diff -r 4a65cc85c4f3 -r fbd95db6a4e1 engine/sqlite/src/vdbeaux.cpp --- a/engine/sqlite/src/vdbeaux.cpp Wed Apr 28 13:20:05 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,2260 +0,0 @@ -/* -** 2003 September 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used for creating, destroying, and populating -** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior -** to version 2.8.7, all this code was combined into the vdbe.c source file. -** But that file was getting too big so this subroutines were split out. -*/ -#include "sqliteInt.h" -#include -#include "vdbeInt.h" - - - -/* -** When debugging the code generator in a symbolic debugger, one can -** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed -** as they are added to the instruction stream. -*/ -#ifdef SQLITE_DEBUG -int sqlite3_vdbe_addop_trace = 0; -#endif - - -/* -** Create a new virtual database engine. -*/ -Vdbe *sqlite3VdbeCreate(sqlite3 *db){ - Vdbe *p; - p = (Vdbe*)sqlite3DbMallocZero(db, sizeof(Vdbe) ); - if( p==0 ) return 0; - p->db = db; - if( db->pVdbe ){ - db->pVdbe->pPrev = p; - } - p->pNext = db->pVdbe; - p->pPrev = 0; - db->pVdbe = p; - p->magic = VDBE_MAGIC_INIT; - return p; -} - -/* -** Remember the SQL string for a prepared statement. -*/ -void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){ - if( p==0 ) return; - assert( p->zSql==0 ); - p->zSql = sqlite3DbStrNDup(p->db, z, n); -} - -/* -** Return the SQL associated with a prepared statement -*/ -EXPORT_C const char *sqlite3_sql(sqlite3_stmt *pStmt){ - return ((Vdbe *)pStmt)->zSql; -} - -/* -** Swap all content between two VDBE structures. -*/ -void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ - Vdbe tmp, *pTmp; - char *zTmp; - int nTmp; - tmp = *pA; - *pA = *pB; - *pB = tmp; - pTmp = pA->pNext; - pA->pNext = pB->pNext; - pB->pNext = pTmp; - pTmp = pA->pPrev; - pA->pPrev = pB->pPrev; - pB->pPrev = pTmp; - zTmp = pA->zSql; - pA->zSql = pB->zSql; - pB->zSql = zTmp; - nTmp = pA->nSql; - pA->nSql = pB->nSql; - pB->nSql = nTmp; -} - -#ifdef SQLITE_DEBUG -/* -** Turn tracing on or off -*/ -void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ - p->trace = trace; -} -#endif - -/* -** Resize the Vdbe.aOp array so that it contains at least N -** elements. -** -** If an out-of-memory error occurs while resizing the array, -** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that -** any opcodes already allocated can be correctly deallocated -** along with the rest of the Vdbe). -*/ -static void resizeOpArray(Vdbe *p, int N){ - VdbeOp *pNew; - int oldSize = p->nOpAlloc; - pNew = (VdbeOp*)sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op)); - if( pNew ){ - p->nOpAlloc = N; - p->aOp = pNew; - if( N>oldSize ){ - memset(&p->aOp[oldSize], 0, (N-oldSize)*sizeof(Op)); - } - } -} - -/* -** Add a new instruction to the list of instructions current in the -** VDBE. Return the address of the new instruction. -** -** Parameters: -** -** p Pointer to the VDBE -** -** op The opcode for this instruction -** -** p1, p2 First two of the three possible operands. -** -** Use the sqlite3VdbeResolveLabel() function to fix an address and -** the sqlite3VdbeChangeP3() function to change the value of the P3 -** operand. -*/ -int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){ - int i; - VdbeOp *pOp; - - i = p->nOp; - assert( p->magic==VDBE_MAGIC_INIT ); - if( p->nOpAlloc<=i ){ - resizeOpArray(p, p->nOpAlloc*2 + 100); - if( p->db->mallocFailed ){ - return 0; - } - } - p->nOp++; - pOp = &p->aOp[i]; - pOp->opcode = op; - pOp->p1 = p1; - pOp->p2 = p2; - pOp->p3 = 0; - pOp->p3type = P3_NOTUSED; - p->expired = 0; -#ifdef SQLITE_DEBUG - if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); -#endif - return i; -} - -/* -** Add an opcode that includes the p3 value. -*/ -int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){ - int addr = sqlite3VdbeAddOp(p, op, p1, p2); - sqlite3VdbeChangeP3(p, addr, zP3, p3type); - return addr; -} - -/* -** Create a new symbolic label for an instruction that has yet to be -** coded. The symbolic label is really just a negative number. The -** label can be used as the P2 value of an operation. Later, when -** the label is resolved to a specific address, the VDBE will scan -** through its operation list and change all values of P2 which match -** the label into the resolved address. -** -** The VDBE knows that a P2 value is a label because labels are -** always negative and P2 values are suppose to be non-negative. -** Hence, a negative P2 value is a label that has yet to be resolved. -** -** Zero is returned if a malloc() fails. -*/ -int sqlite3VdbeMakeLabel(Vdbe *p){ - int i; - i = p->nLabel++; - assert( p->magic==VDBE_MAGIC_INIT ); - if( i>=p->nLabelAlloc ){ - p->nLabelAlloc = p->nLabelAlloc*2 + 10; - p->aLabel = (int*)sqlite3DbReallocOrFree(p->db, p->aLabel, - p->nLabelAlloc*sizeof(p->aLabel[0])); - } - if( p->aLabel ){ - p->aLabel[i] = -1; - } - return -1-i; -} - -/* -** Resolve label "x" to be the address of the next instruction to -** be inserted. The parameter "x" must have been obtained from -** a prior call to sqlite3VdbeMakeLabel(). -*/ -void sqlite3VdbeResolveLabel(Vdbe *p, int x){ - int j = -1-x; - assert( p->magic==VDBE_MAGIC_INIT ); - assert( j>=0 && jnLabel ); - if( p->aLabel ){ - p->aLabel[j] = p->nOp; - } -} - -/* -** Return non-zero if opcode 'op' is guarenteed not to push more values -** onto the VDBE stack than it pops off. -*/ -static int opcodeNoPush(u8 op){ - /* The 10 NOPUSH_MASK_n constants are defined in the automatically - ** generated header file opcodes.h. Each is a 16-bit bitmask, one - ** bit corresponding to each opcode implemented by the virtual - ** machine in vdbe.c. The bit is true if the word "no-push" appears - ** in a comment on the same line as the "case OP_XXX:" in - ** sqlite3VdbeExec() in vdbe.c. - ** - ** If the bit is true, then the corresponding opcode is guarenteed not - ** to grow the stack when it is executed. Otherwise, it may grow the - ** stack by at most one entry. - ** - ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains - ** one bit for opcodes 16 to 31, and so on. - ** - ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h - ** because the file is generated by an awk program. Awk manipulates - ** all numbers as floating-point and we don't want to risk a rounding - ** error if someone builds with an awk that uses (for example) 32-bit - ** IEEE floats. - */ - static const u32 masks[5] = { - NOPUSH_MASK_0 + (((unsigned)NOPUSH_MASK_1)<<16), - NOPUSH_MASK_2 + (((unsigned)NOPUSH_MASK_3)<<16), - NOPUSH_MASK_4 + (((unsigned)NOPUSH_MASK_5)<<16), - NOPUSH_MASK_6 + (((unsigned)NOPUSH_MASK_7)<<16), - NOPUSH_MASK_8 + (((unsigned)NOPUSH_MASK_9)<<16) - }; - assert( op<32*5 ); - return (masks[op>>5] & (1<<(op&0x1F))); -} - -#ifndef NDEBUG -int sqlite3VdbeOpcodeNoPush(u8 op){ - return opcodeNoPush(op); -} -#endif - -/* -** Loop through the program looking for P2 values that are negative. -** Each such value is a label. Resolve the label by setting the P2 -** value to its correct non-zero value. -** -** This routine is called once after all opcodes have been inserted. -** -** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument -** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by -** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. -** -** The integer *pMaxStack is set to the maximum number of vdbe stack -** entries that static analysis reveals this program might need. -** -** This routine also does the following optimization: It scans for -** instructions that might cause a statement rollback. Such instructions -** are: -** -** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. -** * OP_Destroy -** * OP_VUpdate -** * OP_VRename -** -** If no such instruction is found, then every Statement instruction -** is changed to a Noop. In