return;              // No caches yet
+  TCMalloc_ThreadCache* heap = GetThreadHeap();
+  if (heap == NULL) return;             // No thread cache to remove
+  if (heap->in_setspecific_) return;    // Do not disturb the active caller
+
+  heap->in_setspecific_ = true;
+  pthread_setspecific(heap_key, NULL);
+#ifdef HAVE_TLS
+  // Also update the copy in __thread
+  threadlocal_heap = NULL;
+#endif
+  heap->in_setspecific_ = false;
+  if (GetThreadHeap() == heap) {
+    // Somehow heap got reinstated by a recursive call to malloc
+    // from pthread_setspecific.  We give up in this case.
+    return;
+  }
+
+  // We can now get rid of the heap
+  DeleteCache(heap);
+}
+
+void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
+  // Note that "ptr" cannot be NULL since pthread promises not
+  // to invoke the destructor on NULL values, but for safety,
+  // we check anyway.
+  if (ptr == NULL) return;
+#ifdef HAVE_TLS
+  // Prevent fast path of GetThreadHeap() from returning heap.
+  threadlocal_heap = NULL;
+#endif
+  DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
+}
+
+void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
+  // Remove all memory from heap
+  heap->Cleanup();
+
+  // Remove from linked list
+  SpinLockHolder h(&pageheap_lock);
+  if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
+  if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
+  if (thread_heaps == heap) thread_heaps = heap->next_;
+  thread_heap_count--;
+  RecomputeThreadCacheSize();
+
+  threadheap_allocator.Delete(heap);
+}
+
+void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
+  // Divide available space across threads
+  int n = thread_heap_count > 0 ? thread_heap_count : 1;
+  size_t space = overall_thread_cache_size / n;
+
+  // Limit to allowed range
+  if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
+  if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
+
+  per_thread_cache_size = space;
+}
+
+void TCMalloc_ThreadCache::Print() const {
+  for (size_t cl = 0; cl < kNumClasses; ++cl) {
+    MESSAGE("      %5" PRIuS " : %4d len; %4d lo\n",
+            ByteSizeForClass(cl),
+            list_[cl].length(),
+            list_[cl].lowwatermark());
+  }
+}
+
+// Extract interesting stats
+struct TCMallocStats {
+  uint64_t system_bytes;        // Bytes alloced from system
+  uint64_t thread_bytes;        // Bytes in thread caches
+  uint64_t central_bytes;       // Bytes in central cache
+  uint64_t transfer_bytes;      // Bytes in central transfer cache
+  uint64_t pageheap_bytes;      // Bytes in page heap
+  uint64_t metadata_bytes;      // Bytes alloced for metadata
+};
+
+#ifndef WTF_CHANGES
+// Get stats into "r".  Also get per-size-class counts if class_count != NULL
+static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
+  r->central_bytes = 0;
+  r->transfer_bytes = 0;
+  for (int cl = 0; cl < kNumClasses; ++cl) {
+    const int length = central_cache[cl].length();
+    const int tc_length = central_cache[cl].tc_length();
+    r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
+    r->transfer_bytes +=
+      static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
+    if (class_count) class_count[cl] = length + tc_length;
+  }
+
+  // Add stats from per-thread heaps
+  r->thread_bytes = 0;
+  { // scope
+    SpinLockHolder h(&pageheap_lock);
+    for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
+      r->thread_bytes += h->Size();
+      if (class_count) {
+        for (size_t cl = 0; cl < kNumClasses; ++cl) {
+          class_count[cl] += h->freelist_length(cl);
+        }
+      }
+    }
+  }
+
+  { //scope
+    SpinLockHolder h(&pageheap_lock);
+    r->system_bytes = pageheap->SystemBytes();
+    r->metadata_bytes = metadata_system_bytes;
+    r->pageheap_bytes = pageheap->FreeBytes();
+  }
+}
+#endif
+
+#ifndef WTF_CHANGES
+// WRITE stats to "out"
+static void DumpStats(TCMalloc_Printer* out, int level) {
+  TCMallocStats stats;
+  uint64_t class_count[kNumClasses];
+  ExtractStats(&stats, (level >= 2 ? class_count : NULL));
+
+  if (level >= 2) {
+    out->printf("------------------------------------------------\n");
+    uint64_t cumulative = 0;
+    for (int cl = 0; cl < kNumClasses; ++cl) {
+      if (class_count[cl] > 0) {
+        uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
+        cumulative += class_bytes;
+        out->printf("class %3d [ %8" PRIuS " bytes ] : "
+                "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
+                cl, ByteSizeForClass(cl),
+                class_count[cl],
+                class_bytes / 1048576.0,
+                cumulative / 1048576.0);
+      }
+    }
+
+    SpinLockHolder h(&pageheap_lock);
+    pageheap->Dump(out);
+  }
+
+  const uint64_t bytes_in_use = stats.system_bytes
+                                - stats.pageheap_bytes
+                                - stats.central_bytes
+                                - stats.transfer_bytes
+                                - stats.thread_bytes;
+
+  out->printf("------------------------------------------------\n"
+              "MALLOC: %12" PRIu64 " Heap size\n"
+              "MALLOC: %12" PRIu64 " Bytes in use by application\n"
+              "MALLOC: %12" PRIu64 " Bytes free in page heap\n"
+              "MALLOC: %12" PRIu64 " Bytes free in central cache\n"
+              "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
+              "MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
+              "MALLOC: %12" PRIu64 " Spans in use\n"
+              "MALLOC: %12" PRIu64 " Thread heaps in use\n"
+              "MALLOC: %12" PRIu64 " Metadata allocated\n"
