JavaScriptCore/runtime/JSArray.cpp
changeset 0 4f2f89ce4247
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/JavaScriptCore/runtime/JSArray.cpp	Fri Sep 17 09:02:29 2010 +0300
@@ -0,0 +1,1095 @@
+/*
+ *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
+ *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
+ *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
+ *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
+ *
+ *  This library is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU Lesser General Public
+ *  License as published by the Free Software Foundation; either
+ *  version 2 of the License, or (at your option) any later version.
+ *
+ *  This library is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *  Lesser General Public License for more details.
+ *
+ *  You should have received a copy of the GNU Lesser General Public
+ *  License along with this library; if not, write to the Free Software
+ *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#include "config.h"
+#include "JSArray.h"
+
+#include "ArrayPrototype.h"
+#include "CachedCall.h"
+#include "Error.h"
+#include "Executable.h"
+#include "PropertyNameArray.h"
+#include <wtf/AVLTree.h>
+#include <wtf/Assertions.h>
+#include <wtf/OwnPtr.h>
+#include <Operations.h>
+
+using namespace std;
+using namespace WTF;
+
+namespace JSC {
+
+ASSERT_CLASS_FITS_IN_CELL(JSArray);
+
+// Overview of JSArray
+//
+// Properties of JSArray objects may be stored in one of three locations:
+//   * The regular JSObject property map.
+//   * A storage vector.
+//   * A sparse map of array entries.
+//
+// Properties with non-numeric identifiers, with identifiers that are not representable
+// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
+// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
+// integer) are not considered array indices and will be stored in the JSObject property map.
+//
+// All properties with a numeric identifer, representable as an unsigned integer i,
+// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
+// storage vector or the sparse map.  An array index i will be handled in the following
+// fashion:
+//
+//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
+//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
+//     be stored in the storage vector or in the sparse array, depending on the density of
+//     data that would be stored in the vector (a vector being used where at least
+//     (1 / minDensityMultiplier) of the entries would be populated).
+//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
+//     in the sparse array.
+
+// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
+// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
+// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(JSValue)) +
+// (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
+#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))
+
+// These values have to be macros to be used in max() and min() without introducing
+// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
+#define MIN_SPARSE_ARRAY_INDEX 10000U
+#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
+// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
+#define MAX_ARRAY_INDEX 0xFFFFFFFEU
+
+// Our policy for when to use a vector and when to use a sparse map.
+// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
+// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
+// as long as it is 1/8 full. If more sparse than that, we use a map.
+static const unsigned minDensityMultiplier = 8;
+
+const ClassInfo JSArray::info = {"Array", 0, 0, 0};
+
+static inline size_t storageSize(unsigned vectorLength)
+{
+    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);
+
+    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
+    // - as asserted above - the following calculation cannot overflow.
+    size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
+    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
+    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
+    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));
+
+    return size;
+}
+
+static inline unsigned increasedVectorLength(unsigned newLength)
+{
+    ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH);
+
+    // Mathematically equivalent to:
+    //   increasedLength = (newLength * 3 + 1) / 2;
+    // or:
+    //   increasedLength = (unsigned)ceil(newLength * 1.5));
+    // This form is not prone to internal overflow.
