|         |      1 /* | 
|         |      2 ** 2001 September 15 | 
|         |      3 ** | 
|         |      4 ** The author disclaims copyright to this source code.  In place of | 
|         |      5 ** a legal notice, here is a blessing: | 
|         |      6 ** | 
|         |      7 **    May you do good and not evil. | 
|         |      8 **    May you find forgiveness for yourself and forgive others. | 
|         |      9 **    May you share freely, never taking more than you give. | 
|         |     10 ** | 
|         |     11 ************************************************************************* | 
|         |     12 ** This file contains routines used for analyzing expressions and | 
|         |     13 ** for generating VDBE code that evaluates expressions in SQLite. | 
|         |     14 ** | 
|         |     15 ** $Id: expr.cpp 1282 2008-11-13 09:31:33Z LarsPson $ | 
|         |     16 */ | 
|         |     17 #include "sqliteInt.h" | 
|         |     18 #include <ctype.h> | 
|         |     19  | 
|         |     20 /* | 
|         |     21 ** Return the 'affinity' of the expression pExpr if any. | 
|         |     22 ** | 
|         |     23 ** If pExpr is a column, a reference to a column via an 'AS' alias, | 
|         |     24 ** or a sub-select with a column as the return value, then the  | 
|         |     25 ** affinity of that column is returned. Otherwise, 0x00 is returned, | 
|         |     26 ** indicating no affinity for the expression. | 
|         |     27 ** | 
|         |     28 ** i.e. the WHERE clause expresssions in the following statements all | 
|         |     29 ** have an affinity: | 
|         |     30 ** | 
|         |     31 ** CREATE TABLE t1(a); | 
|         |     32 ** SELECT * FROM t1 WHERE a; | 
|         |     33 ** SELECT a AS b FROM t1 WHERE b; | 
|         |     34 ** SELECT * FROM t1 WHERE (select a from t1); | 
|         |     35 */ | 
|         |     36 char sqlite3ExprAffinity(Expr *pExpr){ | 
|         |     37   int op = pExpr->op; | 
|         |     38   if( op==TK_SELECT ){ | 
|         |     39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); | 
|         |     40   } | 
|         |     41 #ifndef SQLITE_OMIT_CAST | 
|         |     42   if( op==TK_CAST ){ | 
|         |     43     return sqlite3AffinityType(&pExpr->token); | 
|         |     44   } | 
|         |     45 #endif | 
|         |     46   return pExpr->affinity; | 
|         |     47 } | 
|         |     48  | 
|         |     49 /* | 
|         |     50 ** Set the collating sequence for expression pExpr to be the collating | 
|         |     51 ** sequence named by pToken.   Return a pointer to the revised expression. | 
|         |     52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate | 
|         |     53 ** flag.  An explicit collating sequence will override implicit | 
|         |     54 ** collating sequences. | 
|         |     55 */ | 
|         |     56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ | 
|         |     57   char *zColl = 0;            /* Dequoted name of collation sequence */ | 
|         |     58   CollSeq *pColl; | 
|         |     59   zColl = sqlite3NameFromToken(pParse->db, pName); | 
|         |     60   if( pExpr && zColl ){ | 
|         |     61     pColl = sqlite3LocateCollSeq(pParse, zColl, -1); | 
|         |     62     if( pColl ){ | 
|         |     63       pExpr->pColl = pColl; | 
|         |     64       pExpr->flags |= EP_ExpCollate; | 
|         |     65     } | 
|         |     66   } | 
|         |     67   sqlite3_free(zColl); | 
|         |     68   return pExpr; | 
|         |     69 } | 
|         |     70  | 
|         |     71 /* | 
|         |     72 ** Return the default collation sequence for the expression pExpr. If | 
|         |     73 ** there is no default collation type, return 0. | 
|         |     74 */ | 
|         |     75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ | 
|         |     76   CollSeq *pColl = 0; | 
|         |     77   if( pExpr ){ | 
|         |     78     int op; | 
|         |     79     pColl = pExpr->pColl; | 
|         |     80     op = pExpr->op; | 
|         |     81     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ | 
|         |     82       return sqlite3ExprCollSeq(pParse, pExpr->pLeft); | 
|         |     83     } | 
|         |     84   } | 
|         |     85   if( sqlite3CheckCollSeq(pParse, pColl) ){  | 
|         |     86     pColl = 0; | 
|         |     87   } | 
|         |     88   return pColl; | 
|         |     89 } | 
|         |     90  | 
|         |     91 /* | 
|         |     92 ** pExpr is an operand of a comparison operator.  aff2 is the | 
|         |     93 ** type affinity of the other operand.  This routine returns the | 
|         |     94 ** type affinity that should be used for the comparison operator. | 
|         |     95 */ | 
|         |     96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ | 
|         |     97   char aff1 = sqlite3ExprAffinity(pExpr); | 
|         |     98   if( aff1 && aff2 ){ | 
|         |     99     /* Both sides of the comparison are columns. If one has numeric | 
|         |    100     ** affinity, use that. Otherwise use no affinity. | 