+              "------------------------------------------------\n",
+              stats.system_bytes,
+              bytes_in_use,
+              stats.pageheap_bytes,
+              stats.central_bytes,
+              stats.transfer_bytes,
+              stats.thread_bytes,
+              uint64_t(span_allocator.inuse()),
+              uint64_t(threadheap_allocator.inuse()),
+              stats.metadata_bytes);
+}
+
+static void PrintStats(int level) {
+  const int kBufferSize = 16 << 10;
+  char* buffer = new char[kBufferSize];
+  TCMalloc_Printer printer(buffer, kBufferSize);
+  DumpStats(&printer, level);
+  write(STDERR_FILENO, buffer, strlen(buffer));
+  delete[] buffer;
+}
+
+static void** DumpStackTraces() {
+  // Count how much space we need
+  int needed_slots = 0;
+  {
+    SpinLockHolder h(&pageheap_lock);
+    for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
+      StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
+      needed_slots += 3 + stack->depth;
+    }
+    needed_slots += 100;            // Slop in case sample grows
+    needed_slots += needed_slots/8; // An extra 12.5% slop
+  }
+
+  void** result = new void*[needed_slots];
+  if (result == NULL) {
+    MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
+            needed_slots);
+    return NULL;
+  }
+
+  SpinLockHolder h(&pageheap_lock);
+  int used_slots = 0;
+  for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
+    ASSERT(used_slots < needed_slots);  // Need to leave room for terminator
+    StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
+    if (used_slots + 3 + stack->depth >= needed_slots) {
+      // No more room
+      break;
+    }
+
+    result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
+    result[used_slots+1] = reinterpret_cast<void*>(stack->size);
+    result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
+    for (int d = 0; d < stack->depth; d++) {
+      result[used_slots+3+d] = stack->stack[d];
+    }
+    used_slots += 3 + stack->depth;
+  }
+  result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
+  return result;
+}
+#endif
+
+#ifndef WTF_CHANGES
+
+// TCMalloc's support for extra malloc interfaces
+class TCMallocImplementation : public MallocExtension {
+ public:
+  virtual void GetStats(char* buffer, int buffer_length) {
+    ASSERT(buffer_length > 0);
+    TCMalloc_Printer printer(buffer, buffer_length);
+
+    // Print level one stats unless lots of space is available
+    if (buffer_length < 10000) {
+      DumpStats(&printer, 1);
+    } else {
+      DumpStats(&printer, 2);
+    }
+  }
+
+  virtual void** ReadStackTraces() {
+    return DumpStackTraces();
+  }
+
+  virtual bool GetNumericProperty(const char* name, size_t* value) {
+    ASSERT(name != NULL);
+
+    if (strcmp(name, "generic.current_allocated_bytes") == 0) {
+      TCMallocStats stats;
+      ExtractStats(&stats, NULL);
+      *value = stats.system_bytes
+               - stats.thread_bytes
+               - stats.central_bytes
+               - stats.pageheap_bytes;
+      return true;
+    }
+
+    if (strcmp(name, "generic.heap_size") == 0) {
+      TCMallocStats stats;
+      ExtractStats(&stats, NULL);
+      *value = stats.system_bytes;
+      return true;
+    }
+
+    if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
+      // We assume that bytes in the page heap are not fragmented too
+      // badly, and are therefore available for allocation.
+      SpinLockHolder l(&pageheap_lock);
+      *value = pageheap->FreeBytes();
+      return true;
+    }
+
+    if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
+      SpinLockHolder l(&pageheap_lock);
+      *value = overall_thread_cache_size;
+      return true;
+    }
+
+    if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
+      TCMallocStats stats;
+      ExtractStats(&stats, NULL);
+      *value = stats.thread_bytes;
+      return true;
+    }
+
+    return false;
+  }
+
+  virtual bool SetNumericProperty(const char* name, size_t value) {
+    ASSERT(name != NULL);
+
+    if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
+      // Clip the value to a reasonable range
+      if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
+      if (value > (1<<30)) value = (1<<30);     // Limit to 1GB
+
+      SpinLockHolder l(&pageheap_lock);
+      overall_thread_cache_size = static_cast<size_t>(value);
+      TCMalloc_ThreadCache::RecomputeThreadCacheSize();
+      return true;
+    }
+
+    return false;
+  }
+
+  virtual void MarkThreadIdle() {
+    TCMalloc_ThreadCache::BecomeIdle();
+  }
+
+  virtual void ReleaseFreeMemory() {
+    SpinLockHolder h(&pageheap_lock);
+    pageheap->ReleaseFreePages();
+  }
+};
+#endif
+
+// The constructor allocates an object to ensure that initialization
+// runs before main(), and therefore we do not have a chance to become
+// multi-threaded before initialization.  We also create the TSD key
+// here.  Presumably by the time this constructor runs, glibc is in
+// good enough shape to handle pthread_key_create().
+//
+// The constructor also takes the opportunity to tell STL to use
+// tcmalloc.  We want to do this early, before construct time, so
+// all user STL allocations go through tcmalloc (which works really
+// well for STL).
+//
+// The destructor prints stats when the program exits.
+class TCMallocGuard {
+ public:
+
+  TCMallocGuard() {
+#ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
+    // Check whether the kernel also supports TLS (needs to happen at runtime)
+    CheckIfKernelSupportsTLS();
+#endif
+#ifndef WTF_CHANGES
+#ifdef WIN32                    // patch the windows VirtualAlloc, etc.