+    unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1);
+    ASSERT(increasedLength >= newLength);
+
+    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
+}
+
+static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
+{
+    return length / minDensityMultiplier <= numValues;
+}
+
+#if !CHECK_ARRAY_CONSISTENCY
+
+inline void JSArray::checkConsistency(ConsistencyCheckType)
+{
+}
+
+#endif
+
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure)
+    : JSObject(structure)
+{
+    unsigned initialCapacity = 0;
+
+    m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
+    m_vectorLength = initialCapacity;
+
+    checkConsistency();
+}
+
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure, unsigned initialLength, ArrayCreationMode creationMode)
+    : JSObject(structure)
+{
+    unsigned initialCapacity;
+    if (creationMode == CreateCompact)
+        initialCapacity = initialLength;
+    else
+        initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX);
+
+    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
+    m_vectorLength = initialCapacity;
+    m_storage->m_sparseValueMap = 0;
+    m_storage->subclassData = 0;
+    m_storage->reportedMapCapacity = 0;
+
+    if (creationMode == CreateCompact) {
+#if CHECK_ARRAY_CONSISTENCY
+        m_storage->m_inCompactInitialization = !!initialCapacity;
+#endif
+        m_storage->m_length = 0;
+        m_storage->m_numValuesInVector = initialCapacity;
+    } else {
+#if CHECK_ARRAY_CONSISTENCY
+        m_storage->m_inCompactInitialization = false;
+#endif
+        m_storage->m_length = initialLength;
+        m_storage->m_numValuesInVector = 0;
+        JSValue* vector = m_storage->m_vector;
+        for (size_t i = 0; i < initialCapacity; ++i)
+            vector[i] = JSValue();
+    }
+
+    checkConsistency();
+
+    Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue));
+}
+
+JSArray::JSArray(NonNullPassRefPtr<Structure> structure, const ArgList& list)
+    : JSObject(structure)
+{
+    unsigned initialCapacity = list.size();
+
+    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
+    m_storage->m_length = initialCapacity;
+    m_vectorLength = initialCapacity;
+    m_storage->m_numValuesInVector = initialCapacity;
+    m_storage->m_sparseValueMap = 0;
+    m_storage->subclassData = 0;
+    m_storage->reportedMapCapacity = 0;
+#if CHECK_ARRAY_CONSISTENCY
+    m_storage->m_inCompactInitialization = false;
+#endif
+
+    size_t i = 0;
+    ArgList::const_iterator end = list.end();
+    for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
+        m_storage->m_vector[i] = *it;
+
+    checkConsistency();
+
+    Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
+}
+
+JSArray::~JSArray()
+{
+    ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
+    checkConsistency(DestructorConsistencyCheck);
+
+    delete m_storage->m_sparseValueMap;
+    fastFree(m_storage);
+}
+
+bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
+{
+    ArrayStorage* storage = m_storage;
+
+    if (i >= storage->m_length) {
+        if (i > MAX_ARRAY_INDEX)
+            return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
+        return false;
+    }
+
+    if (i < m_vectorLength) {
+        JSValue& valueSlot = storage->m_vector[i];
+        if (valueSlot) {
+            slot.setValueSlot(&valueSlot);
+            return true;
+        }
+    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+        if (i >= MIN_SPARSE_ARRAY_INDEX) {
+            SparseArrayValueMap::iterator it = map->find(i);
+            if (it != map->end()) {
+                slot.setValueSlot(&it->second);
+                return true;
+            }
+        }
+    }
+
+    return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
+}
+
+bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
+{
+    if (propertyName == exec->propertyNames().length) {
+        slot.setValue(jsNumber(exec, length()));
+        return true;
+    }
+
+    bool isArrayIndex;
+    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+    if (isArrayIndex)
+        return JSArray::getOwnPropertySlot(exec, i, slot);
+
+    return JSObject::getOwnPropertySlot(exec, propertyName, slot);
+}
+
+bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
+{
+    if (propertyName == exec->propertyNames().length) {
+        descriptor.setDescriptor(jsNumber(exec, length()), DontDelete | DontEnum);
+        return true;
+    }
+    
+    bool isArrayIndex;
+    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+    if (isArrayIndex) {
+        if (i >= m_storage->m_length)
+            return false;
+        if (i < m_vectorLength) {
+            JSValue& value = m_storage->m_vector[i];
+            if (value) {
+                descriptor.setDescriptor(value, 0);
+                return true;
+            }
+        } else if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
+            if (i >= MIN_SPARSE_ARRAY_INDEX) {
+                SparseArrayValueMap::iterator it = map->find(i);
+                if (it != map->end()) {
+                    descriptor.setDescriptor(it->second, 0);
+                    return true;
+                }
+            }
+        }
+    }
+    return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
+}
+
+// ECMA 15.4.5.1
+void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
+{
+    bool isArrayIndex;
+    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+    if (isArrayIndex) {
+        put(exec, i, value);
+        return;
+    }
+
+    if (propertyName == exec->propertyNames().length) {
+        unsigned newLength = value.toUInt32(exec);
+        if (value.toNumber(exec) != static_cast<double>(newLength)) {
+            throwError(exec, createRangeError(exec, "Invalid array length."));
+            return;
+        }
+        setLength(newLength);
+        return;
+    }
+
+    JSObject::put(exec, propertyName, value, slot);
+}
+
