|
1 /**************************************************************************** |
|
2 ** |
|
3 ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). |
|
4 ** All rights reserved. |
|
5 ** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 ** |
|
7 ** This file is part of the QtGui module of the Qt Toolkit. |
|
8 ** |
|
9 ** $QT_BEGIN_LICENSE:LGPL$ |
|
10 ** No Commercial Usage |
|
11 ** This file contains pre-release code and may not be distributed. |
|
12 ** You may use this file in accordance with the terms and conditions |
|
13 ** contained in the Technology Preview License Agreement accompanying |
|
14 ** this package. |
|
15 ** |
|
16 ** GNU Lesser General Public License Usage |
|
17 ** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 ** General Public License version 2.1 as published by the Free Software |
|
19 ** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 ** packaging of this file. Please review the following information to |
|
21 ** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 ** |
|
24 ** In addition, as a special exception, Nokia gives you certain additional |
|
25 ** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 ** |
|
28 ** If you have questions regarding the use of this file, please contact |
|
29 ** Nokia at qt-info@nokia.com. |
|
30 ** |
|
31 ** |
|
32 ** |
|
33 ** |
|
34 ** |
|
35 ** |
|
36 ** |
|
37 ** |
|
38 ** $QT_END_LICENSE$ |
|
39 ** |
|
40 ****************************************************************************/ |
|
41 |
|
42 #include "qsimplex_p.h" |
|
43 |
|
44 #include <QtCore/qset.h> |
|
45 #include <QtCore/qdebug.h> |
|
46 |
|
47 #include <stdlib.h> |
|
48 |
|
49 QT_BEGIN_NAMESPACE |
|
50 |
|
51 /*! |
|
52 \internal |
|
53 \class QSimplex |
|
54 |
|
55 The QSimplex class is a Linear Programming problem solver based on the two-phase |
|
56 simplex method. |
|
57 |
|
58 It takes a set of QSimplexConstraints as its restrictive constraints and an |
|
59 additional QSimplexConstraint as its objective function. Then methods to maximize |
|
60 and minimize the problem solution are provided. |
|
61 |
|
62 The two-phase simplex method is based on the following steps: |
|
63 First phase: |
|
64 1.a) Modify the original, complex, and possibly not feasible problem, into a new, |
|
65 easy to solve problem. |
|
66 1.b) Set as the objective of the new problem, a feasible solution for the original |
|
67 complex problem. |
|
68 1.c) Run simplex to optimize the modified problem and check whether a solution for |
|
69 the original problem exists. |
|
70 |
|
71 Second phase: |
|
72 2.a) Go back to the original problem with the feasibl (but not optimal) solution |
|
73 found in the first phase. |
|
74 2.b) Set the original objective. |
|
75 3.c) Run simplex to optimize the original problem towards its optimal solution. |
|
76 */ |
|
77 |
|
78 /*! |
|
79 \internal |
|
80 */ |
|
81 QSimplex::QSimplex() : objective(0), rows(0), columns(0), firstArtificial(0), matrix(0) |
|
82 { |
|
83 } |
|
84 |
|
85 /*! |
|
86 \internal |
|
87 */ |
|
88 QSimplex::~QSimplex() |
|
89 { |
|
90 clearDataStructures(); |
|
91 } |
|
92 |
|
93 /*! |
|
94 \internal |
|
95 */ |
|
96 void QSimplex::clearDataStructures() |
|
97 { |
|
98 if (matrix == 0) |
|
99 return; |
|
100 |
|
101 // Matrix |
|
102 rows = 0; |
|
103 columns = 0; |
|
104 firstArtificial = 0; |
|
105 free(matrix); |
|
106 matrix = 0; |
|
107 |
|
108 // Constraints |
|
109 for (int i = 0; i < constraints.size(); ++i) { |
|
110 delete constraints[i]->helper.first; |
|
111 delete constraints[i]->artificial; |
|
112 delete constraints[i]; |
|
113 } |
|
114 constraints.clear(); |
|
115 |
|
116 // Other |
|
117 variables.clear(); |
|