+    PatchWindowsFunctions();    // defined in windows/patch_functions.cc
+#endif
+#endif
+    free(malloc(1));
+    TCMalloc_ThreadCache::InitTSD();
+    free(malloc(1));
+#ifndef WTF_CHANGES
+    MallocExtension::Register(new TCMallocImplementation);
+#endif
+  }
+
+#ifndef WTF_CHANGES
+  ~TCMallocGuard() {
+    const char* env = getenv("MALLOCSTATS");
+    if (env != NULL) {
+      int level = atoi(env);
+      if (level < 1) level = 1;
+      PrintStats(level);
+    }
+#ifdef WIN32
+    UnpatchWindowsFunctions();
+#endif
+  }
+#endif
+};
+
+#ifndef WTF_CHANGES
+static TCMallocGuard module_enter_exit_hook;
+#endif
+
+
+//-------------------------------------------------------------------
+// Helpers for the exported routines below
+//-------------------------------------------------------------------
+
+#ifndef WTF_CHANGES
+
+static Span* DoSampledAllocation(size_t size) {
+
+  // Grab the stack trace outside the heap lock
+  StackTrace tmp;
+  tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
+  tmp.size = size;
+
+  SpinLockHolder h(&pageheap_lock);
+  // Allocate span
+  Span *span = pageheap->New(pages(size == 0 ? 1 : size));
+  if (span == NULL) {
+    return NULL;
+  }
+
+  // Allocate stack trace
+  StackTrace *stack = stacktrace_allocator.New();
+  if (stack == NULL) {
+    // Sampling failed because of lack of memory
+    return span;
+  }
+
+  *stack = tmp;
+  span->sample = 1;
+  span->objects = stack;
+  DLL_Prepend(&sampled_objects, span);
+
+  return span;
+}
+#endif
+
+static inline bool CheckCachedSizeClass(void *ptr) {
+  PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+  size_t cached_value = pageheap->GetSizeClassIfCached(p);
+  return cached_value == 0 ||
+      cached_value == pageheap->GetDescriptor(p)->sizeclass;
+}
+
+static inline void* CheckedMallocResult(void *result)
+{
+  ASSERT(result == 0 || CheckCachedSizeClass(result));
+  return result;
+}
+
+static inline void* SpanToMallocResult(Span *span) {
+  ASSERT_SPAN_COMMITTED(span);
+  pageheap->CacheSizeClass(span->start, 0);
+  return
+      CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
+}
+
+#ifdef WTF_CHANGES
+template <bool crashOnFailure>
+#endif
+static ALWAYS_INLINE void* do_malloc(size_t size) {
+  void* ret = NULL;
+
+#ifdef WTF_CHANGES
+    ASSERT(!isForbidden());
+#endif
+
+  // The following call forces module initialization
+  TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
+#ifndef WTF_CHANGES
+  if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
+    Span* span = DoSampledAllocation(size);
+    if (span != NULL) {
+      ret = SpanToMallocResult(span);
+    }
+  } else
+#endif
+  if (size > kMaxSize) {
+    // Use page-level allocator
+    SpinLockHolder h(&pageheap_lock);
+    Span* span = pageheap->New(pages(size));
+    if (span != NULL) {
+      ret = SpanToMallocResult(span);
+    }
+  } else {
+    // The common case, and also the simplest.  This just pops the
+    // size-appropriate freelist, afer replenishing it if it's empty.
+    ret = CheckedMallocResult(heap->Allocate(size));
+  }
+  if (!ret) {
+#ifdef WTF_CHANGES
+    if (crashOnFailure) // This branch should be optimized out by the compiler.
+        CRASH();
+#else
+    errno = ENOMEM;
+#endif
+  }
+  return ret;
+}
+
+static ALWAYS_INLINE void do_free(void* ptr) {
+  if (ptr == NULL) return;
+  ASSERT(pageheap != NULL);  // Should not call free() before malloc()
+  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+  Span* span = NULL;
+  size_t cl = pageheap->GetSizeClassIfCached(p);
+
+  if (cl == 0) {
+    span = pageheap->GetDescriptor(p);
+    cl = span->sizeclass;
+    pageheap->CacheSizeClass(p, cl);
+  }
+  if (cl != 0) {
+#ifndef NO_TCMALLOC_SAMPLES
+    ASSERT(!pageheap->GetDescriptor(p)->sample);
+#endif
+    TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
+    if (heap != NULL) {
+      heap->Deallocate(ptr, cl);
+    } else {
+      // Delete directly into central cache
+      SLL_SetNext(ptr, NULL);
+      central_cache[cl].InsertRange(ptr, ptr, 1);
+    }
+  } else {
+    SpinLockHolder h(&pageheap_lock);
+    ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
+    ASSERT(span != NULL && span->start == p);
+#ifndef NO_TCMALLOC_SAMPLES
+    if (span->sample) {
+      DLL_Remove(span);
+      stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
+      span->objects = NULL;
+    }
+#endif
+    pageheap->Delete(span);
+  }
+}
+
+#ifndef WTF_CHANGES
+// For use by exported routines below that want specific alignments
+//
+// Note: this code can be slow, and can significantly fragment memory.
+// The expectation is that memalign/posix_memalign/valloc/pvalloc will
+// not be invoked very often.  This requirement simplifies our
+// implementation and allows us to tune for expected allocation
+// patterns.