+void JSArray::put(ExecState* exec, unsigned i, JSValue value)
+{
+    checkConsistency();
+
+    unsigned length = m_storage->m_length;
+    if (i >= length && i <= MAX_ARRAY_INDEX) {
+        length = i + 1;
+        m_storage->m_length = length;
+    }
+
+    if (i < m_vectorLength) {
+        JSValue& valueSlot = m_storage->m_vector[i];
+        if (valueSlot) {
+            valueSlot = value;
+            checkConsistency();
+            return;
+        }
+        valueSlot = value;
+        ++m_storage->m_numValuesInVector;
+        checkConsistency();
+        return;
+    }
+
+    putSlowCase(exec, i, value);
+}
+
+NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
+{
+    ArrayStorage* storage = m_storage;
+    SparseArrayValueMap* map = storage->m_sparseValueMap;
+
+    if (i >= MIN_SPARSE_ARRAY_INDEX) {
+        if (i > MAX_ARRAY_INDEX) {
+            PutPropertySlot slot;
+            put(exec, Identifier::from(exec, i), value, slot);
+            return;
+        }
+
+        // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
+        // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
+        if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
+            if (!map) {
+                map = new SparseArrayValueMap;
+                storage->m_sparseValueMap = map;
+            }
+
+            pair<SparseArrayValueMap::iterator, bool> result = map->add(i, value);
+            if (!result.second) { // pre-existing entry
+                result.first->second = value;
+                return;
+            }
+
+            size_t capacity = map->capacity();
+            if (capacity != storage->reportedMapCapacity) {
+                Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
+                storage->reportedMapCapacity = capacity;
+            }
+            return;
+        }
+    }
+
+    // We have decided that we'll put the new item into the vector.
+    // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
+    if (!map || map->isEmpty()) {
+        if (increaseVectorLength(i + 1)) {
+            storage = m_storage;
+            storage->m_vector[i] = value;
+            ++storage->m_numValuesInVector;
+            checkConsistency();
+        } else
+            throwOutOfMemoryError(exec);
+        return;
+    }
+
+    // Decide how many values it would be best to move from the map.
+    unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
+    unsigned newVectorLength = increasedVectorLength(i + 1);
+    for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
+        newNumValuesInVector += map->contains(j);
+    if (i >= MIN_SPARSE_ARRAY_INDEX)
+        newNumValuesInVector -= map->contains(i);
+    if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
+        unsigned proposedNewNumValuesInVector = newNumValuesInVector;
+        // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
+        while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) {
+            unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
+            for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
+                proposedNewNumValuesInVector += map->contains(j);
+            if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
+                break;
+            newVectorLength = proposedNewVectorLength;
+            newNumValuesInVector = proposedNewNumValuesInVector;
+        }
+    }
+
+    if (!tryFastRealloc(storage, storageSize(newVectorLength)).getValue(storage)) {
+        throwOutOfMemoryError(exec);
+        return;
+    }
+
+    unsigned vectorLength = m_vectorLength;
+
+    if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
+        for (unsigned j = vectorLength; j < newVectorLength; ++j)
+            storage->m_vector[j] = JSValue();
+        if (i > MIN_SPARSE_ARRAY_INDEX)
+            map->remove(i);
+    } else {
+        for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
+            storage->m_vector[j] = JSValue();
+        for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
+            storage->m_vector[j] = map->take(j);
+    }
+
+    storage->m_vector[i] = value;
+
+    m_vectorLength = newVectorLength;
+    storage->m_numValuesInVector = newNumValuesInVector;
+
+    m_storage = storage;
+
+    checkConsistency();
+
+    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+}
+
+bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
+{
+    bool isArrayIndex;
+    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
+    if (isArrayIndex)
+        return deleteProperty(exec, i);
+
+    if (propertyName == exec->propertyNames().length)
+        return false;
+
+    return JSObject::deleteProperty(exec, propertyName);
+}
+
+bool JSArray::deleteProperty(ExecState* exec, unsigned i)
+{
+    checkConsistency();
+
+    ArrayStorage* storage = m_storage;
+
+    if (i < m_vectorLength) {
+        JSValue& valueSlot = storage->m_vector[i];
+        if (!valueSlot) {
+            checkConsistency();
+            return false;
+        }
+        valueSlot = JSValue();
+        --storage->m_numValuesInVector;
+        checkConsistency();
+        return true;
+    }
+
+    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+        if (i >= MIN_SPARSE_ARRAY_INDEX) {
+            SparseArrayValueMap::iterator it = map->find(i);
+            if (it != map->end()) {
+                map->remove(it);
+                checkConsistency();
+                return true;
+            }
+        }
+    }
+
+    checkConsistency();
+
+    if (i > MAX_ARRAY_INDEX)
+        return deleteProperty(exec, Identifier::from(exec, i));
+
+    return false;
+}
+
+void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
+{
+    // FIXME: Filling PropertyNameArray with an identifier for every integer
+    // is incredibly inefficient for large arrays. We need a different approach,
+    // which almost certainly means a different structure for PropertyNameArray.