118 objective = 0; |
|
119 } |
|
120 |
|
121 /*! |
|
122 \internal |
|
123 Sets the new constraints in the simplex solver and returns whether the problem |
|
124 is feasible. |
|
125 |
|
126 This method sets the new constraints, normalizes them, creates the simplex matrix |
|
127 and runs the first simplex phase. |
|
128 */ |
|
129 bool QSimplex::setConstraints(const QList<QSimplexConstraint *> newConstraints) |
|
130 { |
|
131 //////////////////////////// |
|
132 // Reset to initial state // |
|
133 //////////////////////////// |
|
134 clearDataStructures(); |
|
135 |
|
136 if (newConstraints.isEmpty()) |
|
137 return true; // we are ok with no constraints |
|
138 |
|
139 // Make deep copy of constraints. We need this copy because we may change |
|
140 // them in the simplification method. |
|
141 for (int i = 0; i < newConstraints.size(); ++i) { |
|
142 QSimplexConstraint *c = new QSimplexConstraint; |
|
143 c->constant = newConstraints[i]->constant; |
|
144 c->ratio = newConstraints[i]->ratio; |
|
145 c->variables = newConstraints[i]->variables; |
|
146 constraints << c; |
|
147 } |
|
148 |
|
149 // Remove constraints of type Var == K and replace them for their value. |
|
150 if (!simplifyConstraints(&constraints)) { |
|
151 qWarning() << "QSimplex: No feasible solution!"; |
|
152 clearDataStructures(); |
|
153 return false; |
|
154 } |
|
155 |
|
156 /////////////////////////////////////// |
|
157 // Prepare variables and constraints // |
|
158 /////////////////////////////////////// |
|
159 |
|
160 // Set Variables direct mapping. |
|
161 // "variables" is a list that provides a stable, indexed list of all variables |
|
162 // used in this problem. |
|
163 QSet<QSimplexVariable *> variablesSet; |
|
164 for (int i = 0; i < constraints.size(); ++i) |
|
165 variablesSet += \ |
|
166 QSet<QSimplexVariable *>::fromList(constraints[i]->variables.keys()); |
|
167 variables = variablesSet.toList(); |
|
168 |
|
169 // Set Variables reverse mapping |
|
170 // We also need to be able to find the index for a given variable, to do that |
|
171 // we store in each variable its index. |
|
172 for (int i = 0; i < variables.size(); ++i) { |
|
173 // The variable "0" goes at the column "1", etc... |
|
174 variables[i]->index = i + 1; |
|
175 } |
|
176 |
|
177 // Normalize Constraints |
|
178 // In this step, we prepare the constraints in two ways: |
|
179 // Firstly, we modify all constraints of type "LessOrEqual" or "MoreOrEqual" |
|
180 // by the adding slack or surplus variables and making them "Equal" constraints. |
|
181 // Secondly, we need every single constraint to have a direct, easy feasible |
|
182 // solution. Constraints that have slack variables are already easy to solve, |
|
183 // to all the others we add artificial variables. |
|
184 // |
|
185 // At the end we modify the constraints as follows: |
|
186 // - LessOrEqual: SLACK variable is added. |
|
187 // - Equal: ARTIFICIAL variable is added. |
|
188 // - More or Equal: ARTIFICIAL and SURPLUS variables are added. |
|
189 int variableIndex = variables.size(); |
|
190 QList <QSimplexVariable *> artificialList; |
|
191 |
|
192 for (int i = 0; i < constraints.size(); ++i) { |
|
193 QSimplexVariable *slack; |
|
194 QSimplexVariable *surplus; |
|
195 QSimplexVariable *artificial; |
|
196 |
|
197 Q_ASSERT(constraints[i]->helper.first == 0); |
|
198 Q_ASSERT(constraints[i]->artificial == 0); |
|
199 |
|
200 switch(constraints[i]->ratio) { |
|
201 case QSimplexConstraint::LessOrEqual: |
|
202 slack = new QSimplexVariable; |
|
203 slack->index = ++variableIndex; |
|
204 constraints[i]->helper.first = slack; |
|
205 constraints[i]->helper.second = 1.0; |
|
206 break; |
|