+static void* do_memalign(size_t align, size_t size) {
+  ASSERT((align & (align - 1)) == 0);
+  ASSERT(align > 0);
+  if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
+
+  // Allocate at least one byte to avoid boundary conditions below
+  if (size == 0) size = 1;
+
+  if (size <= kMaxSize && align < kPageSize) {
+    // Search through acceptable size classes looking for one with
+    // enough alignment.  This depends on the fact that
+    // InitSizeClasses() currently produces several size classes that
+    // are aligned at powers of two.  We will waste time and space if
+    // we miss in the size class array, but that is deemed acceptable
+    // since memalign() should be used rarely.
+    size_t cl = SizeClass(size);
+    while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
+      cl++;
+    }
+    if (cl < kNumClasses) {
+      TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
+      return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
+    }
+  }
+
+  // We will allocate directly from the page heap
+  SpinLockHolder h(&pageheap_lock);
+
+  if (align <= kPageSize) {
+    // Any page-level allocation will be fine
+    // TODO: We could put the rest of this page in the appropriate
+    // TODO: cache but it does not seem worth it.
+    Span* span = pageheap->New(pages(size));
+    return span == NULL ? NULL : SpanToMallocResult(span);
+  }
+
+  // Allocate extra pages and carve off an aligned portion
+  const Length alloc = pages(size + align);
+  Span* span = pageheap->New(alloc);
+  if (span == NULL) return NULL;
+
+  // Skip starting portion so that we end up aligned
+  Length skip = 0;
+  while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
+    skip++;
+  }
+  ASSERT(skip < alloc);
+  if (skip > 0) {
+    Span* rest = pageheap->Split(span, skip);
+    pageheap->Delete(span);
+    span = rest;
+  }
+
+  // Skip trailing portion that we do not need to return
+  const Length needed = pages(size);
+  ASSERT(span->length >= needed);
+  if (span->length > needed) {
+    Span* trailer = pageheap->Split(span, needed);
+    pageheap->Delete(trailer);
+  }
+  return SpanToMallocResult(span);
+}
+#endif
+
+// Helpers for use by exported routines below:
+
+#ifndef WTF_CHANGES
+static inline void do_malloc_stats() {
+  PrintStats(1);
+}
+#endif
+
+static inline int do_mallopt(int, int) {
+  return 1;     // Indicates error
+}
+
+#ifdef HAVE_STRUCT_MALLINFO  // mallinfo isn't defined on freebsd, for instance
+static inline struct mallinfo do_mallinfo() {
+  TCMallocStats stats;
+  ExtractStats(&stats, NULL);
+
+  // Just some of the fields are filled in.
+  struct mallinfo info;
+  memset(&info, 0, sizeof(info));
+
+  // Unfortunately, the struct contains "int" field, so some of the
+  // size values will be truncated.
+  info.arena     = static_cast<int>(stats.system_bytes);
+  info.fsmblks   = static_cast<int>(stats.thread_bytes
+                                    + stats.central_bytes
+                                    + stats.transfer_bytes);
+  info.fordblks  = static_cast<int>(stats.pageheap_bytes);
+  info.uordblks  = static_cast<int>(stats.system_bytes
+                                    - stats.thread_bytes
+                                    - stats.central_bytes
+                                    - stats.transfer_bytes
+                                    - stats.pageheap_bytes);
+
+  return info;
+}
+#endif
+
+//-------------------------------------------------------------------
+// Exported routines
+//-------------------------------------------------------------------
+
+// CAVEAT: The code structure below ensures that MallocHook methods are always
+//         called from the stack frame of the invoked allocation function.
+//         heap-checker.cc depends on this to start a stack trace from
+//         the call to the (de)allocation function.
+
+#ifndef WTF_CHANGES
+extern "C" 
+#else
+#define do_malloc do_malloc<crashOnFailure>
+
+template <bool crashOnFailure>
+void* malloc(size_t);
+
+void* fastMalloc(size_t size)
+{
+    return malloc<true>(size);
+}
+
+TryMallocReturnValue tryFastMalloc(size_t size)
+{
+    return malloc<false>(size);
+}
+
+template <bool crashOnFailure>
+ALWAYS_INLINE
+#endif
+void* malloc(size_t size) {
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size)  // If overflow would occur...
+        return 0;
+    size += sizeof(AllocAlignmentInteger);
+    void* result = do_malloc(size);
+    if (!result)
+        return 0;
+
+    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
+    result = static_cast<AllocAlignmentInteger*>(result) + 1;
+#else
+    void* result = do_malloc(size);
+#endif
+
+#ifndef WTF_CHANGES
+  MallocHook::InvokeNewHook(result, size);
+#endif
+  return result;
+}
+
+#ifndef WTF_CHANGES
+extern "C" 
+#endif
+void free(void* ptr) {
+#ifndef WTF_CHANGES
+  MallocHook::InvokeDeleteHook(ptr);
+#endif
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    if (!ptr)
+        return;
+
+    AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr);
+    if (*header != Internal::AllocTypeMalloc)
+        Internal::fastMallocMatchFailed(ptr);
+    do_free(header);
+#else
+    do_free(ptr);
+#endif
+}
+
+#ifndef WTF_CHANGES
+extern "C" 
+#else
+template <bool crashOnFailure>
+void* calloc(size_t, size_t);
+
+void* fastCalloc(size_t n, size_t elem_size)
+{
+    return calloc<true>(n, elem_size);
+}
+
+TryMallocReturnValue tryFastCalloc(size_t n, size_t elem_size)
+{
+    return calloc<false>(n, elem_size);
+}
+
+template <bool crashOnFailure>
+ALWAYS_INLINE
+#endif
+void* calloc(size_t n, size_t elem_size) {
+  size_t totalBytes = n * elem_size;
+    
+  // Protect against overflow
+  if (n > 1 && elem_size && (totalBytes / elem_size) != n)
+    return 0;
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes)  // If overflow would occur...