+
+    ArrayStorage* storage = m_storage;
+
+    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
+    for (unsigned i = 0; i < usedVectorLength; ++i) {
+        if (storage->m_vector[i])
+            propertyNames.add(Identifier::from(exec, i));
+    }
+
+    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+        SparseArrayValueMap::iterator end = map->end();
+        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
+            propertyNames.add(Identifier::from(exec, it->first));
+    }
+
+    if (mode == IncludeDontEnumProperties)
+        propertyNames.add(exec->propertyNames().length);
+
+    JSObject::getOwnPropertyNames(exec, propertyNames, mode);
+}
+
+bool JSArray::increaseVectorLength(unsigned newLength)
+{
+    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
+    // to the vector. Callers have to account for that, because they can do it more efficiently.
+
+    ArrayStorage* storage = m_storage;
+
+    unsigned vectorLength = m_vectorLength;
+    ASSERT(newLength > vectorLength);
+    ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
+    unsigned newVectorLength = increasedVectorLength(newLength);
+
+    if (!tryFastRealloc(storage, storageSize(newVectorLength)).getValue(storage))
+        return false;
+
+    m_vectorLength = newVectorLength;
+
+    for (unsigned i = vectorLength; i < newVectorLength; ++i)
+        storage->m_vector[i] = JSValue();
+
+    m_storage = storage;
+
+    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
+
+    return true;
+}
+
+void JSArray::setLength(unsigned newLength)
+{
+#if CHECK_ARRAY_CONSISTENCY
+    if (!m_storage->m_inCompactInitialization)
+        checkConsistency();
+    else
+        m_storage->m_inCompactInitialization = false;
+#endif
+
+    ArrayStorage* storage = m_storage;
+
+    unsigned length = m_storage->m_length;
+
+    if (newLength < length) {
+        unsigned usedVectorLength = min(length, m_vectorLength);
+        for (unsigned i = newLength; i < usedVectorLength; ++i) {
+            JSValue& valueSlot = storage->m_vector[i];
+            bool hadValue = valueSlot;
+            valueSlot = JSValue();
+            storage->m_numValuesInVector -= hadValue;
+        }
+
+        if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+            SparseArrayValueMap copy = *map;
+            SparseArrayValueMap::iterator end = copy.end();
+            for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
+                if (it->first >= newLength)
+                    map->remove(it->first);
+            }
+            if (map->isEmpty()) {
+                delete map;
+                storage->m_sparseValueMap = 0;
+            }
+        }
+    }
+
+    m_storage->m_length = newLength;
+
+    checkConsistency();
+}
+
+JSValue JSArray::pop()
+{
+    checkConsistency();
+
+    unsigned length = m_storage->m_length;
+    if (!length)
+        return jsUndefined();
+
+    --length;
+
+    JSValue result;
+
+    if (length < m_vectorLength) {
+        JSValue& valueSlot = m_storage->m_vector[length];
+        if (valueSlot) {
+            --m_storage->m_numValuesInVector;
+            result = valueSlot;
+            valueSlot = JSValue();
+        } else
+            result = jsUndefined();
+    } else {
+        result = jsUndefined();
+        if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
+            SparseArrayValueMap::iterator it = map->find(length);
+            if (it != map->end()) {
+                result = it->second;
+                map->remove(it);
+                if (map->isEmpty()) {
+                    delete map;
+                    m_storage->m_sparseValueMap = 0;
+                }
+            }
+        }
+    }
+
+    m_storage->m_length = length;
+
+    checkConsistency();
+
+    return result;
+}
+
+void JSArray::push(ExecState* exec, JSValue value)
+{
+    checkConsistency();
+
+    if (m_storage->m_length < m_vectorLength) {
+        m_storage->m_vector[m_storage->m_length] = value;
+        ++m_storage->m_numValuesInVector;
+        ++m_storage->m_length;
+        checkConsistency();
+        return;
+    }
+
+    if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
+        SparseArrayValueMap* map = m_storage->m_sparseValueMap;
+        if (!map || map->isEmpty()) {
+            if (increaseVectorLength(m_storage->m_length + 1)) {
+                m_storage->m_vector[m_storage->m_length] = value;