this way, we avoid creating the statement -** journal file unnecessarily. -*/ -static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){ - int i; - int nMaxArgs = 0; - int nMaxStack = p->nOp; - Op *pOp; - int *aLabel = p->aLabel; - int doesStatementRollback = 0; - int hasStatementBegin = 0; - for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ - u8 opcode = pOp->opcode; - - if( opcode==OP_Function || opcode==OP_AggStep -#ifndef SQLITE_OMIT_VIRTUALTABLE - || opcode==OP_VUpdate -#endif - ){ - if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; - } - if( opcode==OP_Halt ){ - if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){ - doesStatementRollback = 1; - } - }else if( opcode==OP_Statement ){ - hasStatementBegin = 1; - }else if( opcode==OP_Destroy ){ - doesStatementRollback = 1; -#ifndef SQLITE_OMIT_VIRTUALTABLE - }else if( opcode==OP_VUpdate || opcode==OP_VRename ){ - doesStatementRollback = 1; - }else if( opcode==OP_VFilter ){ - int n; - assert( p->nOp - i >= 3 ); - assert( pOp[-2].opcode==OP_Integer ); - n = pOp[-2].p1; - if( n>nMaxArgs ) nMaxArgs = n; -#endif - } - if( opcodeNoPush(opcode) ){ - nMaxStack--; - } - - if( pOp->p2>=0 ) continue; - assert( -1-pOp->p2nLabel ); - pOp->p2 = aLabel[-1-pOp->p2]; - } - sqlite3_free(p->aLabel); - p->aLabel = 0; - - *pMaxFuncArgs = nMaxArgs; - *pMaxStack = nMaxStack; - - /* If we never rollback a statement transaction, then statement - ** transactions are not needed. So change every OP_Statement - ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive() - ** which can be expensive on some platforms. - */ - if( hasStatementBegin && !doesStatementRollback ){ - for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ - if( pOp->opcode==OP_Statement ){ - pOp->opcode = OP_Noop; - } - } - } -} - -/* -** Return the address of the next instruction to be inserted. -*/ -int sqlite3VdbeCurrentAddr(Vdbe *p){ - assert( p->magic==VDBE_MAGIC_INIT ); - return p->nOp; -} - -/* -** Add a whole list of operations to the operation stack. Return the -** address of the first operation added. -*/ -int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ - int addr; - assert( p->magic==VDBE_MAGIC_INIT ); - if( p->nOp + nOp > p->nOpAlloc ){ - resizeOpArray(p, p->nOp*2 + nOp); - } - if( p->db->mallocFailed ){ - return 0; - } - addr = p->nOp; - if( nOp>0 ){ - int i; - VdbeOpList const *pIn = aOp; - for(i=0; ip2; - VdbeOp *pOut = &p->aOp[i+addr]; - pOut->opcode = pIn->opcode; - pOut->p1 = pIn->p1; - pOut->p2 = p2<0 ? addr + ADDR(p2) : p2; - pOut->p3 = pIn->p3; - pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED; -#ifdef SQLITE_DEBUG - if( sqlite3_vdbe_addop_trace ){ - sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); - } -#endif - } - p->nOp += nOp; - } - return addr; -} - -/* -** Change the value of the P1 operand for a specific instruction. -** This routine is useful when a large program is loaded from a -** static array using sqlite3VdbeAddOpList but we want to make a -** few minor changes to the program. -*/ -void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ - assert( p==0 || p->magic==VDBE_MAGIC_INIT ); - if( p && addr>=0 && p->nOp>addr && p->aOp ){ - p->aOp[addr].p1 = val; - } -} - -/* -** Change the value of the P2 operand for a specific instruction. -** This routine is useful for setting a jump destination. -*/ -void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ - assert( val>=0 ); - assert( p==0 || p->magic==VDBE_MAGIC_INIT ); - if( p && addr>=0 && p->nOp>addr && p->aOp ){ - p->aOp[addr].p2 = val; - } -} - -/* -** Change the P2 operand of instruction addr so that it points to -** the address of the next instruction to be coded. -*/ -void sqlite3VdbeJumpHere(Vdbe *p, int addr){ - sqlite3VdbeChangeP2(p, addr, p->nOp); -} - - -/* -** If the input FuncDef structure is ephemeral, then free it. If -** the FuncDef is not ephermal, then do nothing. -*/ -static void freeEphemeralFunction(FuncDef *pDef){ - if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ - sqlite3_free(pDef); - } -} - -/* -** Delete a P3 value if necessary. -*/ -static void freeP3(int p3type, void *p3){ - if( p3 ){ - switch( p3type ){ - case P3_REAL: - case P3_INT64: - case P3_MPRINTF: - case P3_DYNAMIC: - case P3_KEYINFO: - case P3_KEYINFO_HANDOFF: { - sqlite3_free(p3); - break; - } - case P3_VDBEFUNC: { - VdbeFunc *pVdbeFunc = (VdbeFunc *)p3; - freeEphemeralFunction(pVdbeFunc->pFunc); - sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); - sqlite3_free(pVdbeFunc); - break; - } - case P3_FUNCDEF: { - freeEphemeralFunction((FuncDef*)p3); - break; - } - case P3_MEM: { - sqlite3ValueFree((sqlite3_value*)p3); - break; - } - } - } -} - - -/* -** Change N opcodes starting at addr to No-ops. -*/ -void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ - if( p && p->aOp ){ - VdbeOp *pOp = &p->aOp[addr]; - while( N-- ){ - freeP3(pOp->p3type, pOp->p3); - memset(pOp, 0, sizeof(pOp[0])); - pOp->opcode = OP_Noop; - pOp++; - } - } -} - -/* -** Change the value of the P3 operand for a specific instruction. -** This routine is useful when a large program is loaded from a -** static array using sqlite3VdbeAddOpList but we want to make a -** few minor changes to the program. -** -** If n>=0 then the P3 operand is dynamic, meaning that a copy of -** the string is made into memory obtained from sqlite3_malloc(). -** A value of n==0 means copy bytes of zP3 up to and including the -** first null byte. If n>0 then copy n+1 bytes of zP3. -** -** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure. -** A copy is made of the KeyInfo structure into memory obtained from -** sqlite3_malloc, to be freed when the Vdbe is finalized. -** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure -** stored in memory that the caller has obtained from sqlite3_malloc. The -** caller should not free the allocation, it will be freed when the Vdbe is -** finalized. -** -** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points -** to a string or structure that is guaranteed to exist for the lifetime of -** the Vdbe. In these cases we can just copy the pointer. -** -** If addr<0 then change P3 on the most recently inserted instruction. -*/ -void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){ - Op *pOp; - assert( p==0 || p->magic==VDBE_MAGIC_INIT ); - if( p==0 || p->aOp==0 || p->db->mallocFailed ){ - if (n != P3_KEYINFO) { - freeP3(n, (void*)*(char**)&zP3); - } - return; - } - if( addr<0 || addr>=p->nOp ){ - addr = p->nOp - 1; - if( addr<0 ) return; - } - pOp = &p->aOp[addr]; - freeP3(pOp->p3type, pOp->p3); - pOp->p3 = 0; - if( zP3==0 ){ - pOp->p3 = 0; - pOp->p3type = P3_NOTUSED; - }else if( n==P3_KEYINFO ){ - KeyInfo *pKeyInfo; - int nField, nByte; - - nField = ((KeyInfo*)zP3)->nField; - nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; - pKeyInfo = (KeyInfo*)sqlite3_malloc( nByte ); - pOp->p3 = (char*)pKeyInfo; - if( pKeyInfo ){ - unsigned char *aSortOrder; - memcpy(pKeyInfo, zP3, nByte); - aSortOrder = pKeyInfo->aSortOrder; - if( aSortOrder ){ - pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; - memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); - } - pOp->p3type = P3_KEYINFO; - }else{ - p->db->mallocFailed = 1; - pOp->p3type = P3_NOTUSED; - } - }else if( n==P3_KEYINFO_HANDOFF ){ - pOp->p3 = (char*)zP3; - pOp->p3type = P3_KEYINFO; - }else if( n<0 ){ - pOp->p3 = (char*)zP3; - pOp->p3type = n; - }else{ - if( n==0 ) n = strlen(zP3); - pOp->p3 = sqlite3DbStrNDup(p->db, zP3, n); - pOp->p3type = P3_DYNAMIC; - } -} - -#ifndef NDEBUG -/* -** Replace the P3 field of the most recently coded instruction with -** comment text. -*/ -void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ - va_list ap; - assert( p->nOp>0 || p->aOp==0 ); - assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 || p->db->mallocFailed ); - va_start(ap, zFormat); - sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(p->db, zFormat, ap), P3_DYNAMIC); - va_end(ap); -} -#endif - -/* -** Return the opcode for a given address. -*/ -VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ - assert( p->magic==VDBE_MAGIC_INIT ); - assert( (addr>=0 && addrnOp) || p->db->mallocFailed ); - return ((addr>=0 && addrnOp)?