+        return 0;
+
+    totalBytes += sizeof(AllocAlignmentInteger);
+    void* result = do_malloc(totalBytes);
+    if (!result)
+        return 0;
+
+    memset(result, 0, totalBytes);
+    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
+    result = static_cast<AllocAlignmentInteger*>(result) + 1;
+#else
+    void* result = do_malloc(totalBytes);
+    if (result != NULL) {
+        memset(result, 0, totalBytes);
+    }
+#endif
+
+#ifndef WTF_CHANGES
+  MallocHook::InvokeNewHook(result, totalBytes);
+#endif
+  return result;
+}
+
+// Since cfree isn't used anywhere, we don't compile it in.
+#ifndef WTF_CHANGES
+#ifndef WTF_CHANGES
+extern "C" 
+#endif
+void cfree(void* ptr) {
+#ifndef WTF_CHANGES
+    MallocHook::InvokeDeleteHook(ptr);
+#endif
+  do_free(ptr);
+}
+#endif
+
+#ifndef WTF_CHANGES
+extern "C" 
+#else
+template <bool crashOnFailure>
+void* realloc(void*, size_t);
+
+void* fastRealloc(void* old_ptr, size_t new_size)
+{
+    return realloc<true>(old_ptr, new_size);
+}
+
+TryMallocReturnValue tryFastRealloc(void* old_ptr, size_t new_size)
+{
+    return realloc<false>(old_ptr, new_size);
+}
+
+template <bool crashOnFailure>
+ALWAYS_INLINE
+#endif
+void* realloc(void* old_ptr, size_t new_size) {
+  if (old_ptr == NULL) {
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    void* result = malloc(new_size);
+#else
+    void* result = do_malloc(new_size);
+#ifndef WTF_CHANGES
+    MallocHook::InvokeNewHook(result, new_size);
+#endif
+#endif
+    return result;
+  }
+  if (new_size == 0) {
+#ifndef WTF_CHANGES
+    MallocHook::InvokeDeleteHook(old_ptr);
+#endif
+    free(old_ptr);
+    return NULL;
+  }
+
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size)  // If overflow would occur...
+        return 0;
+    new_size += sizeof(AllocAlignmentInteger);
+    AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr);
+    if (*header != Internal::AllocTypeMalloc)
+        Internal::fastMallocMatchFailed(old_ptr);
+    old_ptr = header;
+#endif
+
+  // Get the size of the old entry
+  const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
+  size_t cl = pageheap->GetSizeClassIfCached(p);
+  Span *span = NULL;
+  size_t old_size;
+  if (cl == 0) {
+    span = pageheap->GetDescriptor(p);
+    cl = span->sizeclass;
+    pageheap->CacheSizeClass(p, cl);
+  }
+  if (cl != 0) {
+    old_size = ByteSizeForClass(cl);
+  } else {
+    ASSERT(span != NULL);
+    old_size = span->length << kPageShift;
+  }
+
+  // Reallocate if the new size is larger than the old size,
+  // or if the new size is significantly smaller than the old size.
+  if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
+    // Need to reallocate
+    void* new_ptr = do_malloc(new_size);
+    if (new_ptr == NULL) {
+      return NULL;
+    }
+#ifndef WTF_CHANGES
+    MallocHook::InvokeNewHook(new_ptr, new_size);
+#endif
+    memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
+#ifndef WTF_CHANGES
+    MallocHook::InvokeDeleteHook(old_ptr);
+#endif
+    // We could use a variant of do_free() that leverages the fact
+    // that we already know the sizeclass of old_ptr.  The benefit
+    // would be small, so don't bother.
+    do_free(old_ptr);
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1;
+#endif
+    return new_ptr;
+  } else {
+#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
+    old_ptr = static_cast<AllocAlignmentInteger*>(old_ptr) + 1; // Set old_ptr back to the user pointer.
+#endif
+    return old_ptr;
+  }
+}
+
+#ifdef WTF_CHANGES
+#undef do_malloc
+#else
+
+static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
+
+static inline void* cpp_alloc(size_t size, bool nothrow) {
+  for (;;) {
+    void* p = do_malloc(size);
+#ifdef PREANSINEW
+    return p;
+#else
+    if (p == NULL) {  // allocation failed
+      // Get the current new handler.  NB: this function is not
+      // thread-safe.  We make a feeble stab at making it so here, but
+      // this lock only protects against tcmalloc interfering with
+      // itself, not with other libraries calling set_new_handler.
+      std::new_handler nh;
+      {
+        SpinLockHolder h(&set_new_handler_lock);
+        nh = std::set_new_handler(0);
+        (void) std::set_new_handler(nh);
+      }
+      // If no new_handler is established, the allocation failed.
+      if (!nh) {
+        if (nothrow) return 0;
+        throw std::bad_alloc();
+      }
+      // Otherwise, try the new_handler.  If it returns, retry the
+      // allocation.  If it throws std::bad_alloc, fail the allocation.
+      // if it throws something else, don't interfere.
+      try {
+        (*nh)();
+      } catch (const std::bad_alloc&) {
+        if (!nothrow) throw;
+        return p;
+      }
+    } else {  // allocation success
+      return p;
+    }
+#endif
+  }
+}
+
+#if ENABLE(GLOBAL_FASTMALLOC_NEW)
+
+void* operator new(size_t size) {
+  void* p = cpp_alloc(size, false);
+  // We keep this next instruction out of cpp_alloc for a reason: when
+  // it's in, and new just calls cpp_alloc, the optimizer may fold the
+  // new call into cpp_alloc, which messes up our whole section-based
+  // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
+  // isn't the last thing this fn calls, and prevents the folding.
