JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp
changeset 0 4f2f89ce4247
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp	Fri Sep 17 09:02:29 2010 +0300
@@ -0,0 +1,479 @@
+/*
+ * Copyright (C) 2009 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
+ */
+
+#include "config.h"
+
+#include "ExecutableAllocator.h"
+
+#if ENABLE(EXECUTABLE_ALLOCATOR_FIXED)
+
+#include <errno.h>
+
+#include "TCSpinLock.h"
+#include <sys/mman.h>
+#include <unistd.h>
+#include <wtf/AVLTree.h>
+#include <wtf/VMTags.h>
+
+#if CPU(X86_64)
+    // These limits suitable on 64-bit platforms (particularly x86-64, where we require all jumps to have a 2Gb max range).
+    #define VM_POOL_SIZE (2u * 1024u * 1024u * 1024u) // 2Gb
+    #define COALESCE_LIMIT (16u * 1024u * 1024u) // 16Mb
+#else
+    // These limits are hopefully sensible on embedded platforms.
+    #define VM_POOL_SIZE (32u * 1024u * 1024u) // 32Mb
+    #define COALESCE_LIMIT (4u * 1024u * 1024u) // 4Mb
+#endif
+
+// ASLR currently only works on darwin (due to arc4random) & 64-bit (due to address space size).
+#define VM_POOL_ASLR (OS(DARWIN) && CPU(X86_64))
+
+using namespace WTF;
+
+namespace JSC {
+
+// FreeListEntry describes a free chunk of memory, stored in the freeList.
+struct FreeListEntry {
+    FreeListEntry(void* pointer, size_t size)
+        : pointer(pointer)
+        , size(size)
+        , nextEntry(0)
+        , less(0)
+        , greater(0)
+        , balanceFactor(0)
+    {
+    }
+
+    // All entries of the same size share a single entry
+    // in the AVLTree, and are linked together in a linked
+    // list, using nextEntry.
+    void* pointer;
+    size_t size;
+    FreeListEntry* nextEntry;
+
+    // These fields are used by AVLTree.
+    FreeListEntry* less;
+    FreeListEntry* greater;
+    int balanceFactor;
+};
+
+// Abstractor class for use in AVLTree.
+// Nodes in the AVLTree are of type FreeListEntry, keyed on
+// (and thus sorted by) their size.
+struct AVLTreeAbstractorForFreeList {
+    typedef FreeListEntry* handle;
+    typedef int32_t size;
+    typedef size_t key;
+
+    handle get_less(handle h) { return h->less; }
+    void set_less(handle h, handle lh) { h->less = lh; }
+    handle get_greater(handle h) { return h->greater; }
+    void set_greater(handle h, handle gh) { h->greater = gh; }
+    int get_balance_factor(handle h) { return h->balanceFactor; }
+    void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }
+
+    static handle null() { return 0; }
+
+    int compare_key_key(key va, key vb) { return va - vb; }
+    int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
+    int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
+};
+
+// Used to reverse sort an array of FreeListEntry pointers.
+static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
+{
+    FreeListEntry* left = *(FreeListEntry**)leftPtr;
+    FreeListEntry* right = *(FreeListEntry**)rightPtr;
+
+    return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
+}
+
+// Used to reverse sort an array of pointers.
+static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
+{
+    void* left = *(void**)leftPtr;
+    void* right = *(void**)rightPtr;
+
+    return (intptr_t)right - (intptr_t)left;
+}
+
+class FixedVMPoolAllocator
+{
+    // The free list is stored in a sorted tree.
+    typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;
+
+    // Use madvise as apropriate to prevent freed pages from being spilled,
+    // and to attempt to ensure that used memory is reported correctly.