+                ++m_storage->m_numValuesInVector;
+                ++m_storage->m_length;
+                checkConsistency();
+                return;
+            }
+            checkConsistency();
+            throwOutOfMemoryError(exec);
+            return;
+        }
+    }
+
+    putSlowCase(exec, m_storage->m_length++, value);
+}
+
+void JSArray::markChildren(MarkStack& markStack)
+{
+    markChildrenDirect(markStack);
+}
+
+static int compareNumbersForQSort(const void* a, const void* b)
+{
+    double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
+    double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
+    return (da > db) - (da < db);
+}
+
+typedef std::pair<JSValue, UString> ValueStringPair;
+
+static int compareByStringPairForQSort(const void* a, const void* b)
+{
+    const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
+    const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
+    return codePointCompare(va->second, vb->second);
+}
+
+void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
+{
+    unsigned lengthNotIncludingUndefined = compactForSorting();
+    if (m_storage->m_sparseValueMap) {
+        throwOutOfMemoryError(exec);
+        return;
+    }
+
+    if (!lengthNotIncludingUndefined)
+        return;
+        
+    bool allValuesAreNumbers = true;
+    size_t size = m_storage->m_numValuesInVector;
+    for (size_t i = 0; i < size; ++i) {
+        if (!m_storage->m_vector[i].isNumber()) {
+            allValuesAreNumbers = false;
+            break;
+        }
+    }
+
+    if (!allValuesAreNumbers)
+        return sort(exec, compareFunction, callType, callData);
+
+    // For numeric comparison, which is fast, qsort is faster than mergesort. We
+    // also don't require mergesort's stability, since there's no user visible
+    // side-effect from swapping the order of equal primitive values.
+    qsort(m_storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);
+
+    checkConsistency(SortConsistencyCheck);
+}
+
+void JSArray::sort(ExecState* exec)
+{
+    unsigned lengthNotIncludingUndefined = compactForSorting();
+    if (m_storage->m_sparseValueMap) {
+        throwOutOfMemoryError(exec);
+        return;
+    }
+
+    if (!lengthNotIncludingUndefined)
+        return;
+
+    // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
+    // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
+    // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
+    // random or otherwise changing results, effectively making compare function inconsistent.
+
+    Vector<ValueStringPair> values(lengthNotIncludingUndefined);
+    if (!values.begin()) {
+        throwOutOfMemoryError(exec);
+        return;
+    }
+
+    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
+        JSValue value = m_storage->m_vector[i];
+        ASSERT(!value.isUndefined());
+        values[i].first = value;
+    }
+
+    // FIXME: While calling these toString functions, the array could be mutated.
+    // In that case, objects pointed to by values in this vector might get garbage-collected!
+
+    // FIXME: The following loop continues to call toString on subsequent values even after
+    // a toString call raises an exception.
+
+    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
+        values[i].second = values[i].first.toString(exec);
+
+    if (exec->hadException())
+        return;
+
+    // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
+    // than O(N log N).
+
+#if HAVE(MERGESORT)
+    mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
+#else
+    // FIXME: The qsort library function is likely to not be a stable sort.
+    // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
+    qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
+#endif
+
+    // FIXME: If the toString function changed the length of the array, this might be
+    // modifying the vector incorrectly.
+
+    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
+        m_storage->m_vector[i] = values[i].first;
+
+    checkConsistency(SortConsistencyCheck);
+}
+
+struct AVLTreeNodeForArrayCompare {
+    JSValue value;
+
+    // Child pointers.  The high bit of gt is robbed and used as the
+    // balance factor sign.  The high bit of lt is robbed and used as
+    // the magnitude of the balance factor.
+    int32_t gt;
+    int32_t lt;
+};
+
+struct AVLTreeAbstractorForArrayCompare {
+    typedef int32_t handle; // Handle is an index into m_nodes vector.