(&p->aOp[addr]):0); -} - -#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ - || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) -/* -** Compute a string that describes the P3 parameter for an opcode. -** Use zTemp for any required temporary buffer space. -*/ -static char *displayP3(Op *pOp, char *zTemp, int nTemp){ - char *zP3; - assert( nTemp>=20 ); - switch( pOp->p3type ){ - case P3_KEYINFO: { - int i, j; - KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3; - sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); - i = strlen(zTemp); - for(j=0; jnField; j++){ - CollSeq *pColl = pKeyInfo->aColl[j]; - if( pColl ){ - int n = strlen(pColl->zName); - if( i+n>nTemp-6 ){ - memcpy(&zTemp[i],",...",4); - break; - } - zTemp[i++] = ','; - if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ - zTemp[i++] = '-'; - } - memcpy(&zTemp[i], pColl->zName,n+1); - i += n; - }else if( i+4p3; - sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); - zP3 = zTemp; - break; - } - case P3_FUNCDEF: { - FuncDef *pDef = (FuncDef*)pOp->p3; - sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); - zP3 = zTemp; - break; - } - case P3_INT64: { - sqlite3_snprintf(nTemp, zTemp, "%lld", *(sqlite3_int64*)pOp->p3); - zP3 = zTemp; - break; - } - case P3_REAL: { - sqlite3_snprintf(nTemp, zTemp, "%.16g", *(double*)pOp->p3); - zP3 = zTemp; - break; - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - case P3_VTAB: { - sqlite3_vtab *pVtab = (sqlite3_vtab*)pOp->p3; - sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); - zP3 = zTemp; - break; - } -#endif - default: { - zP3 = pOp->p3; - if( zP3==0 || pOp->opcode==OP_Noop ){ - zP3 = ""; - } - } - } - assert( zP3!=0 ); - return zP3; -} -#endif - -/* -** Declare to the Vdbe that the BTree object at db->aDb[i] is used. -** -*/ -void sqlite3VdbeUsesBtree(Vdbe *p, int i){ - int mask; - assert( i>=0 && idb->nDb ); - assert( ibtreeMask)*8 ); - mask = 1<btreeMask & mask)==0 ){ - p->btreeMask |= mask; - sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt); - } -} - - -#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) -/* -** Print a single opcode. This routine is used for debugging only. -*/ -void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ - char *zP3; - char zPtr[50]; - static const char *zFormat1 = "%4d %-13s %4d %4d %s\n"; - if( pOut==0 ) pOut = stdout; - zP3 = displayP3(pOp, zPtr, sizeof(zPtr)); - fprintf(pOut, zFormat1, - pc, sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, zP3); - fflush(pOut); -} -#endif - -/* -** Release an array of N Mem elements -*/ -static void releaseMemArray(Mem *p, int N){ - if( p ){ - while( N-->0 ){ - assert( N<2 || p[0].db==p[1].db ); - sqlite3VdbeMemRelease(p++); - } - } -} - -#ifndef SQLITE_OMIT_EXPLAIN -/* -** Give a listing of the program in the virtual machine. -** -** The interface is the same as sqlite3VdbeExec(). But instead of -** running the code, it invokes the callback once for each instruction. -** This feature is used to implement "EXPLAIN". -*/ -int sqlite3VdbeList( - Vdbe *p /* The VDBE */ -){ - sqlite3 *db = p->db; - int i; - int rc = SQLITE_OK; - - assert( p->explain ); - if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; - assert( db->magic==SQLITE_MAGIC_BUSY ); - assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); - - /* Even though this opcode does not put dynamic strings onto the - ** the stack, they may become dynamic if the user calls - ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. - */ - if( p->pTos==&p->aStack[4] ){ - releaseMemArray(p->aStack, 5); - } - p->resOnStack = 0; - - do{ - i = p->pc++; - }while( inOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); - if( i>=p->nOp ){ - p->rc = SQLITE_OK; - rc = SQLITE_DONE; - }else if( db->u1.isInterrupted ){ - p->rc = SQLITE_INTERRUPT; - rc = SQLITE_ERROR; - sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0); - }else{ - Op *pOp = &p->aOp[i]; - Mem *pMem = p->aStack; - pMem->flags = MEM_Int; - pMem->type = SQLITE_INTEGER; - pMem->u.i = i; /* Program counter */ - pMem++; - - pMem->flags = MEM_Static|MEM_Str|MEM_Term; - pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ - assert( pMem->z!=0 ); - pMem->n = strlen(pMem->z); - pMem->type = SQLITE_TEXT; - pMem->enc = SQLITE_UTF8; - pMem++; - - pMem->flags = MEM_Int; - pMem->u.i = pOp->p1; /* P1 */ - pMem->type = SQLITE_INTEGER; - pMem++; - - pMem->flags = MEM_Int; - pMem->u.i = pOp->p2; /* P2 */ - pMem->type = SQLITE_INTEGER; - pMem++; - - pMem->flags = MEM_Ephem|MEM_Str|MEM_Term; /* P3 */ - pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort)); - assert( pMem->z!=0 ); - pMem->n = strlen(pMem->z); - pMem->type = SQLITE_TEXT; - pMem->enc = SQLITE_UTF8; - - p->nResColumn = 5 - 2*(p->explain-1); - p->pTos = pMem; - p->rc = SQLITE_OK; - p->resOnStack = 1; - rc = SQLITE_ROW; - } - return rc; -} -#endif /* SQLITE_OMIT_EXPLAIN */ - -#ifdef SQLITE_DEBUG -/* -** Print the SQL that was used to generate a VDBE program. -*/ -void sqlite3VdbePrintSql(Vdbe *p){ - int nOp = p->nOp; - VdbeOp *pOp; - if( nOp<1 ) return; - pOp = &p->aOp[nOp-1]; - if( pOp->opcode==OP_Noop && pOp->p3!=0 ){ - const char *z = pOp->p3; - while( isspace(*(u8*)z) ) z++; - printf("SQL: [%s]\n", z); - } -} -#endif - -#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) -/* -** Print an IOTRACE message showing SQL content. -*/ -void sqlite3VdbeIOTraceSql(Vdbe *p){ - int nOp = p->nOp; - VdbeOp *pOp; - if( sqlite3_io_trace==0 ) return; - if( nOp<1 ) return; - pOp = &p->aOp[nOp-1]; - if( pOp->opcode==OP_Noop && pOp->p3!=0 ){ - int i, j; - char z[1000]; - sqlite3_snprintf(sizeof(z), z, "%s", pOp->p3); - for(i=0; isspace((unsigned char)z[i]); i++){} - for(j=0; z[i]; i++){ - if( isspace((unsigned char)z[i]) ){ - if( z[i-1]!=' ' ){ - z[j++] = ' '; - } - }else{ - z[j++] = z[i]; - } - } - z[j] = 0; - sqlite3_io_trace("SQL %s\n", z); - } -} -#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ - - -/* -** Prepare a virtual machine for execution. This involves things such -** as allocating stack space and initializing the program counter. -** After the VDBE has be prepped, it can be executed by one or more -** calls to sqlite3VdbeExec(). -** -** This is the only way to move a VDBE from VDBE_MAGIC_INIT to -** VDBE_MAGIC_RUN. -*/ -void sqlite3VdbeMakeReady( - Vdbe *p, /* The VDBE */ - int nVar, /* Number of '?' see in the SQL statement */ - int nMem, /* Number of memory cells to allocate */ - int nCursor, /* Number of cursors to allocate */ - int isExplain /* True if the EXPLAIN keywords is present */ -){ - int n; - sqlite3 *db = p->db; - - assert( p!