+#if HAVE(MADV_FREE_REUSE)
+    void release(void* position, size_t size)
+    {
+        while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
+    }
+
+    void reuse(void* position, size_t size)
+    {
+        while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
+    }
+#elif HAVE(MADV_DONTNEED)
+    void release(void* position, size_t size)
+    {
+        while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
+    }
+
+    void reuse(void*, size_t) {}
+#else
+    void release(void*, size_t) {}
+    void reuse(void*, size_t) {}
+#endif
+
+    // All addition to the free list should go through this method, rather than
+    // calling insert directly, to avoid multiple entries beging added with the
+    // same key.  All nodes being added should be singletons, they should not
+    // already be a part of a chain.
+    void addToFreeList(FreeListEntry* entry)
+    {
+        ASSERT(!entry->nextEntry);
+
+        if (entry->size == m_commonSize) {
+            m_commonSizedAllocations.append(entry->pointer);
+            delete entry;
+        } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
+            // m_freeList already contain an entry for this size - insert this node into the chain.
+            entry->nextEntry = entryInFreeList->nextEntry;
+            entryInFreeList->nextEntry = entry;
+        } else
+            m_freeList.insert(entry);
+    }
+
+    // We do not attempt to coalesce addition, which may lead to fragmentation;
+    // instead we periodically perform a sweep to try to coalesce neigboring
+    // entries in m_freeList.  Presently this is triggered at the point 16MB
+    // of memory has been released.
+    void coalesceFreeSpace()
+    {
+        Vector<FreeListEntry*> freeListEntries;
+        SizeSortedFreeTree::Iterator iter;
+        iter.start_iter_least(m_freeList);
+
+        // Empty m_freeList into a Vector.
+        for (FreeListEntry* entry; (entry = *iter); ++iter) {
+            // Each entry in m_freeList might correspond to multiple
+            // free chunks of memory (of the same size).  Walk the chain
+            // (this is likely of couse only be one entry long!) adding
+            // each entry to the Vector (at reseting the next in chain
+            // pointer to separate each node out).
+            FreeListEntry* next;
+            do {
+                next = entry->nextEntry;
+                entry->nextEntry = 0;
+                freeListEntries.append(entry);
+            } while ((entry = next));
+        }
+        // All entries are now in the Vector; purge the tree.
+        m_freeList.purge();
+
+        // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
+        // We reverse-sort so that we can logically work forwards through memory,
+        // whilst popping items off the end of the Vectors using last() and removeLast().
+        qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
+        qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);
+
+        // The entries from m_commonSizedAllocations that cannot be
+        // coalesced into larger chunks will be temporarily stored here.
+        Vector<void*> newCommonSizedAllocations;
+
+        // Keep processing so long as entries remain in either of the vectors.
+        while (freeListEntries.size() || m_commonSizedAllocations.size()) {
+            // We're going to try to find a FreeListEntry node that we can coalesce onto.
+            FreeListEntry* coalescionEntry = 0;
+
+            // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
+            if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
+                // Pop an item from the m_commonSizedAllocations vector - this is the lowest
+                // addressed free chunk.  Find out the begin and end addresses of the memory chunk.
+                void* begin = m_commonSizedAllocations.last();
+                void* end = (void*)((intptr_t)begin + m_commonSize);
+                m_commonSizedAllocations.removeLast();
+
+                // Try to find another free chunk abutting onto the end of the one we have already found.
+                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
+                    // There is an existing FreeListEntry for the next chunk of memory!
+                    // we can reuse this.  Pop it off the end of m_freeList.
+                    coalescionEntry = freeListEntries.last();
+                    freeListEntries.removeLast();
+                    // Update the existing node to include the common-sized chunk that we also found. 
+                    coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
+                    coalescionEntry->size += m_commonSize;
+                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
+                    // There is a second common-sized chunk that can be coalesced.
+                    // Allocate a new node.
+                    m_commonSizedAllocations.removeLast();
+                    coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
+                } else {
+                    // Nope - this poor little guy is all on his own. :-(
+                    // Add him into the newCommonSizedAllocations vector for now, we're
+                    // going to end up adding him back into the m_commonSizedAllocations
+                    // list when we're done.