207 case QSimplexConstraint::MoreOrEqual: |
|
208 surplus = new QSimplexVariable; |
|
209 surplus->index = ++variableIndex; |
|
210 constraints[i]->helper.first = surplus; |
|
211 constraints[i]->helper.second = -1.0; |
|
212 // fall through |
|
213 case QSimplexConstraint::Equal: |
|
214 artificial = new QSimplexVariable; |
|
215 constraints[i]->artificial = artificial; |
|
216 artificialList += constraints[i]->artificial; |
|
217 break; |
|
218 } |
|
219 } |
|
220 |
|
221 // All original, slack and surplus have already had its index set |
|
222 // at this point. We now set the index of the artificial variables |
|
223 // as to ensure they are at the end of the variable list and therefore |
|
224 // can be easily removed at the end of this method. |
|
225 firstArtificial = variableIndex + 1; |
|
226 for (int i = 0; i < artificialList.size(); ++i) |
|
227 artificialList[i]->index = ++variableIndex; |
|
228 artificialList.clear(); |
|
229 |
|
230 ///////////////////////////// |
|
231 // Fill the Simplex matrix // |
|
232 ///////////////////////////// |
|
233 |
|
234 // One for each variable plus the Basic and BFS columns (first and last) |
|
235 columns = variableIndex + 2; |
|
236 // One for each constraint plus the objective function |
|
237 rows = constraints.size() + 1; |
|
238 |
|
239 matrix = (qreal *)malloc(sizeof(qreal) * columns * rows); |
|
240 if (!matrix) { |
|
241 qWarning() << "QSimplex: Unable to allocate memory!"; |
|
242 return false; |
|
243 } |
|
244 for (int i = columns * rows - 1; i >= 0; --i) |
|
245 matrix[i] = 0.0; |
|
246 |
|
247 // Fill Matrix |
|
248 for (int i = 1; i <= constraints.size(); ++i) { |
|
249 QSimplexConstraint *c = constraints[i - 1]; |
|
250 |
|
251 if (c->artificial) { |
|
252 // Will use artificial basic variable |
|
253 setValueAt(i, 0, c->artificial->index); |
|
254 setValueAt(i, c->artificial->index, 1.0); |
|
255 |
|
256 if (c->helper.second != 0.0) { |
|
257 // Surplus variable |
|
258 setValueAt(i, c->helper.first->index, c->helper.second); |
|
259 } |
|
260 } else { |
|
261 // Slack is used as the basic variable |
|
262 Q_ASSERT(c->helper.second == 1.0); |
|
263 setValueAt(i, 0, c->helper.first->index); |
|
264 setValueAt(i, c->helper.first->index, 1.0); |
|
265 } |
|
266 |
|
267 QHash<QSimplexVariable *, qreal>::const_iterator iter; |
|
268 for (iter = c->variables.constBegin(); |
|
269 iter != c->variables.constEnd(); |
|
270 ++iter) { |
|
271 setValueAt(i, iter.key()->index, iter.value()); |
|
272 } |
|
273 |
|
274 setValueAt(i, columns - 1, c->constant); |
|
275 } |
|
276 |
|
277 // Set objective for the first-phase Simplex. |
|
278 // Z = -1 * sum_of_artificial_vars |
|
279 for (int j = firstArtificial; j < columns - 1; ++j) |
|
280 setValueAt(0, j, 1.0); |
|
281 |
|
282 // Maximize our objective (artificial vars go to zero) |
|
283 solveMaxHelper(); |
|
284 |
|
285 // If there is a solution where the sum of all artificial |
|
286 // variables is zero, then all of them can be removed and yet |
|
287 // we will have a feasible (but not optimal) solution for the |
|
288 // original problem. |
|
289 // Otherwise, we clean up our structures and report there is |
|
290 // no feasible solution. |
|
291 if ((valueAt(0, columns - 1) != 0.0) && (qAbs(valueAt(0, columns - 1)) > 0.00001)) { |
|
292 qWarning() << "QSimplex: No feasible solution!"; |
|
293 clearDataStructures(); |
|
294 return false; |
|
295 } |
|
296 |
|
297 // Remove artificial variables. We already have a feasible |
|
298 // solution for the first problem, thus we don't need them |
|
299 // anymore. |
|
300 clearColumns(firstArtificial, columns - 2); |
|
301 |
|
302 return true; |
|
303 } |
|
304 |
|