=0 ); - assert( p->magic==VDBE_MAGIC_INIT ); - - /* There should be at least one opcode. - */ - assert( p->nOp>0 ); - - /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This - * is because the call to resizeOpArray() below may shrink the - * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN - * state. - */ - p->magic = VDBE_MAGIC_RUN; - - /* No instruction ever pushes more than a single element onto the - ** stack. And the stack never grows on successive executions of the - ** same loop. So the total number of instructions is an upper bound - ** on the maximum stack depth required. (Added later:) The - ** resolveP2Values() call computes a tighter upper bound on the - ** stack size. - ** - ** Allocation all the stack space we will ever need. - */ - if( p->aStack==0 ){ - int nArg; /* Maximum number of args passed to a user function. */ - int nStack; /* Maximum number of stack entries required */ - resolveP2Values(p, &nArg, &nStack); - resizeOpArray(p, p->nOp); - assert( nVar>=0 ); - assert( nStacknOp ); - if( isExplain ){ - nStack = 10; - } - p->aStack = (Mem*)sqlite3DbMallocZero(db, - nStack*sizeof(p->aStack[0]) /* aStack */ - + nArg*sizeof(Mem*) /* apArg */ - + nVar*sizeof(Mem) /* aVar */ - + nVar*sizeof(char*) /* azVar */ - + nMem*sizeof(Mem) /* aMem */ - + nCursor*sizeof(Cursor*) /* apCsr */ - ); - if( !db->mallocFailed ){ - p->aMem = &p->aStack[nStack]; - p->nMem = nMem; - p->aVar = &p->aMem[nMem]; - p->nVar = nVar; - p->okVar = 0; - p->apArg = (Mem**)&p->aVar[nVar]; - p->azVar = (char**)&p->apArg[nArg]; - p->apCsr = (Cursor**)&p->azVar[nVar]; - p->nCursor = nCursor; - for(n=0; naVar[n].flags = MEM_Null; - p->aVar[n].db = db; - } - for(n=0; naStack[n].db = db; - } - } - } - for(n=0; nnMem; n++){ - p->aMem[n].flags = MEM_Null; - p->aMem[n].db = db; - } - - p->pTos = &p->aStack[-1]; - p->pc = -1; - p->rc = SQLITE_OK; - p->uniqueCnt = 0; - p->returnDepth = 0; - p->errorAction = OE_Abort; - p->popStack = 0; - p->explain |= isExplain; - p->magic = VDBE_MAGIC_RUN; - p->nChange = 0; - p->cacheCtr = 1; - p->minWriteFileFormat = 255; - p->openedStatement = 0; -#ifdef VDBE_PROFILE - { - int i; - for(i=0; inOp; i++){ - p->aOp[i].cnt = 0; - p->aOp[i].cycles = 0; - } - } -#endif -} - -/* -** Close a VDBE cursor and release all the resources that cursor happens -** to hold. -*/ -void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){ - if( pCx==0 ){ - return; - } - if( pCx->pCursor ){ - sqlite3BtreeCloseCursor(pCx->pCursor); - } - if( pCx->pBt ){ - sqlite3BtreeClose(pCx->pBt); - } -#ifndef SQLITE_OMIT_VIRTUALTABLE - if( pCx->pVtabCursor ){ - sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; - const sqlite3_module *pModule = pCx->pModule; - p->inVtabMethod = 1; - sqlite3SafetyOff(p->db); - pModule->xClose(pVtabCursor); - sqlite3SafetyOn(p->db); - p->inVtabMethod = 0; - } -#endif - sqlite3_free(pCx->pData); - sqlite3_free(pCx->aType); - sqlite3_free(pCx); -} - -/* -** Close all cursors except for VTab cursors that are currently -** in use. -*/ -static void closeAllCursorsExceptActiveVtabs(Vdbe *p){ - int i; - if( p->apCsr==0 ) return; - for(i=0; inCursor; i++){ - Cursor *pC = p->apCsr[i]; - if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){ - sqlite3VdbeFreeCursor(p, pC); - p->apCsr[i] = 0; - } - } -} - -/* -** Clean up the VM after execution. -** -** This routine will automatically close any cursors, lists, and/or -** sorters that were left open. It also deletes the values of -** variables in the aVar[] array. -*/ -static void Cleanup(Vdbe *p){ - int i; - if( p->aStack ){ - releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack)); - p->pTos = &p->aStack[-1]; - } - closeAllCursorsExceptActiveVtabs(p); - releaseMemArray(p->aMem, p->nMem); - sqlite3VdbeFifoClear(&p->sFifo); - if( p->contextStack ){ - for(i=0; icontextStackTop; i++){ - sqlite3VdbeFifoClear(&p->contextStack[i].sFifo); - } - sqlite3_free(p->contextStack); - } - p->contextStack = 0; - p->contextStackDepth = 0; - p->contextStackTop = 0; - sqlite3_free(p->zErrMsg); - p->zErrMsg = 0; - p->resOnStack = 0; -} - -/* -** Set the number of result columns that will be returned by this SQL -** statement. This is now set at compile time, rather than during -** execution of the vdbe program so that sqlite3_column_count() can -** be called on an SQL statement before sqlite3_step(). -*/ -void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ - Mem *pColName; - int n; - - releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); - sqlite3_free(p->aColName); - n = nResColumn*COLNAME_N; - p->nResColumn = nResColumn; - p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n ); - if( p->aColName==0 ) return; - while( n-- > 0 ){ - pColName->flags = MEM_Null; - pColName->db = p->db; - pColName++; - } -} - -/* -** Set the name of the idx'th column to be returned by the SQL statement. -** zName must be a pointer to a nul terminated string. -** -** This call must be made after a call to sqlite3VdbeSetNumCols(). -** -** If N==P3_STATIC it means that zName is a pointer to a constant static -** string and we can just copy the pointer. If it is P3_DYNAMIC, then -** the string is freed using sqlite3_free() when the vdbe is finished with -** it. Otherwise, N bytes of zName are copied. -*/ -int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){ - int rc; - Mem *pColName; - assert( idxnResColumn ); - assert( vardb->mallocFailed ) return SQLITE_NOMEM; - assert( p->aColName!=0 ); - pColName = &(p->aColName[idx+var*p->nResColumn]); - if( N==P3_DYNAMIC || N==P3_STATIC ){ - rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); - }else{ - rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); - } - if( rc==SQLITE_OK && N==P3_DYNAMIC ){ - pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn; - pColName->xDel = 0; - } - return rc; -} - -/* -** A read or write transaction may or may not be active on database handle -** db. If a transaction is active, commit it. If there is a -** write-transaction spanning more than one database file, this routine -** takes care of the master journal trickery. -*/ -static int vdbeCommit(sqlite3 *db){ - int i; - int nTrans = 0; /* Number of databases with an active write-transaction */ - int rc = SQLITE_OK; - int needXcommit = 0; - - /* Before doing anything else, call the xSync() callback for any - ** virtual module tables written in this transaction. This has to - ** be done before determining whether a master journal file is - ** required, as an xSync() callback may add an attached database - ** to the transaction. - */ - rc = sqlite3VtabSync(db, rc); - if( rc!=SQLITE_OK ){ - return rc; - } - - /* This loop determines (a) if the commit hook should be invoked and - ** (b) how many database files have open write transactions, not - ** including the temp database. (b) is important because if more than - ** one database file has an open write transaction, a master journal - ** file is required for an atomic commit. - */ - for(i=0; inDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( sqlite3BtreeIsInTrans(pBt) ){ - needXcommit = 1; - if( i!=1 ) nTrans++; - } - } - - /* If there are any write-transactions at all, invoke the commit hook */ - if( needXcommit && db->xCommitCallback ){ - sqlite3SafetyOff(db); - rc = db->xCommitCallback(db->pCommitArg); - sqlite3SafetyOn(db); - if( rc ){ - return SQLITE_CONSTRAINT; - } - } - - /* The simple case - no more than one database file (not counting the - ** TEMP database) has a transaction active. There is no need for the - ** master-journal. - ** - ** If the return value of sqlite3BtreeGetFilename() is a zero length - ** string, it means the main database is :memory:. In that case we do - ** not support atomic multi-file commits, so use the simple case then - ** too. - */ - if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ - for(i=0; rc==SQLITE_OK && inDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = sqlite3BtreeCommitPhaseOne(pBt, 0); - } - } - - /* Do the commit only if all databases successfully complete phase 1. - ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an - ** IO error while deleting or truncating a journal file. It is unlikely, - ** but could happen. In this case abandon processing and return the error. - */ - for(i=0; rc==SQLITE_OK && inDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = sqlite3BtreeCommitPhaseTwo(pBt); - } - } - if( rc==SQLITE_OK ){ - sqlite3VtabCommit(db); - } - } - - /* The complex case - There is a multi-file write-transaction active. - ** This requires a master journal file to ensure the transaction is - ** committed atomicly. - */ -#ifndef SQLITE_OMIT_DISKIO - else{ - sqlite3_vfs *pVfs = db->pVfs; - int needSync = 0; - char *zMaster = 0; /* File-name for the master journal */ - char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); - sqlite3_file *pMaster = 0; - i64 offset = 0; - - /* Select a master journal file name */ - do { - u32 random; - sqlite3_free(zMaster); - sqlite3Randomness(sizeof(random), &random); - zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff); - if( !zMaster ){ - return SQLITE_NOMEM; - } - }while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) ); - - /* Open the master journal. */ - rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, - SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| - SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 - ); - if( rc!