+    typedef JSValue key;
+    typedef int32_t size;
+
+    Vector<AVLTreeNodeForArrayCompare> m_nodes;
+    ExecState* m_exec;
+    JSValue m_compareFunction;
+    CallType m_compareCallType;
+    const CallData* m_compareCallData;
+    JSValue m_globalThisValue;
+    OwnPtr<CachedCall> m_cachedCall;
+
+    handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
+    void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
+    handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
+    void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
+
+    int get_balance_factor(handle h)
+    {
+        if (m_nodes[h].gt & 0x80000000)
+            return -1;
+        return static_cast<unsigned>(m_nodes[h].lt) >> 31;
+    }
+
+    void set_balance_factor(handle h, int bf)
+    {
+        if (bf == 0) {
+            m_nodes[h].lt &= 0x7FFFFFFF;
+            m_nodes[h].gt &= 0x7FFFFFFF;
+        } else {
+            m_nodes[h].lt |= 0x80000000;
+            if (bf < 0)
+                m_nodes[h].gt |= 0x80000000;
+            else
+                m_nodes[h].gt &= 0x7FFFFFFF;
+        }
+    }
+
+    int compare_key_key(key va, key vb)
+    {
+        ASSERT(!va.isUndefined());
+        ASSERT(!vb.isUndefined());
+
+        if (m_exec->hadException())
+            return 1;
+
+        double compareResult;
+        if (m_cachedCall) {
+            m_cachedCall->setThis(m_globalThisValue);
+            m_cachedCall->setArgument(0, va);
+            m_cachedCall->setArgument(1, vb);
+            compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
+        } else {
+            MarkedArgumentBuffer arguments;
+            arguments.append(va);
+            arguments.append(vb);
+            compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
+        }
+        return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
+    }
+
+    int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
+    int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
+
+    static handle null() { return 0x7FFFFFFF; }
+};
+
+void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
+{
+    checkConsistency();
+
+    // FIXME: This ignores exceptions raised in the compare function or in toNumber.
+
+    // The maximum tree depth is compiled in - but the caller is clearly up to no good
+    // if a larger array is passed.
+    ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
+    if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
+        return;
+
+    if (!m_storage->m_length)
+        return;
+
+    unsigned usedVectorLength = min(m_storage->m_length, m_vectorLength);
+
+    AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
+    tree.abstractor().m_exec = exec;
+    tree.abstractor().m_compareFunction = compareFunction;
+    tree.abstractor().m_compareCallType = callType;
+    tree.abstractor().m_compareCallData = &callData;
+    tree.abstractor().m_globalThisValue = exec->globalThisValue();
+    tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));
+
+    if (callType == CallTypeJS)
+        tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, asFunction(compareFunction), 2, exec->exceptionSlot()));
+
+    if (!tree.abstractor().m_nodes.begin()) {
+        throwOutOfMemoryError(exec);
+        return;
+    }
+
+    // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
+    // right out from under us while we're building the tree here.
+
+    unsigned numDefined = 0;
+    unsigned numUndefined = 0;
+
+    // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
+    for (; numDefined < usedVectorLength; ++numDefined) {
+        JSValue v = m_storage->m_vector[numDefined];
+        if (!v || v.isUndefined())
+            break;
+        tree.abstractor().m_nodes[numDefined].value = v;
+        tree.insert(numDefined);
+    }
+    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
+        JSValue v = m_storage->m_vector[i];
+        if (v) {
+            if (v.isUndefined())
+                ++numUndefined;
+            else {
+                tree.abstractor().m_nodes[numDefined].value = v;
+                tree.insert(numDefined);
+                ++numDefined;
+            }
+        }
+    }
+
+    unsigned newUsedVectorLength = numDefined + numUndefined;
+
+    if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
+        newUsedVectorLength += map->size();
+        if (newUsedVectorLength > m_vectorLength) {
+            // Check that it is possible to allocate an array large enough to hold all the entries.
+            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
+                throwOutOfMemoryError(exec);
+                return;
+            }
+        }
+
+        SparseArrayValueMap::iterator end = map->end();
+        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
+            tree.abstractor().m_nodes[numDefined].value = it->second;
+            tree.insert(numDefined);
+            ++numDefined;
+        }
+
+        delete map;
+        m_storage->m_sparseValueMap = 0;
+    }
+
+    ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
+
+    // FIXME: If the compare function changed the length of the array, the following might be
+    // modifying the vector incorrectly.
+
+    // Copy the values back into m_storage.
+    AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
+    iter.start_iter_least(tree);
+    for (unsigned i = 0; i < numDefined; ++i) {
+        m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
+        ++iter;
+    }
+
+    // Put undefined values back in.
+    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
+        m_storage->m_vector[i] = jsUndefined();
+
+    // Ensure that unused values in the vector are zeroed out.