305 /*! |
|
306 \internal |
|
307 |
|
308 Run simplex on the current matrix with the current objective. |
|
309 |
|
310 This is the iterative method. The matrix lines are combined |
|
311 as to modify the variable values towards the best solution possible. |
|
312 The method returns when the matrix is in the optimal state. |
|
313 */ |
|
314 void QSimplex::solveMaxHelper() |
|
315 { |
|
316 reducedRowEchelon(); |
|
317 while (iterate()) ; |
|
318 } |
|
319 |
|
320 /*! |
|
321 \internal |
|
322 */ |
|
323 void QSimplex::setObjective(QSimplexConstraint *newObjective) |
|
324 { |
|
325 objective = newObjective; |
|
326 } |
|
327 |
|
328 /*! |
|
329 \internal |
|
330 */ |
|
331 void QSimplex::clearRow(int rowIndex) |
|
332 { |
|
333 qreal *item = matrix + rowIndex * columns; |
|
334 for (int i = 0; i < columns; ++i) |
|
335 item[i] = 0.0; |
|
336 } |
|
337 |
|
338 /*! |
|
339 \internal |
|
340 */ |
|
341 void QSimplex::clearColumns(int first, int last) |
|
342 { |
|
343 for (int i = 0; i < rows; ++i) { |
|
344 qreal *row = matrix + i * columns; |
|
345 for (int j = first; j <= last; ++j) |
|
346 row[j] = 0.0; |
|
347 } |
|
348 } |
|
349 |
|
350 /*! |
|
351 \internal |
|
352 */ |
|
353 void QSimplex::dumpMatrix() |
|
354 { |
|
355 qDebug("---- Simplex Matrix ----\n"); |
|
356 |
|
357 QString str(QLatin1String(" ")); |
|
358 for (int j = 0; j < columns; ++j) |
|
359 str += QString::fromAscii(" <%1 >").arg(j, 2); |
|
360 qDebug("%s", qPrintable(str)); |
|
361 for (int i = 0; i < rows; ++i) { |
|
362 str = QString::fromAscii("Row %1:").arg(i, 2); |
|
363 |
|
364 qreal *row = matrix + i * columns; |
|
365 for (int j = 0; j < columns; ++j) |
|
366 str += QString::fromAscii("%1").arg(row[j], 7, 'f', 2); |
|
367 qDebug("%s", qPrintable(str)); |
|
368 } |
|
369 qDebug("------------------------\n"); |
|
370 } |
|
371 |
|
372 /*! |
|
373 \internal |
|
374 */ |
|
375 void QSimplex::combineRows(int toIndex, int fromIndex, qreal factor) |
|
376 { |
|
377 if (!factor) |
|
378 return; |
|
379 |
|
380 qreal *from = matrix + fromIndex * columns; |
|
381 qreal *to = matrix + toIndex * columns; |
|
382 |
|
383 for (int j = 1; j < columns; ++j) { |
|
384 qreal value = from[j]; |
|
385 |
|
386 // skip to[j] = to[j] + factor*0.0 |
|
387 if (value == 0.0) |
|
388 continue; |
|
389 |
|
390 to[j] += factor * value; |
|
391 |
|
392 // ### Avoid Numerical errors |
|
393 if (qAbs(to[j]) < 0.0000000001) |
|
394 to[j] = 0.0; |
|
395 } |
|
396 } |
|
397 |
|
398 /*! |
|
399 \internal |
|
400 */ |
|
401 int QSimplex::findPivotColumn() |
|
402 { |
|
403 qreal min = 0; |
|
404 int minIndex = -1; |
|
405 |
|
406 for (int j = 0; j < columns-1; ++j) { |
|
407 if (valueAt(0, j) < min) { |
|
408 min = valueAt(0, j); |
|
409 minIndex = j; |
|
410 } |
|
411 } |
|
412 |
|
413 return minIndex; |
|
414 } |
|
415 |
|
416 /*! |
|
417 \internal |
|
418 |
|
419 For a given pivot column, find the pivot row. That is, the row with the |
|
420 minimum associated "quotient" where: |
|
421 |
|
422 - quotient is the division of the value in the last column by the value |
|
423 in the pivot column. |
|
424 - rows with value less or equal to zero are ignored |
|
425 - if two rows have the same quotient, lines are chosen based on the |
|
426 highest variable index (value in the first column) |
|
427 |
|
428 The last condition avoids a bug where artificial variables would be |
|
429 left behind for the second-phase simplex, and with 'good' |
|
430 constraints would be removed before it, what would lead to incorrect |
|
431 results. |
|
432 */ |
|
433 int QSimplex::pivotRowForColumn(int column) |
|
434 { |
|
435 qreal min = qreal(999999999999.0); // ### |
|
436 int minIndex = -1; |