=SQLITE_OK ){ - sqlite3_free(zMaster); - return rc; - } - - /* Write the name of each database file in the transaction into the new - ** master journal file. If an error occurs at this point close - ** and delete the master journal file. All the individual journal files - ** still have 'null' as the master journal pointer, so they will roll - ** back independently if a failure occurs. - */ - for(i=0; inDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( i==1 ) continue; /* Ignore the TEMP database */ - if( sqlite3BtreeIsInTrans(pBt) ){ - char const *zFile = sqlite3BtreeGetJournalname(pBt); - if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ - if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ - needSync = 1; - } - rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset); - offset += strlen(zFile)+1; - if( rc!=SQLITE_OK ){ - sqlite3OsCloseFree(pMaster); - sqlite3OsDelete(pVfs, zMaster, 0); - sqlite3_free(zMaster); - return rc; - } - } - } - - /* Sync the master journal file. If the IOCAP_SEQUENTIAL device - ** flag is set this is not required. - */ - zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); - if( (needSync - && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)) - && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){ - sqlite3OsCloseFree(pMaster); - sqlite3OsDelete(pVfs, zMaster, 0); - sqlite3_free(zMaster); - return rc; - } - - /* Sync all the db files involved in the transaction. The same call - ** sets the master journal pointer in each individual journal. If - ** an error occurs here, do not delete the master journal file. - ** - ** If the error occurs during the first call to - ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the - ** master journal file will be orphaned. But we cannot delete it, - ** in case the master journal file name was written into the journal - ** file before the failure occured. - */ - for(i=0; rc==SQLITE_OK && inDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); - } - } - sqlite3OsCloseFree(pMaster); - if( rc!=SQLITE_OK ){ - sqlite3_free(zMaster); - return rc; - } - - /* Delete the master journal file. This commits the transaction. After - ** doing this the directory is synced again before any individual - ** transaction files are deleted. - */ - rc = sqlite3OsDelete(pVfs, zMaster, 1); - sqlite3_free(zMaster); - zMaster = 0; - if( rc ){ - return rc; - } - - /* All files and directories have already been synced, so the following - ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and - ** deleting or truncating journals. If something goes wrong while - ** this is happening we don't really care. The integrity of the - ** transaction is already guaranteed, but some stray 'cold' journals - ** may be lying around. Returning an error code won't help matters. - */ - disable_simulated_io_errors(); - for(i=0; inDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - sqlite3BtreeCommitPhaseTwo(pBt); - } - } - enable_simulated_io_errors(); - - sqlite3VtabCommit(db); - } -#endif - - return rc; -} - -/* -** This routine checks that the sqlite3.activeVdbeCnt count variable -** matches the number of vdbe's in the list sqlite3.pVdbe that are -** currently active. An assertion fails if the two counts do not match. -** This is an internal self-check only - it is not an essential processing -** step. -** -** This is a no-op if NDEBUG is defined. -*/ -#ifndef NDEBUG -static void checkActiveVdbeCnt(sqlite3 *db){ - Vdbe *p; - int cnt = 0; - p = db->pVdbe; - while( p ){ - if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ - cnt++; - } - p = p->pNext; - } - assert( cnt==db->activeVdbeCnt ); -} -#else -#define checkActiveVdbeCnt(x) -#endif - -/* -** For every Btree that in database connection db which -** has been modified, "trip" or invalidate each cursor in -** that Btree might have been modified so that the cursor -** can never be used again. This happens when a rollback -*** occurs. We have to trip all the other cursors, even -** cursor from other VMs in different database connections, -** so that none of them try to use the data at which they -** were pointing and which now may have been changed due -** to the rollback. -** -** Remember that a rollback can delete tables complete and -** reorder rootpages. So it is not sufficient just to save -** the state of the cursor. We have to invalidate the cursor -** so that it is never used again. -*/ -static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ - int i; - for(i=0; inDb; i++){ - Btree *p = db->aDb[i].pBt; - if( p && sqlite3BtreeIsInTrans(p) ){ - sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); - } - } -} - -/* -** This routine is called the when a VDBE tries to halt. If the VDBE -** has made changes and is in autocommit mode, then commit those -** changes. If a rollback is needed, then do the rollback. -** -** This routine is the only way to move the state of a VM from -** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to -** call this on a VM that is in the SQLITE_MAGIC_HALT state. -** -** Return an error code. If the commit could not complete because of -** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it -** means the close did not happen and needs to be repeated. -*/ -int sqlite3VdbeHalt(Vdbe *p){ - sqlite3 *db = p->db; - int i; - int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */ - int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */ - - /* This function contains the logic that determines if a statement or - ** transaction will be committed or rolled back as a result of the - ** execution of this virtual machine. - ** - ** If any of the following errors occur: - ** - ** SQLITE_NOMEM - ** SQLITE_IOERR - ** SQLITE_FULL - ** SQLITE_INTERRUPT - ** - ** Then the internal cache might have been left in an inconsistent - ** state. We need to rollback the statement transaction, if there is - ** one, or the complete transaction if there is no statement transaction. - */ - - if( p->db->mallocFailed ){ - p->rc = SQLITE_NOMEM; - } - closeAllCursorsExceptActiveVtabs(p); - if( p->magic!=VDBE_MAGIC_RUN ){ - return SQLITE_OK; - } - checkActiveVdbeCnt(db); - - /* No commit or rollback needed if the program never started */ - if( p->pc>=0 ){ - int mrc; /* Primary error code from p->rc */ - - /* Lock all btrees used by the statement */ - sqlite3BtreeMutexArrayEnter(&p->aMutex); - - /* Check for one of the special errors */ - mrc = p->rc & 0xff; - isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR - || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; - if( isSpecialError ){ - /* This loop does static analysis of the query to see which of the - ** following three categories it falls into: - ** - ** Read-only - ** Query with statement journal - ** Query without statement journal - ** - ** We could do something more elegant than this static analysis (i.e. - ** store the type of query as part of the compliation phase), but - ** handling malloc() or IO failure is a fairly obscure edge case so - ** this is probably easier. Todo: Might be an opportunity to reduce - ** code size a very small amount though... - */ - int notReadOnly = 0; - int isStatement = 0; - assert(p->aOp || p->nOp==0); - for(i=0; inOp; i++){ - switch( p->aOp[i].opcode ){ - case OP_Transaction: - notReadOnly |= p->aOp[i].p2; - break; - case OP_Statement: - isStatement = 1; - break; - } - } - - - /* If the query was read-only, we need do no rollback at all. Otherwise, - ** proceed with the special handling. - */ - if( notReadOnly || mrc!