|
1 // Copyright (c) 2007, Google Inc. |
|
2 // All rights reserved. |
|
3 // |
|
4 // Redistribution and use in source and binary forms, with or without |
|
5 // modification, are permitted provided that the following conditions are |
|
6 // met: |
|
7 // |
|
8 // * Redistributions of source code must retain the above copyright |
|
9 // notice, this list of conditions and the following disclaimer. |
|
10 // * Redistributions in binary form must reproduce the above |
|
11 // copyright notice, this list of conditions and the following disclaimer |
|
12 // in the documentation and/or other materials provided with the |
|
13 // distribution. |
|
14 // * Neither the name of Google Inc. nor the names of its |
|
15 // contributors may be used to endorse or promote products derived from |
|
16 // this software without specific prior written permission. |
|
17 // |
|
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
29 |
|
30 // --- |
|
31 // Author: Geoff Pike |
|
32 // |
|
33 // This file provides a minimal cache that can hold a <key, value> pair |
|
34 // with little if any wasted space. The types of the key and value |
|
35 // must be unsigned integral types or at least have unsigned semantics |
|
36 // for >>, casting, and similar operations. |
|
37 // |
|
38 // Synchronization is not provided. However, the cache is implemented |
|
39 // as an array of cache entries whose type is chosen at compile time. |
|
40 // If a[i] is atomic on your hardware for the chosen array type then |
|
41 // raciness will not necessarily lead to bugginess. The cache entries |
|
42 // must be large enough to hold a partial key and a value packed |
|
43 // together. The partial keys are bit strings of length |
|
44 // kKeybits - kHashbits, and the values are bit strings of length kValuebits. |
|
45 // |
|
46 // In an effort to use minimal space, every cache entry represents |
|
47 // some <key, value> pair; the class provides no way to mark a cache |
|
48 // entry as empty or uninitialized. In practice, you may want to have |
|
49 // reserved keys or values to get around this limitation. For example, in |
|
50 // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as |
|
51 // "unknown sizeclass." |
|
52 // |
|
53 // Usage Considerations |
|
54 // -------------------- |
|
55 // |
|
56 // kHashbits controls the size of the cache. The best value for |
|
57 // kHashbits will of course depend on the application. Perhaps try |
|
58 // tuning the value of kHashbits by measuring different values on your |
|
59 // favorite benchmark. Also remember not to be a pig; other |
|
60 // programs that need resources may suffer if you are. |
|
61 // |
|
62 // The main uses for this class will be when performance is |
|
63 // critical and there's a convenient type to hold the cache's |
|
64 // entries. As described above, the number of bits required |
|
65 // for a cache entry is (kKeybits - kHashbits) + kValuebits. Suppose |
|
66 // kKeybits + kValuebits is 43. Then it probably makes sense to |
|
67 // chose kHashbits >= 11 so that cache entries fit in a uint32. |
|
68 // |
|
69 // On the other hand, suppose kKeybits = kValuebits = 64. Then |
|
70 // using this class may be less worthwhile. You'll probably |
|
71 // be using 128 bits for each entry anyway, so maybe just pick |
|
72 // a hash function, H, and use an array indexed by H(key): |
|
73 // void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); } |
|
74 // V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... } |
|
75 // etc. |
|
76 // |
|
77 // Further Details |
|
78 // --------------- |
|
79 // |
|
80 // For caches used only by one thread, the following is true: |
|
81 // 1. For a cache c, |
|
82 // (c.Put(key, value), c.GetOrDefault(key, 0)) == value |
|
83 // and |
|
84 // (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value |
|
85 // if the elided code contains no c.Put calls. |
|
86 // |
|
87 // 2. Has(key) will return false if no <key, value> pair with that key |
|
88 // has ever been Put. However, a newly initialized cache will have |
|
89 // some <key, value> pairs already present. When you create a new |
|
90 // cache, you must specify an "initial value." The initialization |
|
91 // procedure is equivalent to Clear(initial_value), which is |
|
92 // equivalent to Put(k, initial_value) for all keys k from 0 to |
|
93 // 2^kHashbits - 1. |
|
94 // |
|
95 // 3. If key and key' differ then the only way Put(key, value) may |
|
96 // cause Has(key') to change is that Has(key') may change from true to |
|
97 // false. Furthermore, a Put() call that doesn't change Has(key') |
|
98 // doesn't change GetOrDefault(key', ...) either. |
|
99 // |
|
100 // Implementation details: |
|
101 // |
|
102 // This is a direct-mapped cache with 2^kHashbits entries; |
|
103 // the hash function simply takes the low bits of the key. |
|
104 // So, we don't have to store the low bits of the key in the entries. |
|
105 // Instead, an entry is the high bits of a key and a value, packed |
|
106 // together. E.g., a 20 bit key and a 7 bit value only require |
|