+  MallocHook::InvokeNewHook(p, size);
+  return p;
+}
+
+void* operator new(size_t size, const std::nothrow_t&) __THROW {
+  void* p = cpp_alloc(size, true);
+  MallocHook::InvokeNewHook(p, size);
+  return p;
+}
+
+void operator delete(void* p) __THROW {
+  MallocHook::InvokeDeleteHook(p);
+  do_free(p);
+}
+
+void operator delete(void* p, const std::nothrow_t&) __THROW {
+  MallocHook::InvokeDeleteHook(p);
+  do_free(p);
+}
+
+void* operator new[](size_t size) {
+  void* p = cpp_alloc(size, false);
+  // We keep this next instruction out of cpp_alloc for a reason: when
+  // it's in, and new just calls cpp_alloc, the optimizer may fold the
+  // new call into cpp_alloc, which messes up our whole section-based
+  // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
+  // isn't the last thing this fn calls, and prevents the folding.
+  MallocHook::InvokeNewHook(p, size);
+  return p;
+}
+
+void* operator new[](size_t size, const std::nothrow_t&) __THROW {
+  void* p = cpp_alloc(size, true);
+  MallocHook::InvokeNewHook(p, size);
+  return p;
+}
+
+void operator delete[](void* p) __THROW {
+  MallocHook::InvokeDeleteHook(p);
+  do_free(p);
+}
+
+void operator delete[](void* p, const std::nothrow_t&) __THROW {
+  MallocHook::InvokeDeleteHook(p);
+  do_free(p);
+}
+
+#endif
+
+extern "C" void* memalign(size_t align, size_t size) __THROW {
+  void* result = do_memalign(align, size);
+  MallocHook::InvokeNewHook(result, size);
+  return result;
+}
+
+extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
+    __THROW {
+  if (((align % sizeof(void*)) != 0) ||
+      ((align & (align - 1)) != 0) ||
+      (align == 0)) {
+    return EINVAL;
+  }
+
+  void* result = do_memalign(align, size);
+  MallocHook::InvokeNewHook(result, size);
+  if (result == NULL) {
+    return ENOMEM;
+  } else {
+    *result_ptr = result;
+    return 0;
+  }
+}
+
+static size_t pagesize = 0;
+
+extern "C" void* valloc(size_t size) __THROW {
+  // Allocate page-aligned object of length >= size bytes
+  if (pagesize == 0) pagesize = getpagesize();
+  void* result = do_memalign(pagesize, size);
+  MallocHook::InvokeNewHook(result, size);
+  return result;
+}
+
+extern "C" void* pvalloc(size_t size) __THROW {
+  // Round up size to a multiple of pagesize
+  if (pagesize == 0) pagesize = getpagesize();
+  size = (size + pagesize - 1) & ~(pagesize - 1);
+  void* result = do_memalign(pagesize, size);
+  MallocHook::InvokeNewHook(result, size);
+  return result;
+}
+
+extern "C" void malloc_stats(void) {
+  do_malloc_stats();
+}
+
+extern "C" int mallopt(int cmd, int value) {
+  return do_mallopt(cmd, value);
+}
+
+#ifdef HAVE_STRUCT_MALLINFO
+extern "C" struct mallinfo mallinfo(void) {
+  return do_mallinfo();
+}
+#endif
+
+//-------------------------------------------------------------------
+// Some library routines on RedHat 9 allocate memory using malloc()
+// and free it using __libc_free() (or vice-versa).  Since we provide
+// our own implementations of malloc/free, we need to make sure that
+// the __libc_XXX variants (defined as part of glibc) also point to
+// the same implementations.
+//-------------------------------------------------------------------
+
+#if defined(__GLIBC__)
+extern "C" {
+#if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
+  // Potentially faster variants that use the gcc alias extension.
+  // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
+# define ALIAS(x) __attribute__ ((weak, alias (x)))
+  void* __libc_malloc(size_t size)              ALIAS("malloc");
+  void  __libc_free(void* ptr)                  ALIAS("free");
+  void* __libc_realloc(void* ptr, size_t size)  ALIAS("realloc");
+  void* __libc_calloc(size_t n, size_t size)    ALIAS("calloc");
+  void  __libc_cfree(void* ptr)                 ALIAS("cfree");
+  void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
+  void* __libc_valloc(size_t size)              ALIAS("valloc");
+  void* __libc_pvalloc(size_t size)             ALIAS("pvalloc");
+  int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
+# undef ALIAS
+# else   /* not __GNUC__ */
+  // Portable wrappers
+  void* __libc_malloc(size_t size)              { return malloc(size);       }
+  void  __libc_free(void* ptr)                  { free(ptr);                 }
+  void* __libc_realloc(void* ptr, size_t size)  { return realloc(ptr, size); }
+  void* __libc_calloc(size_t n, size_t size)    { return calloc(n, size);    }
+  void  __libc_cfree(void* ptr)                 { cfree(ptr);                }
+  void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
+  void* __libc_valloc(size_t size)              { return valloc(size);       }
+  void* __libc_pvalloc(size_t size)             { return pvalloc(size);      }
+  int __posix_memalign(void** r, size_t a, size_t s) {
+    return posix_memalign(r, a, s);
+  }
+# endif  /* __GNUC__ */
+}
+#endif   /* __GLIBC__ */
+
+// Override __libc_memalign in libc on linux boxes specially.