+    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
+        m_storage->m_vector[i] = JSValue();
+
+    m_storage->m_numValuesInVector = newUsedVectorLength;
+
+    checkConsistency(SortConsistencyCheck);
+}
+
+void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
+{
+    JSValue* vector = m_storage->m_vector;
+    unsigned vectorEnd = min(m_storage->m_length, m_vectorLength);
+    unsigned i = 0;
+    for (; i < vectorEnd; ++i) {
+        JSValue& v = vector[i];
+        if (!v)
+            break;
+        args.append(v);
+    }
+
+    for (; i < m_storage->m_length; ++i)
+        args.append(get(exec, i));
+}
+
+void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
+{
+    ASSERT(m_storage->m_length >= maxSize);
+    UNUSED_PARAM(maxSize);
+    JSValue* vector = m_storage->m_vector;
+    unsigned vectorEnd = min(maxSize, m_vectorLength);
+    unsigned i = 0;
+    for (; i < vectorEnd; ++i) {
+        JSValue& v = vector[i];
+        if (!v)
+            break;
+        buffer[i] = v;
+    }
+
+    for (; i < maxSize; ++i)
+        buffer[i] = get(exec, i);
+}
+
+unsigned JSArray::compactForSorting()
+{
+    checkConsistency();
+
+    ArrayStorage* storage = m_storage;
+
+    unsigned usedVectorLength = min(m_storage->m_length, m_vectorLength);
+
+    unsigned numDefined = 0;
+    unsigned numUndefined = 0;
+
+    for (; numDefined < usedVectorLength; ++numDefined) {
+        JSValue v = storage->m_vector[numDefined];
+        if (!v || v.isUndefined())
+            break;
+    }
+    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
+        JSValue v = storage->m_vector[i];
+        if (v) {
+            if (v.isUndefined())
+                ++numUndefined;
+            else
+                storage->m_vector[numDefined++] = v;
+        }
+    }
+
+    unsigned newUsedVectorLength = numDefined + numUndefined;
+
+    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
+        newUsedVectorLength += map->size();
+        if (newUsedVectorLength > m_vectorLength) {
+            // Check that it is possible to allocate an array large enough to hold all the entries - if not,
+            // exception is thrown by caller.
+            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
+                return 0;
+            storage = m_storage;
+        }
+
+        SparseArrayValueMap::iterator end = map->end();
+        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
+            storage->m_vector[numDefined++] = it->second;
+
+        delete map;
+        storage->m_sparseValueMap = 0;
+    }
+
+    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
+        storage->m_vector[i] = jsUndefined();
+    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
+        storage->m_vector[i] = JSValue();
+
+    storage->m_numValuesInVector = newUsedVectorLength;
+
+    checkConsistency(SortConsistencyCheck);
+
+    return numDefined;
+}
+
+void* JSArray::subclassData() const
+{
+    return m_storage->subclassData;
+}
+
+void JSArray::setSubclassData(void* d)
+{
+    m_storage->subclassData = d;
+}
+
+#if CHECK_ARRAY_CONSISTENCY
+
+void JSArray::checkConsistency(ConsistencyCheckType type)
+{
+    ASSERT(m_storage);
+    if (type == SortConsistencyCheck)
+        ASSERT(!m_storage->m_sparseValueMap);
+
+    unsigned numValuesInVector = 0;
+    for (unsigned i = 0; i < m_vectorLength; ++i) {
+        if (JSValue value = m_storage->m_vector[i]) {
+            ASSERT(i < m_storage->m_length);
+            if (type != DestructorConsistencyCheck)
+                value.isUndefined(); // Likely to crash if the object was deallocated.
+            ++numValuesInVector;
+        } else {
+            if (type == SortConsistencyCheck)
+                ASSERT(i >= m_storage->m_numValuesInVector);
+        }
+    }
+    ASSERT(numValuesInVector == m_storage->m_numValuesInVector);
+    ASSERT(numValuesInVector <= m_storage->m_length);
+
+    if (m_storage->m_sparseValueMap) {
+        SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
+        for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
+            unsigned index = it->first;
+            ASSERT(index < m_storage->m_length);
+            ASSERT(index >= m_vectorLength);
+            ASSERT(index <= MAX_ARRAY_INDEX);
+            ASSERT(it->second);
+            if (type != DestructorConsistencyCheck)
+                it->second.isUndefined(); // Likely to crash if the object was deallocated.
+        }
+    }
+}
+
+#endif
+
+} // namespace JSC