+                    newCommonSizedAllocations.append(begin);
+                    continue;
+                }
+            } else {
+                ASSERT(freeListEntries.size());
+                ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
+                // The lowest addressed item is from m_freeList; pop it from the Vector.
+                coalescionEntry = freeListEntries.last();
+                freeListEntries.removeLast();
+            }
+            
+            // Right, we have a FreeListEntry, we just need check if there is anything else
+            // to coalesce onto the end.
+            ASSERT(coalescionEntry);
+            while (true) {
+                // Calculate the end address of the chunk we have found so far.
+                void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);
+
+                // Is there another chunk adjacent to the one we already have?
+                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
+                    // Yes - another FreeListEntry -pop it from the list.
+                    FreeListEntry* coalescee = freeListEntries.last();
+                    freeListEntries.removeLast();
+                    // Add it's size onto our existing node.
+                    coalescionEntry->size += coalescee->size;
+                    delete coalescee;
+                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
+                    // We can coalesce the next common-sized chunk.
+                    m_commonSizedAllocations.removeLast();
+                    coalescionEntry->size += m_commonSize;
+                } else
+                    break; // Nope, nothing to be added - stop here.
+            }
+
+            // We've coalesced everything we can onto the current chunk.
+            // Add it back into m_freeList.
+            addToFreeList(coalescionEntry);
+        }
+
+        // All chunks of free memory larger than m_commonSize should be
+        // back in m_freeList by now.  All that remains to be done is to
+        // copy the contents on the newCommonSizedAllocations back into
+        // the m_commonSizedAllocations Vector.
+        ASSERT(m_commonSizedAllocations.size() == 0);
+        m_commonSizedAllocations.append(newCommonSizedAllocations);
+    }
+
+public:
+
+    FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
+        : m_commonSize(commonSize)
+        , m_countFreedSinceLastCoalesce(0)
+        , m_totalHeapSize(totalHeapSize)
+    {
+        // Cook up an address to allocate at, using the following recipe:
+        //   17 bits of zero, stay in userspace kids.
+        //   26 bits of randomness for ASLR.
+        //   21 bits of zero, at least stay aligned within one level of the pagetables.
+        //
+        // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
+        // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
+        // 2^24, which should put up somewhere in the middle of usespace (in the address range
+        // 0x200000000000 .. 0x5fffffffffff).
+        intptr_t randomLocation = 0;
+#if VM_POOL_ASLR
+        randomLocation = arc4random() & ((1 << 25) - 1);
+        randomLocation += (1 << 24);
+        randomLocation <<= 21;
+#endif
+        m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
+
+        if (m_base) {
+            // For simplicity, we keep all memory in m_freeList in a 'released' state.
+            // This means that we can simply reuse all memory when allocating, without
+            // worrying about it's previous state, and also makes coalescing m_freeList
+            // simpler since we need not worry about the possibility of coalescing released
+            // chunks with non-released ones.
+            release(m_base, m_totalHeapSize);
+            m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
+        }
+#if !ENABLE(INTERPRETER)
+        else
+            CRASH();
+#endif
+    }
+
+    void* alloc(size_t size)
+    {
+#if ENABLE(INTERPRETER)
+        if (!m_base)
+            return 0;
+#else
+        ASSERT(m_base);
+#endif
+        void* result;
+
+        // Freed allocations of the common size are not stored back into the main
+        // m_freeList, but are instead stored in a separate vector.  If the request
+        // is for a common sized allocation, check this list.
+        if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
+            result = m_commonSizedAllocations.last();
+            m_commonSizedAllocations.removeLast();
+        } else {
+            // Serach m_freeList for a suitable sized chunk to allocate memory from.
+            FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
+
+            // This would be bad news.
+            if (!entry) {
+                // Errk!  Lets take a last-ditch desparation attempt at defragmentation...
+                coalesceFreeSpace();
+                // Did that free up a large enough chunk?