+// They have a bug in libc that causes them to (very rarely) allocate
+// with __libc_memalign() yet deallocate with free() and the
+// definitions above don't catch it.
+// This function is an exception to the rule of calling MallocHook method
+// from the stack frame of the allocation function;
+// heap-checker handles this special case explicitly.
+static void *MemalignOverride(size_t align, size_t size, const void *caller)
+    __THROW {
+  void* result = do_memalign(align, size);
+  MallocHook::InvokeNewHook(result, size);
+  return result;
+}
+void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
+
+#endif
+
+#ifdef WTF_CHANGES
+void releaseFastMallocFreeMemory()
+{
+    // Flush free pages in the current thread cache back to the page heap.
+    // Low watermark mechanism in Scavenge() prevents full return on the first pass.
+    // The second pass flushes everything.
+    if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) {
+        threadCache->Scavenge();
+        threadCache->Scavenge();
+    }
+
+    SpinLockHolder h(&pageheap_lock);
+    pageheap->ReleaseFreePages();
+}
+    
+FastMallocStatistics fastMallocStatistics()
+{
+    FastMallocStatistics statistics;
+
+    SpinLockHolder lockHolder(&pageheap_lock);
+    statistics.reservedVMBytes = static_cast<size_t>(pageheap->SystemBytes());
+    statistics.committedVMBytes = statistics.reservedVMBytes - pageheap->ReturnedBytes();
+
+    statistics.freeListBytes = 0;
+    for (unsigned cl = 0; cl < kNumClasses; ++cl) {
+        const int length = central_cache[cl].length();
+        const int tc_length = central_cache[cl].tc_length();
+
+        statistics.freeListBytes += ByteSizeForClass(cl) * (length + tc_length);
+    }
+    for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
+        statistics.freeListBytes += threadCache->Size();
+
+    return statistics;
+}
+
+size_t fastMallocSize(const void* ptr)
+{
+    const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+    Span* span = pageheap->GetDescriptorEnsureSafe(p);
+
+    if (!span || span->free)
+        return 0;
+
+    for (void* free = span->objects; free != NULL; free = *((void**) free)) {
+        if (ptr == free)
+            return 0;
+    }
+
+    if (size_t cl = span->sizeclass)
+        return ByteSizeForClass(cl);
+
+    return span->length << kPageShift;
+}
+
+#if OS(DARWIN)
+
+class FreeObjectFinder {
+    const RemoteMemoryReader& m_reader;
+    HashSet<void*> m_freeObjects;
+
+public:
+    FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
+
+    void visit(void* ptr) { m_freeObjects.add(ptr); }
+    bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
+    bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); }
+    size_t freeObjectCount() const { return m_freeObjects.size(); }
+
+    void findFreeObjects(TCMalloc_ThreadCache* threadCache)
+    {
+        for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
+            threadCache->enumerateFreeObjects(*this, m_reader);
+    }
+
+    void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
+    {
+        for (unsigned i = 0; i < numSizes; i++)
+            centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
+    }
+};
+
+class PageMapFreeObjectFinder {
+    const RemoteMemoryReader& m_reader;
+    FreeObjectFinder& m_freeObjectFinder;
+
+public:
+    PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
+        : m_reader(reader)
+        , m_freeObjectFinder(freeObjectFinder)
+    { }
+
+    int visit(void* ptr) const
+    {
+        if (!ptr)
+            return 1;
+
+        Span* span = m_reader(reinterpret_cast<Span*>(ptr));
+        if (span->free) {
+            void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
+            m_freeObjectFinder.visit(ptr);
+        } else if (span->sizeclass) {
+            // Walk the free list of the small-object span, keeping track of each object seen
+            for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject)))
+                m_freeObjectFinder.visit(nextObject);
+        }
+        return span->length;
+    }
+};
+
+class PageMapMemoryUsageRecorder {
+    task_t m_task;
+    void* m_context;
+    unsigned m_typeMask;
+    vm_range_recorder_t* m_recorder;
+    const RemoteMemoryReader& m_reader;
+    const FreeObjectFinder& m_freeObjectFinder;
+
+    HashSet<void*> m_seenPointers;
+    Vector<Span*> m_coalescedSpans;
+
+public:
+    PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
+        : m_task(task)
+        , m_context(context)
+        , m_typeMask(typeMask)
+        , m_recorder(recorder)
+        , m_reader(reader)
+        , m_freeObjectFinder(freeObjectFinder)
+    { }
+
+    ~PageMapMemoryUsageRecorder()
+    {
+        ASSERT(!m_coalescedSpans.size());
+    }
+
+    void recordPendingRegions()
+    {
+        Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
+        vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 };
+        ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize);
+
+        // Mark the memory region the spans represent as a candidate for containing pointers
+        if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE)
+            (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
+
+        if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
+            m_coalescedSpans.clear();
+            return;
+        }
+
+        Vector<vm_range_t, 1024> allocatedPointers;
+        for (size_t i = 0; i < m_coalescedSpans.size(); ++i) {
+            Span *theSpan = m_coalescedSpans[i];
+            if (theSpan->free)
+                continue;
+
+            vm_address_t spanStartAddress = theSpan->start << kPageShift;
+            vm_size_t spanSizeInBytes = theSpan->length * kPageSize;
+
+            if (!theSpan->sizeclass) {
+                // If it's an allocated large object span, mark it as in use
+                if (!m_freeObjectFinder.isFreeObject(spanStartAddress))
+                    allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes});
+            } else {
+                const size_t objectSize = ByteSizeForClass(theSpan->sizeclass);
+
+                // Mark each allocated small object within the span as in use
+                const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes;
+                for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) {
+                    if (!m_freeObjectFinder.isFreeObject(object))
+                        allocatedPointers.append((vm_range_t){object, objectSize});
+                }
+            }
+        }
+
+        (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size());
+
+        m_coalescedSpans.clear();
+    }
+
+    int visit(void* ptr)
+    {
+        if (!ptr)
+            return 1;
+
+        Span* span = m_reader(reinterpret_cast<Span*>(ptr));
+        if (!span->start)
+            return 1;
+
+        if (m_seenPointers.contains(ptr))
+            return span->length;
+        m_seenPointers.add(ptr);
+
+        if (!m_coalescedSpans.size()) {
+            m_coalescedSpans.append(span);
+            return span->length;
+        }
+
+        Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
+        vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift;
+        vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize;
+
+        // If the new span is adjacent to the previous span, do nothing for now.