=SQLITE_INTERRUPT ){ - if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){ - xFunc = sqlite3BtreeRollbackStmt; - p->rc = SQLITE_BUSY; - } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){ - xFunc = sqlite3BtreeRollbackStmt; - }else{ - /* We are forced to roll back the active transaction. Before doing - ** so, abort any other statements this handle currently has active. - */ - invalidateCursorsOnModifiedBtrees(db); - sqlite3RollbackAll(db); - db->autoCommit = 1; - } - } - } - - /* If the auto-commit flag is set and this is the only active vdbe, then - ** we do either a commit or rollback of the current transaction. - ** - ** Note: This block also runs if one of the special errors handled - ** above has occured. - */ - if( db->autoCommit && db->activeVdbeCnt==1 ){ - if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ - /* The auto-commit flag is true, and the vdbe program was - ** successful or hit an 'OR FAIL' constraint. This means a commit - ** is required. - */ - int rc = vdbeCommit(db); - if( rc==SQLITE_BUSY ){ - sqlite3BtreeMutexArrayLeave(&p->aMutex); - return SQLITE_BUSY; - }else if( rc!=SQLITE_OK ){ - p->rc = rc; - sqlite3RollbackAll(db); - }else{ - sqlite3CommitInternalChanges(db); - } - }else{ - sqlite3RollbackAll(db); - } - }else if( !xFunc ){ - if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ - if( p->openedStatement ){ - xFunc = sqlite3BtreeCommitStmt; - } - }else if( p->errorAction==OE_Abort ){ - xFunc = sqlite3BtreeRollbackStmt; - }else{ - invalidateCursorsOnModifiedBtrees(db); - sqlite3RollbackAll(db); - db->autoCommit = 1; - } - } - - /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or - ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs - ** and the return code is still SQLITE_OK, set the return code to the new - ** error value. - */ - assert(!xFunc || - xFunc==sqlite3BtreeCommitStmt || - xFunc==sqlite3BtreeRollbackStmt - ); - for(i=0; xFunc && inDb; i++){ - int rc; - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = xFunc(pBt); - if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){ - p->rc = rc; - sqlite3SetString(&p->zErrMsg, 0); - } - } - } - - /* If this was an INSERT, UPDATE or DELETE and the statement was committed, - ** set the change counter. - */ - if( p->changeCntOn && p->pc>=0 ){ - if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){ - sqlite3VdbeSetChanges(db, p->nChange); - }else{ - sqlite3VdbeSetChanges(db, 0); - } - p->nChange = 0; - } - - /* Rollback or commit any schema changes that occurred. */ - if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ - sqlite3ResetInternalSchema(db, 0); - db->flags = (db->flags | SQLITE_InternChanges); - } - - /* Release the locks */ - sqlite3BtreeMutexArrayLeave(&p->aMutex); - } - - /* We have successfully halted and closed the VM. Record this fact. */ - if( p->pc>=0 ){ - db->activeVdbeCnt--; - } - p->magic = VDBE_MAGIC_HALT; - checkActiveVdbeCnt(db); - if( p->db->mallocFailed ){ - p->rc = SQLITE_NOMEM; - } - checkActiveVdbeCnt(db); - - return SQLITE_OK; -} - - -/* -** Each VDBE holds the result of the most recent sqlite3_step() call -** in p->rc. This routine sets that result back to SQLITE_OK. -*/ -void sqlite3VdbeResetStepResult(Vdbe *p){ - p->rc = SQLITE_OK; -} - -/* -** Clean up a VDBE after execution but do not delete the VDBE just yet. -** Write any error messages into *pzErrMsg. Return the result code. -** -** After this routine is run, the VDBE should be ready to be executed -** again. -** -** To look at it another way, this routine resets the state of the -** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to -** VDBE_MAGIC_INIT. -*/ -int sqlite3VdbeReset(Vdbe *p){ - sqlite3 *db; - db = p->db; - - /* If the VM did not run to completion or if it encountered an - ** error, then it might not have been halted properly. So halt - ** it now. - */ - sqlite3SafetyOn(db); - sqlite3VdbeHalt(p); - sqlite3SafetyOff(db); - - /* If the VDBE has be run even partially, then transfer the error code - ** and error message from the VDBE into the main database structure. But - ** if the VDBE has just been set to run but has not actually executed any - ** instructions yet, leave the main database error information unchanged. - */ - if( p->pc>=0 ){ - if( p->zErrMsg ){ - sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free); - db->errCode = p->rc; - p->zErrMsg = 0; - }else if( p->rc ){ - sqlite3Error(db, p->rc, 0); - }else{ - sqlite3Error(db, SQLITE_OK, 0); - } - }else if( p->rc && p->expired ){ - /* The expired flag was set on the VDBE before the first call - ** to sqlite3_step(). For consistency (since sqlite3_step() was - ** called), set the database error in this case as well. - */ - sqlite3Error(db, p->rc, 0); - sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free); - p->zErrMsg = 0; - } - - /* Reclaim all memory used by the VDBE - */ - Cleanup(p); - - /* Save profiling information from this VDBE run. - */ - assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || !p->aStack ); -#ifdef VDBE_PROFILE - { - FILE *out = fopen("vdbe_profile.out", "a"); - if( out ){ - int i; - fprintf(out, "---- "); - for(i=0; inOp; i++){ - fprintf(out, "%02x", p->aOp[i].opcode); - } - fprintf(out, "\n"); - for(i=0; inOp; i++){ - fprintf(out, "%6d %10lld %8lld ", - p->aOp[i].cnt, - p->aOp[i].cycles, - p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 - ); - sqlite3VdbePrintOp(out, i, &p->aOp[i]); - } - fclose(out); - } - } -#endif - p->magic = VDBE_MAGIC_INIT; - p->aborted = 0; - return p->rc & db->errMask; -} - -/* -** Clean up and delete a VDBE after execution. Return an integer which is -** the result code. Write any error message text into *pzErrMsg. -*/ -int sqlite3VdbeFinalize(Vdbe *p){ - int rc = SQLITE_OK; - if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ - rc = sqlite3VdbeReset(p); - assert( (rc & p->db->errMask)==rc ); - }else if( p->magic!=VDBE_MAGIC_INIT ){ - return SQLITE_MISUSE; - } - sqlite3VdbeDelete(p); - return rc; -} - -/* -** Call the destructor for each auxdata entry in pVdbeFunc for which -** the corresponding bit in mask is clear. Auxdata entries beyond 31 -** are always destroyed. To destroy all auxdata entries, call this -** routine with mask==0. -*/ -void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ - int i; - for(i=0; inAux; i++){ - VdbeFunc::AuxData *pAux = &pVdbeFunc->apAux[i]; - if( (i>31 || !