|
437 |
|
438 for (int i = 1; i < rows; ++i) { |
|
439 qreal divisor = valueAt(i, column); |
|
440 if (divisor <= 0) |
|
441 continue; |
|
442 |
|
443 qreal quotient = valueAt(i, columns - 1) / divisor; |
|
444 if (quotient < min) { |
|
445 min = quotient; |
|
446 minIndex = i; |
|
447 } else if ((quotient == min) && (valueAt(i, 0) > valueAt(minIndex, 0))) { |
|
448 minIndex = i; |
|
449 } |
|
450 } |
|
451 |
|
452 return minIndex; |
|
453 } |
|
454 |
|
455 /*! |
|
456 \internal |
|
457 */ |
|
458 void QSimplex::reducedRowEchelon() |
|
459 { |
|
460 for (int i = 1; i < rows; ++i) { |
|
461 int factorInObjectiveRow = valueAt(i, 0); |
|
462 combineRows(0, i, -1 * valueAt(0, factorInObjectiveRow)); |
|
463 } |
|
464 } |
|
465 |
|
466 /*! |
|
467 \internal |
|
468 |
|
469 Does one iteration towards a better solution for the problem. |
|
470 See 'solveMaxHelper'. |
|
471 */ |
|
472 bool QSimplex::iterate() |
|
473 { |
|
474 // Find Pivot column |
|
475 int pivotColumn = findPivotColumn(); |
|
476 if (pivotColumn == -1) |
|
477 return false; |
|
478 |
|
479 // Find Pivot row for column |
|
480 int pivotRow = pivotRowForColumn(pivotColumn); |
|
481 if (pivotRow == -1) { |
|
482 qWarning() << "QSimplex: Unbounded problem!"; |
|
483 return false; |
|
484 } |
|
485 |
|
486 // Normalize Pivot Row |
|
487 qreal pivot = valueAt(pivotRow, pivotColumn); |
|
488 if (pivot != 1.0) |
|
489 combineRows(pivotRow, pivotRow, (1.0 - pivot) / pivot); |
|
490 |
|
491 // Update other rows |
|
492 for (int row=0; row < rows; ++row) { |
|
493 if (row == pivotRow) |
|
494 continue; |
|
495 |
|
496 combineRows(row, pivotRow, -1 * valueAt(row, pivotColumn)); |
|
497 } |
|
498 |
|
499 // Update first column |
|
500 setValueAt(pivotRow, 0, pivotColumn); |
|
501 |
|
502 // dumpMatrix(); |
|
503 // qDebug("------------ end of iteration --------------\n"); |
|
504 return true; |
|
505 } |
|
506 |
|
507 /*! |
|
508 \internal |
|
509 |
|
510 Both solveMin and solveMax are interfaces to this method. |
|
511 |
|
512 The enum solverFactor admits 2 values: Minimum (-1) and Maximum (+1). |
|
513 |
|
514 This method sets the original objective and runs the second phase |
|
515 Simplex to obtain the optimal solution for the problem. As the internal |
|
516 simplex solver is only able to _maximize_ objectives, we handle the |
|
517 minimization case by inverting the original objective and then |
|
518 maximizing it. |
|
519 */ |
|
520 qreal QSimplex::solver(solverFactor factor) |
|
521 { |
|
522 // Remove old objective |
|
523 clearRow(0); |
|
524 |
|
525 // Set new objective in the first row of the simplex matrix |
|
526 qreal resultOffset = 0; |
|
527 QHash<QSimplexVariable *, qreal>::const_iterator iter; |
|
528 for (iter = objective->variables.constBegin(); |
|
529 iter != objective->variables.constEnd(); |
|
530 ++iter) { |
|
531 |
|
532 // Check if the variable was removed in the simplification process. |
|
533 // If so, we save its offset to the objective function and skip adding |
|
534 // it to the matrix. |
|
535 if (iter.key()->index == -1) { |
|
536 resultOffset += iter.value() * iter.key()->result; |
|
537 continue; |
|
538 } |
|
539 |
|
540 setValueAt(0, iter.key()->index, -1 * factor * iter.value()); |
|
541 } |
|
542 |
|
543 solveMaxHelper(); |
|
544 collectResults(); |
|
545 |
|
546 #ifdef QT_DEBUG |
|
547 for (int i = 0; i < constraints.size(); ++i) { |
|
548 Q_ASSERT(constraints[i]->isSatisfied()); |
|
549 } |
|
550 #endif |
|
551 |
|
552 // Return the value calculated by the simplex plus the value of the |
|
553 // fixed variables. |
|
554 return (factor * valueAt(0, columns - 1)) + resultOffset; |
|
555 } |
|
556 |
|
557 /*! |
|
558 \internal |