+        vm_address_t spanStartAddress = span->start << kPageShift;
+        if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) {
+            m_coalescedSpans.append(span);
+            return span->length;
+        }
+
+        // New span is not adjacent to previous span, so record the spans coalesced so far.
+        recordPendingRegions();
+        m_coalescedSpans.append(span);
+
+        return span->length;
+    }
+};
+
+class AdminRegionRecorder {
+    task_t m_task;
+    void* m_context;
+    unsigned m_typeMask;
+    vm_range_recorder_t* m_recorder;
+    const RemoteMemoryReader& m_reader;
+
+    Vector<vm_range_t, 1024> m_pendingRegions;
+
+public:
+    AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader)
+        : m_task(task)
+        , m_context(context)
+        , m_typeMask(typeMask)
+        , m_recorder(recorder)
+        , m_reader(reader)
+    { }
+
+    void recordRegion(vm_address_t ptr, size_t size)
+    {
+        if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE)
+            m_pendingRegions.append((vm_range_t){ ptr, size });
+    }
+
+    void visit(void *ptr, size_t size)
+    {
+        recordRegion(reinterpret_cast<vm_address_t>(ptr), size);
+    }
+
+    void recordPendingRegions()
+    {
+        if (m_pendingRegions.size()) {
+            (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size());
+            m_pendingRegions.clear();
+        }
+    }
+
+    ~AdminRegionRecorder()
+    {
+        ASSERT(!m_pendingRegions.size());
+    }
+};
+
+kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
+{
+    RemoteMemoryReader memoryReader(task, reader);
+
+    InitSizeClasses();
+
+    FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
+    TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
+    TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
+    TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
+
+    TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
+
+    FreeObjectFinder finder(memoryReader);
+    finder.findFreeObjects(threadHeaps);
+    finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
+
+    TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
+    PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
+    pageMap->visitValues(pageMapFinder, memoryReader);
+
+    PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
+    pageMap->visitValues(usageRecorder, memoryReader);
+    usageRecorder.recordPendingRegions();
+
+    AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader);
+    pageMap->visitAllocations(adminRegionRecorder, memoryReader);
+
+    PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator);
+    PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator);
+
+    spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
+    pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
+
+    adminRegionRecorder.recordPendingRegions();
+
+    return 0;
+}
+
+size_t FastMallocZone::size(malloc_zone_t*, const void*)
+{
+    return 0;
+}
+
+void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
+{
+    return 0;
+}
+
+void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
+{
+    return 0;
+}
+
+void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
+{
+    // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
+    // is not in this zone.  When this happens, the pointer being freed was not allocated by any
+    // zone so we need to print a useful error for the application developer.
+    malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
+}
+
+void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
+{
+    return 0;
+}
+
+
+#undef malloc
+#undef free
+#undef realloc
+#undef calloc
+
+extern "C" {
+malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
+    &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics
+
+#if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !OS(IPHONE_OS)
+    , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher.
+#endif
+#if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !defined(BUILDING_ON_SNOW_LEOPARD) && !OS(IPHONE_OS)
+    , 0, 0, 0, 0 // These members will not be used unless the zone advertises itself as version seven or higher.
+#endif
+
+    };
+}
+
+FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator)
+    : m_pageHeap(pageHeap)
+    , m_threadHeaps(threadHeaps)
+    , m_centralCaches(centralCaches)
+    , m_spanAllocator(spanAllocator)
+    , m_pageHeapAllocator(pageHeapAllocator)
+{
+    memset(&m_zone, 0, sizeof(m_zone));
+    m_zone.version = 4;
+    m_zone.zone_name = "JavaScriptCore FastMalloc";
+    m_zone.size = &FastMallocZone::size;
+    m_zone.malloc = &FastMallocZone::zoneMalloc;
+    m_zone.calloc = &FastMallocZone::zoneCalloc;
+    m_zone.realloc = &FastMallocZone::zoneRealloc;
+    m_zone.free = &FastMallocZone::zoneFree;
+    m_zone.valloc = &FastMallocZone::zoneValloc;
+    m_zone.destroy = &FastMallocZone::zoneDestroy;
+    m_zone.introspect = &jscore_fastmalloc_introspection;
+    malloc_zone_register(&m_zone);
+}
+
+
+void FastMallocZone::init()
+{
+    static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator);
+}
+
+#endif // OS(DARWIN)
+
+} // namespace WTF
+#endif // WTF_CHANGES
+
+#endif // FORCE_SYSTEM_MALLOC