(mask&(1<pAux ){ - if( pAux->xDelete ){ - pAux->xDelete(pAux->pAux); - } - pAux->pAux = 0; - } - } -} - -/* -** Delete an entire VDBE. -*/ -void sqlite3VdbeDelete(Vdbe *p){ - int i; - if( p==0 ) return; - Cleanup(p); - if( p->pPrev ){ - p->pPrev->pNext = p->pNext; - }else{ - assert( p->db->pVdbe==p ); - p->db->pVdbe = p->pNext; - } - if( p->pNext ){ - p->pNext->pPrev = p->pPrev; - } - if( p->aOp ){ - for(i=0; inOp; i++){ - Op *pOp = &p->aOp[i]; - freeP3(pOp->p3type, pOp->p3); - } - sqlite3_free(p->aOp); - } - releaseMemArray(p->aVar, p->nVar); - sqlite3_free(p->aLabel); - sqlite3_free(p->aStack); - releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); - sqlite3_free(p->aColName); - sqlite3_free(p->zSql); - p->magic = VDBE_MAGIC_DEAD; - sqlite3_free(p); -} - -/* -** If a MoveTo operation is pending on the given cursor, then do that -** MoveTo now. Return an error code. If no MoveTo is pending, this -** routine does nothing and returns SQLITE_OK. -*/ -int sqlite3VdbeCursorMoveto(Cursor *p){ - if( p->deferredMoveto ){ - int res, rc; -#ifdef SQLITE_TEST - extern int sqlite3_search_count; -#endif - assert( p->isTable ); - rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res); - if( rc ) return rc; - *p->pIncrKey = 0; - p->lastRowid = keyToInt(p->movetoTarget); - p->rowidIsValid = res==0; - if( res<0 ){ - rc = sqlite3BtreeNext(p->pCursor, &res); - if( rc ) return rc; - } -#ifdef SQLITE_TEST - sqlite3_search_count++; -#endif - p->deferredMoveto = 0; - p->cacheStatus = CACHE_STALE; - } - return SQLITE_OK; -} - -/* -** The following functions: -** -** sqlite3VdbeSerialType() -** sqlite3VdbeSerialTypeLen() -** sqlite3VdbeSerialRead() -** sqlite3VdbeSerialLen() -** sqlite3VdbeSerialWrite() -** -** encapsulate the code that serializes values for storage in SQLite -** data and index records. Each serialized value consists of a -** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned -** integer, stored as a varint. -** -** In an SQLite index record, the serial type is stored directly before -** the blob of data that it corresponds to. In a table record, all serial -** types are stored at the start of the record, and the blobs of data at -** the end. Hence these functions allow the caller to handle the -** serial-type and data blob seperately. -** -** The following table describes the various storage classes for data: -** -** serial type bytes of data type -** -------------- --------------- --------------- -** 0 0 NULL -** 1 1 signed integer -** 2 2 signed integer -** 3 3 signed integer -** 4 4 signed integer -** 5 6 signed integer -** 6 8 signed integer -** 7 8 IEEE float -** 8 0 Integer constant 0 -** 9 0 Integer constant 1 -** 10,11 reserved for expansion -** N>=12 and even (N-12)/2 BLOB -** N>=13 and odd (N-13)/2 text -** -** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions -** of SQLite will not understand those serial types. -*/ - -/* -** Return the serial-type for the value stored in pMem. -*/ -u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ - int flags = pMem->flags; - int n; - - if( flags&MEM_Null ){ - return 0; - } - if( flags&MEM_Int ){ - /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ -# define MAX_6BYTE ((((i64)0x00001000)<<32)-1) - i64 i = pMem->u.i; - u64 u; - if( file_format>=4 && (i&1)==i ){ - return 8+i; - } - u = i<0 ? -i : i; - if( u<=127 ) return 1; - if( u<=32767 ) return 2; - if( u<=8388607 ) return 3; - if( u<=2147483647 ) return 4; - if( u<=MAX_6BYTE ) return 5; - return 6; - } - if( flags&MEM_Real ){ - return 7; - } - assert( flags&(MEM_Str|MEM_Blob) ); - n = pMem->n; - if( flags & MEM_Zero ){ - n += pMem->u.i; - } - assert( n>=0 ); - return ((n*2) + 12 + ((flags&MEM_Str)!=0)); -} - -/* -** Return the length of the data corresponding to the supplied serial-type. -*/ -int sqlite3VdbeSerialTypeLen(u32 serial_type){ - if( serial_type>=12 ){ - return (serial_type-12)/2; - }else{ - static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; - return aSize[serial_type]; - } -} - -/* -** If we are on an architecture with mixed-endian floating -** points (ex: ARM7) then swap the lower 4 bytes with the -** upper 4 bytes. Return the result. -** -** For most architectures, this is a no-op. -** -** (later): It is reported to me that the mixed-endian problem -** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems -** that early versions of GCC stored the two words of a 64-bit -** float in the wrong order. And that error has been propagated -** ever since. The blame is not necessarily with GCC, though. -** GCC might have just copying the problem from a prior compiler. -** I am also told that newer versions of GCC that follow a different -** ABI get the byte order right. -** -** Developers using SQLite on an ARM7 should compile and run their -** application using -DSQLITE_DEBUG=1 at least once. With DEBUG -** enabled, some asserts below will ensure that the byte order of -** floating point values is correct. -** -** (2007-08-30) Frank van Vugt has studied this problem closely -** and has send his findings to the SQLite developers. Frank -** writes that some Linux kernels offer floating point hardware -** emulation that uses only 32-bit mantissas instead of a full -** 48-bits as required by the IEEE standard. (This is the -** CONFIG_FPE_FASTFPE option.) On such systems, floating point -** byte swapping becomes very complicated. To avoid problems, -** the necessary byte swapping is carried out using a 64-bit integer -** rather than a 64-bit float. Frank assures us that the code here -** works for him. We, the developers, have no way to independently -** verify this, but Frank seems to know what he is talking about -** so we trust him. -*/ -#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT -static u64 floatSwap(u64 in){ - union { - u64 r; - u32 i[2]; - } u; - u32 t; - - u.r = in; - t = u.i[0]; - u.i[0] = u.i[1]; - u.i[1] = t; - return u.r; -} -# define swapMixedEndianFloat(X) X = floatSwap(X) -#else -# define swapMixedEndianFloat(X) -#endif - -/* -** Write the serialized data blob for the value stored in pMem into -** buf. It is assumed that the caller has allocated sufficient space. -** Return the number of bytes written. -** -** nBuf is the amount of space left in buf[]. nBuf must always be -** large enough to hold the entire field. Except, if the field is -** a blob with a zero-filled tail, then buf[] might be just the right -** size to hold everything except for the zero-filled tail. If buf[] -** is only big enough to hold the non-zero prefix, then only write that -** prefix into buf[]. But if buf[] is large enough to hold both the -** prefix and the tail then write the prefix and set the tail to all -** zeros. -** -** Return the number of bytes actually written into buf[]. The number -** of bytes in the zero-filled tail is included in the return value only -** if those bytes were zeroed in buf[]. -*/ -int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ - u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); - int len; - - /* Integer and Real */ - if( serial_type<=7 && serial_type>0 ){ - u64 v; - int i; - if( serial_type==7 ){ - assert( sizeof(v)==sizeof(pMem->r) ); - memcpy(&v, &pMem->r, sizeof(v)); - swapMixedEndianFloat(v); - }else{ - v = pMem->u.i; - } - len = i = sqlite3VdbeSerialTypeLen(serial_type); - assert( len<=nBuf ); - while( i-- ){ - buf[i] = (v&0xFF); - v >>= 8; - } - return len; - } - - /* String or blob */ - if( serial_type>=12 ){ - assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0) - == sqlite3VdbeSerialTypeLen(serial_type) ); - assert( pMem->n<=nBuf ); - len = pMem->n; - memcpy(buf, pMem->z, len); - if( pMem->flags & MEM_Zero ){ - len += pMem->u.i; - if( len>nBuf ){ - len = nBuf; - } - memset(&buf[pMem->n], 0, len-pMem->n); - } - return len; - } - - /* NULL or constants 0 or 1 */ - return 0; -} - -/* -** Deserialize the data blob pointed to by buf as serial type serial_type -** and store the result in pMem. Return the number of bytes read. -*/ -int sqlite3VdbeSerialGet( - const unsigned char *buf, /* Buffer to deserialize from */ - u32 serial_type, /* Serial type to deserialize */ - Mem *pMem /* Memory cell to write value into */ -){ - switch( serial_type ){ - case 10: /* Reserved for future use */ - case 11: /* Reserved for future use */ - case 0: { /* NULL */ - pMem->flags = MEM_Null; - break; - } - case 1: { /* 1-byte signed integer */ - pMem->u.i = (signed char)buf[0]; - pMem->flags = MEM_Int; - return 1; - } - case 2: { /* 2-byte signed integer */ - pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; - pMem->flags = MEM_Int; - return 2; - } - case 3: { /* 3-byte signed integer */ - pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; - pMem->flags = MEM_Int; - return 3; - } - case 4: { /* 4-byte signed integer */ - pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; - pMem->flags = MEM_Int; - return 4; - } - case 5: { /* 6-byte signed integer */ - u64 x = (((signed