107 // a uint16 for each entry if kHashbits >= 11. |
|
108 // |
|
109 // Alternatives to this scheme will be added as needed. |
|
110 |
|
111 #ifndef TCMALLOC_PACKED_CACHE_INL_H__ |
|
112 #define TCMALLOC_PACKED_CACHE_INL_H__ |
|
113 |
|
114 #ifndef WTF_CHANGES |
|
115 #include "base/basictypes.h" // for COMPILE_ASSERT |
|
116 #include "base/logging.h" // for DCHECK |
|
117 #endif |
|
118 |
|
119 #ifndef DCHECK_EQ |
|
120 #define DCHECK_EQ(val1, val2) ASSERT((val1) == (val2)) |
|
121 #endif |
|
122 |
|
123 // A safe way of doing "(1 << n) - 1" -- without worrying about overflow |
|
124 // Note this will all be resolved to a constant expression at compile-time |
|
125 #define N_ONES_(IntType, N) \ |
|
126 ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 + \ |
|
127 (static_cast<IntType>(1) << ((N)-1))) ) |
|
128 |
|
129 // The types K and V provide upper bounds on the number of valid keys |
|
130 // and values, but we explicitly require the keys to be less than |
|
131 // 2^kKeybits and the values to be less than 2^kValuebits. The size of |
|
132 // the table is controlled by kHashbits, and the type of each entry in |
|
133 // the cache is T. See also the big comment at the top of the file. |
|
134 template <int kKeybits, typename T> |
|
135 class PackedCache { |
|
136 public: |
|
137 typedef uintptr_t K; |
|
138 typedef size_t V; |
|
139 static const size_t kHashbits = 12; |
|
140 static const size_t kValuebits = 8; |
|
141 |
|
142 explicit PackedCache(V initial_value) { |
|
143 COMPILE_ASSERT(kKeybits <= sizeof(K) * 8, key_size); |
|
144 COMPILE_ASSERT(kValuebits <= sizeof(V) * 8, value_size); |
|
145 COMPILE_ASSERT(kHashbits <= kKeybits, hash_function); |
|
146 COMPILE_ASSERT(kKeybits - kHashbits + kValuebits <= kTbits, |
|
147 entry_size_must_be_big_enough); |
|
148 Clear(initial_value); |
|
149 } |
|
150 |
|
151 void Put(K key, V value) { |
|
152 DCHECK_EQ(key, key & kKeyMask); |
|
153 DCHECK_EQ(value, value & kValueMask); |
|
154 array_[Hash(key)] = static_cast<T>(KeyToUpper(key) | value); |
|
155 } |
|
156 |
|
157 bool Has(K key) const { |
|
158 DCHECK_EQ(key, key & kKeyMask); |
|
159 return KeyMatch(array_[Hash(key)], key); |
|
160 } |
|
161 |
|
162 V GetOrDefault(K key, V default_value) const { |
|
163 // As with other code in this class, we touch array_ as few times |
|
164 // as we can. Assuming entries are read atomically (e.g., their |
|
165 // type is uintptr_t on most hardware) then certain races are |
|
166 // harmless. |
|
167 DCHECK_EQ(key, key & kKeyMask); |
|
168 T entry = array_[Hash(key)]; |
|
169 return KeyMatch(entry, key) ? EntryToValue(entry) : default_value; |
|
170 } |
|
171 |
|
172 void Clear(V value) { |
|
173 DCHECK_EQ(value, value & kValueMask); |
|
174 for (int i = 0; i < 1 << kHashbits; i++) { |
|
175 array_[i] = static_cast<T>(value); |
|
176 } |
|
177 } |
|
178 |
|
179 private: |
|
180 // We are going to pack a value and the upper part of a key into |
|
181 // an entry of type T. The UPPER type is for the upper part of a key, |
|
182 // after the key has been masked and shifted for inclusion in an entry. |
|
183 typedef T UPPER; |
|
184 |
|
185 static V EntryToValue(T t) { return t & kValueMask; } |
|
186 |
|
187 static UPPER EntryToUpper(T t) { return t & kUpperMask; } |
|
188 |
|
189 // If v is a V and u is an UPPER then you can create an entry by |
|
190 // doing u | v. kHashbits determines where in a K to find the upper |
|
191 // part of the key, and kValuebits determines where in the entry to put |
|
192 // it. |
|
193 static UPPER KeyToUpper(K k) { |
|
194 const int shift = kHashbits - kValuebits; |
|
195 // Assume kHashbits >= kValuebits. It would be easy to lift this assumption. |
|
196 return static_cast<T>(k >> shift) & kUpperMask; |
|
197 } |
|
198 |
|
199 // This is roughly the inverse of KeyToUpper(). Some of the key has been |
|
200 // thrown away, since KeyToUpper() masks off the low bits of the key. |
|
201 static K UpperToPartialKey(UPPER u) { |
|
202 DCHECK_EQ(u, u & kUpperMask); |
|
203 const int shift = kHashbits - kValuebits; |
|
204 // Assume kHashbits >= kValuebits. It would be easy to lift this assumption. |
|
205 return static_cast<K>(u) << shift; |
|
206 } |
|
207 |
|
208 static size_t Hash(K key) { |
|
209 return static_cast<size_t>(key) & N_ONES_(size_t, kHashbits); |
|
210 } |
|
211 |
|
212 // Does the entry's partial key match the relevant part of the given key? |
|
213 static bool KeyMatch(T entry, K key) { |
|
214 return ((KeyToUpper(key) ^ entry) & kUpperMask) == 0; |
|
215 } |
|
216 |
|
217 static const size_t kTbits = 8 * sizeof(T); |
|
218 static const int kUpperbits = kKeybits - kHashbits; |
|
219 |
|
220 // For masking a K. |
|
221 static const K kKeyMask = N_ONES_(K, kKeybits); |
|
222 |
|
223 // For masking a T. |
|
224 static const T kUpperMask = N_ONES_(T, kUpperbits) << kValuebits; |
|
225 |
|
226 // For masking a V or a T. |
|
227 static const V kValueMask = N_ONES_(V, kValuebits); |
|
228 |
|
229 T array_[1 << kHashbits]; |
|
230 }; |
|
231 |
|
232 #undef N_ONES_ |
|
233 |
|
234 #endif // TCMALLOC_PACKED_CACHE_INL_H__ |