|
559 Minimize the original objective. |
|
560 */ |
|
561 qreal QSimplex::solveMin() |
|
562 { |
|
563 return solver(Minimum); |
|
564 } |
|
565 |
|
566 /*! |
|
567 \internal |
|
568 Maximize the original objective. |
|
569 */ |
|
570 qreal QSimplex::solveMax() |
|
571 { |
|
572 return solver(Maximum); |
|
573 } |
|
574 |
|
575 /*! |
|
576 \internal |
|
577 |
|
578 Reads results from the simplified matrix and saves them in the |
|
579 "result" member of each QSimplexVariable. |
|
580 */ |
|
581 void QSimplex::collectResults() |
|
582 { |
|
583 // All variables are zero unless overridden below. |
|
584 |
|
585 // ### Is this really needed? Is there any chance that an |
|
586 // important variable remains as non-basic at the end of simplex? |
|
587 for (int i = 0; i < variables.size(); ++i) |
|
588 variables[i]->result = 0; |
|
589 |
|
590 // Basic variables |
|
591 // Update the variable indicated in the first column with the value |
|
592 // in the last column. |
|
593 for (int i = 1; i < rows; ++i) { |
|
594 int index = valueAt(i, 0) - 1; |
|
595 if (index < variables.size()) |
|
596 variables[index]->result = valueAt(i, columns - 1); |
|
597 } |
|
598 } |
|
599 |
|
600 /*! |
|
601 \internal |
|
602 |
|
603 Looks for single-valued variables and remove them from the constraints list. |
|
604 */ |
|
605 bool QSimplex::simplifyConstraints(QList<QSimplexConstraint *> *constraints) |
|
606 { |
|
607 QHash<QSimplexVariable *, qreal> results; // List of single-valued variables |
|
608 bool modified = true; // Any chance more optimization exists? |
|
609 |
|
610 while (modified) { |
|
611 modified = false; |
|
612 |
|
613 // For all constraints |
|
614 QList<QSimplexConstraint *>::iterator iter = constraints->begin(); |
|
615 while (iter != constraints->end()) { |
|
616 QSimplexConstraint *c = *iter; |
|
617 if ((c->ratio == QSimplexConstraint::Equal) && (c->variables.count() == 1)) { |
|
618 // Check whether this is a constraint of type Var == K |
|
619 // If so, save its value to "results". |
|
620 QSimplexVariable *variable = c->variables.constBegin().key(); |
|
621 qreal result = c->constant / c->variables.value(variable); |
|
622 |
|
623 results.insert(variable, result); |
|
624 variable->result = result; |
|
625 variable->index = -1; |
|
626 modified = true; |
|
627 |
|
628 } |
|
629 |
|
630 // Replace known values among their variables |
|
631 QHash<QSimplexVariable *, qreal>::const_iterator r; |
|
632 for (r = results.constBegin(); r != results.constEnd(); ++r) { |
|
633 if (c->variables.contains(r.key())) { |
|
634 c->constant -= r.value() * c->variables.take(r.key()); |
|
635 modified = true; |
|
636 } |
|
637 } |
|
638 |
|
639 // Keep it normalized |
|
640 if (c->constant < 0) |
|
641 c->invert(); |
|
642 |
|
643 if (c->variables.isEmpty()) { |
|
644 // If constraint became empty due to substitution, delete it. |
|
645 if (c->isSatisfied() == false) |
|
646 // We must ensure that the constraint soon to be deleted would not |
|
647 // make the problem unfeasible if left behind. If that's the case, |
|
648 // we return false so the simplex solver can properly report that. |
|
649 return false; |
|
650 |
|
651 delete c; |
|
652 iter = constraints->erase(iter); |
|
653 } else { |
|
654 ++iter; |
|
655 } |
|
656 } |
|
657 } |
|
658 |
|
659 return true; |
|
660 } |
|
661 |
|
662 void QSimplexConstraint::invert() |
|
663 { |
|
664 constant = -constant; |
|
665 ratio = Ratio(2 - ratio); |
|
666 |
|
667 QHash<QSimplexVariable *, qreal>::iterator iter; |
|
668 for (iter = variables.begin(); iter != variables.end(); ++iter) { |
|
669 iter.value() = -iter.value(); |
|
670 } |
|
671 } |
|
672 |
|
673 QT_END_NAMESPACE |