char)buf[0])<<8) | buf[1]; - u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; - x = (x<<32) | y; - pMem->u.i = *(i64*)&x; - pMem->flags = MEM_Int; - return 6; - } - case 6: /* 8-byte signed integer */ - case 7: { /* IEEE floating point */ - u64 x; - u32 y; -#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) - /* Verify that integers and floating point values use the same - ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is - ** defined that 64-bit floating point values really are mixed - ** endian. - */ - static const u64 t1 = ((u64)0x3ff00000)<<32; - static const double r1 = 1.0; - u64 t2 = t1; - swapMixedEndianFloat(t2); - assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); -#endif - - x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; - y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; - x = (x<<32) | y; - if( serial_type==6 ){ - pMem->u.i = *(i64*)&x; - pMem->flags = MEM_Int; - }else{ - assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); - swapMixedEndianFloat(x); - memcpy(&pMem->r, &x, sizeof(x)); - pMem->flags = MEM_Real; - } - return 8; - } - case 8: /* Integer 0 */ - case 9: { /* Integer 1 */ - pMem->u.i = serial_type-8; - pMem->flags = MEM_Int; - return 0; - } - default: { - int len = (serial_type-12)/2; - pMem->z = (char *)buf; - pMem->n = len; - pMem->xDel = 0; - if( serial_type&0x01 ){ - pMem->flags = MEM_Str | MEM_Ephem; - }else{ - pMem->flags = MEM_Blob | MEM_Ephem; - } - return len; - } - } - return 0; -} - -/* -** The header of a record consists of a sequence variable-length integers. -** These integers are almost always small and are encoded as a single byte. -** The following macro takes advantage this fact to provide a fast decode -** of the integers in a record header. It is faster for the common case -** where the integer is a single byte. It is a little slower when the -** integer is two or more bytes. But overall it is faster. -** -** The following expressions are equivalent: -** -** x = sqlite3GetVarint32( A, &B ); -** -** x = GetVarint( A, B ); -** -*/ -#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B)) - -/* -** This function compares the two table rows or index records specified by -** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero -** or positive integer if {nKey1, pKey1} is less than, equal to or -** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings -** composed by the OP_MakeRecord opcode of the VDBE. -*/ -int sqlite3VdbeRecordCompare( - void *userData, - int nKey1, const void *pKey1, - int nKey2, const void *pKey2 -){ - KeyInfo *pKeyInfo = (KeyInfo*)userData; - u32 d1, d2; /* Offset into aKey[] of next data element */ - u32 idx1, idx2; /* Offset into aKey[] of next header element */ - u32 szHdr1, szHdr2; /* Number of bytes in header */ - int i = 0; - int nField; - int rc = 0; - const unsigned char *aKey1 = (const unsigned char *)pKey1; - const unsigned char *aKey2 = (const unsigned char *)pKey2; - - Mem mem1; - Mem mem2; - mem1.enc = pKeyInfo->enc; - mem1.db = pKeyInfo->db; - mem2.enc = pKeyInfo->enc; - mem2.db = pKeyInfo->db; - - idx1 = GetVarint(aKey1, szHdr1); - d1 = szHdr1; - idx2 = GetVarint(aKey2, szHdr2); - d2 = szHdr2; - nField = pKeyInfo->nField; - while( idx1=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; - idx2 += GetVarint( aKey2+idx2, serial_type2 ); - if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break; - - /* Extract the values to be compared. - */ - d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); - d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2); - - /* Do the comparison - */ - rc = sqlite3MemCompare(&mem1, &mem2, iaColl[i] : 0); - if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1); - if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2); - if( rc!=0 ){ - break; - } - i++; - } - - /* One of the keys ran out of fields, but all the fields up to that point - ** were equal. If the incrKey flag is true, then the second key is - ** treated as larger. - */ - if( rc==0 ){ - if( pKeyInfo->incrKey ){ - rc = -1; - }else if( !pKeyInfo->prefixIsEqual ){ - if( d1aSortOrder && inField - && pKeyInfo->aSortOrder[i] ){ - rc = -rc; - } - - return rc; -} - -/* -** The argument is an index entry composed using the OP_MakeRecord opcode. -** The last entry in this record should be an integer (specifically -** an integer rowid). This routine returns the number of bytes in -** that integer. -*/ -int sqlite3VdbeIdxRowidLen(const u8 *aKey){ - u32 szHdr; /* Size of the header */ - u32 typeRowid; /* Serial type of the rowid */ - - sqlite3GetVarint32(aKey, &szHdr); - sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid); - return sqlite3VdbeSerialTypeLen(typeRowid); -} - - -/* -** pCur points at an index entry created using the OP_MakeRecord opcode. -** Read the rowid (the last field in the record) and store it in *rowid. -** Return SQLITE_OK if everything works, or an error code otherwise. -*/ -int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ - i64 nCellKey = 0; - int rc; - u32 szHdr; /* Size of the header */ - u32 typeRowid; /* Serial type of the rowid */ - u32 lenRowid; /* Size of the rowid */ - Mem m, v; - - sqlite3BtreeKeySize(pCur, &nCellKey); - if( nCellKey<=0 ){ - return SQLITE_CORRUPT_BKPT; - } - rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); - if( rc ){ - return rc; - } - sqlite3GetVarint32((u8*)m.z, &szHdr); - sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid); - lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); - sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); - *rowid = v.u.i; - sqlite3VdbeMemRelease(&m); - return SQLITE_OK; -} - -/* -** Compare the key of the index entry that cursor pC is point to against -** the key string in pKey (of length nKey). Write into *pRes a number -** that is negative, zero, or positive if pC is less than, equal to, -** or greater than pKey. Return SQLITE_OK on success. -** -** pKey is either created without a rowid or is truncated so that it -** omits the rowid at the end. The rowid at the end of the index entry -** is ignored as well. -*/ -int sqlite3VdbeIdxKeyCompare( - Cursor *pC, /* The cursor to compare against */ - int nKey, const u8 *pKey, /* The key to compare */ - int *res /* Write the comparison result here */ -){ - i64 nCellKey = 0; - int rc; - BtCursor *pCur = pC->pCursor; - int lenRowid; - Mem m; - - sqlite3BtreeKeySize(pCur, &nCellKey); - if( nCellKey<=0 ){ - *res = 0; - return SQLITE_OK; - } - rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); - if( rc ){ - return rc; - } - lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); - *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey); - sqlite3VdbeMemRelease(&m); - return SQLITE_OK; -} - -/* -** This routine sets the value to be returned by subsequent calls to -** sqlite3_changes() on the database handle 'db'. -*/ -void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ - assert( sqlite3_mutex_held(db->mutex) ); - db->nChange = nChange; - db->nTotalChange += nChange; -} - -/* -** Set a flag in the vdbe to update the change counter when it is finalised -** or reset. -*/ -void sqlite3VdbeCountChanges(Vdbe *v){ - v->changeCntOn = 1; -} - -/* -** Mark every prepared statement associated with a database connection -** as expired. -** -** An expired statement means that recompilation of the statement is -** recommend. Statements expire when things happen that make their -** programs obsolete. Removing user-defined functions or collating -** sequences, or changing an authorization function are the types of -** things that make prepared statements obsolete. -*/ -void sqlite3ExpirePreparedStatements(sqlite3 *db){ - Vdbe *p; - for(p = db->pVdbe; p; p=p->pNext){ - p->expired = 1; - } -} - -/* -** Return the database associated with the Vdbe. -*/ -sqlite3 *sqlite3VdbeDb(Vdbe *v){ - return v->db; -}