+                entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
+                // No?...  *BOOM!*
+                if (!entry)
+                    CRASH();
+            }
+            ASSERT(entry->size != m_commonSize);
+
+            // Remove the entry from m_freeList.  But! -
+            // Each entry in the tree may represent a chain of multiple chunks of the
+            // same size, and we only want to remove one on them.  So, if this entry
+            // does have a chain, just remove the first-but-one item from the chain.
+            if (FreeListEntry* next = entry->nextEntry) {
+                // We're going to leave 'entry' in the tree; remove 'next' from its chain.
+                entry->nextEntry = next->nextEntry;
+                next->nextEntry = 0;
+                entry = next;
+            } else
+                m_freeList.remove(entry->size);
+
+            // Whoo!, we have a result!
+            ASSERT(entry->size >= size);
+            result = entry->pointer;
+
+            // If the allocation exactly fits the chunk we found in the,
+            // m_freeList then the FreeListEntry node is no longer needed.
+            if (entry->size == size)
+                delete entry;
+            else {
+                // There is memory left over, and it is not of the common size.
+                // We can reuse the existing FreeListEntry node to add this back
+                // into m_freeList.
+                entry->pointer = (void*)((intptr_t)entry->pointer + size);
+                entry->size -= size;
+                addToFreeList(entry);
+            }
+        }
+
+        // Call reuse to report to the operating system that this memory is in use.
+        ASSERT(isWithinVMPool(result, size));
+        reuse(result, size);
+        return result;
+    }
+
+    void free(void* pointer, size_t size)
+    {
+        ASSERT(m_base);
+        // Call release to report to the operating system that this
+        // memory is no longer in use, and need not be paged out.
+        ASSERT(isWithinVMPool(pointer, size));
+        release(pointer, size);
+
+        // Common-sized allocations are stored in the m_commonSizedAllocations
+        // vector; all other freed chunks are added to m_freeList.
+        if (size == m_commonSize)
+            m_commonSizedAllocations.append(pointer);
+        else
+            addToFreeList(new FreeListEntry(pointer, size));
+
+        // Do some housekeeping.  Every time we reach a point that
+        // 16MB of allocations have been freed, sweep m_freeList
+        // coalescing any neighboring fragments.
+        m_countFreedSinceLastCoalesce += size;
+        if (m_countFreedSinceLastCoalesce >= COALESCE_LIMIT) {
+            m_countFreedSinceLastCoalesce = 0;
+            coalesceFreeSpace();
+        }
+    }
+
+    bool isValid() const { return !!m_base; }
+
+private:
+
+#ifndef NDEBUG
+    bool isWithinVMPool(void* pointer, size_t size)
+    {
+        return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
+    }
+#endif
+
+    // Freed space from the most common sized allocations will be held in this list, ...
+    const size_t m_commonSize;
+    Vector<void*> m_commonSizedAllocations;
+
+    // ... and all other freed allocations are held in m_freeList.
+    SizeSortedFreeTree m_freeList;
+
+    // This is used for housekeeping, to trigger defragmentation of the freed lists.
+    size_t m_countFreedSinceLastCoalesce;
+
+    void* m_base;
+    size_t m_totalHeapSize;
+};
+
+void ExecutableAllocator::intializePageSize()
+{
+    ExecutableAllocator::pageSize = getpagesize();
+}
+
+static FixedVMPoolAllocator* allocator = 0;
+static SpinLock spinlock = SPINLOCK_INITIALIZER;
+
+bool ExecutableAllocator::isValid() const
+{
+    SpinLockHolder lock_holder(&spinlock);
+    if (!allocator)
+        allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, VM_POOL_SIZE);
+    return allocator->isValid();
+}
+
+ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
+{
+    SpinLockHolder lock_holder(&spinlock);
+    
+    ASSERT(allocator);
+    ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
+    return alloc;
+}
+
+void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation) 
+{
+    SpinLockHolder lock_holder(&spinlock);
+
+    ASSERT(allocator);
+    allocator->free(allocation.pages, allocation.size);
+}
+
+}
+
+
+#endif // HAVE(ASSEMBLER)