|         |    101     */ | 
|         |    102     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ | 
|         |    103       return SQLITE_AFF_NUMERIC; | 
|         |    104     }else{ | 
|         |    105       return SQLITE_AFF_NONE; | 
|         |    106     } | 
|         |    107   }else if( !aff1 && !aff2 ){ | 
|         |    108     /* Neither side of the comparison is a column.  Compare the | 
|         |    109     ** results directly. | 
|         |    110     */ | 
|         |    111     return SQLITE_AFF_NONE; | 
|         |    112   }else{ | 
|         |    113     /* One side is a column, the other is not. Use the columns affinity. */ | 
|         |    114     assert( aff1==0 || aff2==0 ); | 
|         |    115     return (aff1 + aff2); | 
|         |    116   } | 
|         |    117 } | 
|         |    118  | 
|         |    119 /* | 
|         |    120 ** pExpr is a comparison operator.  Return the type affinity that should | 
|         |    121 ** be applied to both operands prior to doing the comparison. | 
|         |    122 */ | 
|         |    123 static char comparisonAffinity(Expr *pExpr){ | 
|         |    124   char aff; | 
|         |    125   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || | 
|         |    126           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || | 
|         |    127           pExpr->op==TK_NE ); | 
|         |    128   assert( pExpr->pLeft ); | 
|         |    129   aff = sqlite3ExprAffinity(pExpr->pLeft); | 
|         |    130   if( pExpr->pRight ){ | 
|         |    131     aff = sqlite3CompareAffinity(pExpr->pRight, aff); | 
|         |    132   } | 
|         |    133   else if( pExpr->pSelect ){ | 
|         |    134     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); | 
|         |    135   } | 
|         |    136   else if( !aff ){ | 
|         |    137     aff = SQLITE_AFF_NONE; | 
|         |    138   } | 
|         |    139   return aff; | 
|         |    140 } | 
|         |    141  | 
|         |    142 /* | 
|         |    143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. | 
|         |    144 ** idx_affinity is the affinity of an indexed column. Return true | 
|         |    145 ** if the index with affinity idx_affinity may be used to implement | 
|         |    146 ** the comparison in pExpr. | 
|         |    147 */ | 
|         |    148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ | 
|         |    149   char aff = comparisonAffinity(pExpr); | 
|         |    150   switch( aff ){ | 
|         |    151     case SQLITE_AFF_NONE: | 
|         |    152       return 1; | 
|         |    153     case SQLITE_AFF_TEXT: | 
|         |    154       return idx_affinity==SQLITE_AFF_TEXT; | 
|         |    155     default: | 
|         |    156       return sqlite3IsNumericAffinity(idx_affinity); | 
|         |    157   } | 
|         |    158 } | 
|         |    159  | 
|         |    160 /* | 
|         |    161 ** Return the P1 value that should be used for a binary comparison | 
|         |    162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. | 
|         |    163 ** If jumpIfNull is true, then set the low byte of the returned | 
|         |    164 ** P1 value to tell the opcode to jump if either expression | 
|         |    165 ** evaluates to NULL. | 
|         |    166 */ | 
|         |    167 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ | 
|         |    168   char aff = sqlite3ExprAffinity(pExpr2); | 
|         |    169   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); | 
|         |    170 } | 
|         |    171  | 
|         |    172 /* | 
|         |    173 ** Return a pointer to the collation sequence that should be used by | 
|         |    174 ** a binary comparison operator comparing pLeft and pRight. | 
|         |    175 ** | 
|         |    176 ** If the left hand expression has a collating sequence type, then it is | 
|         |    177 ** used. Otherwise the collation sequence for the right hand expression | 
|         |    178 ** is used, or the default (BINARY) if neither expression has a collating | 
|         |    179 ** type. | 
|         |    180 ** | 
|         |    181 ** Argument pRight (but not pLeft) may be a null pointer. In this case, | 
|         |    182 ** it is not considered. | 
|         |    183 */ | 
|         |    184 CollSeq *sqlite3BinaryCompareCollSeq( | 
|         |    185   Parse *pParse,  | 
|         |    186   Expr *pLeft,  | 
|         |    187   Expr *pRight | 
|         |    188 ){ | 
|         |    189   CollSeq *pColl; | 
|         |    190   assert( pLeft ); | 
|         |    191   if( pLeft->flags & EP_ExpCollate ){ | 
|         |    192     assert( pLeft->pColl ); | 
|         |    193     pColl = pLeft->pColl; | 
|         |    194   }else if( pRight && pRight->flags & EP_ExpCollate ){ | 
|         |    195     assert( pRight->pColl ); | 
|         |    196     pColl = pRight->pColl; | 
|         |    197   }else{ | 
|         |    198     pColl = sqlite3ExprCollSeq(pParse, pLeft); | 
|         |    199     if( !pColl ){ | 
|         |    200       pColl = sqlite3ExprCollSeq(pParse, pRight); | 
|         |    201     } | 
|         |    202   } | 
|         |    203   return pColl; | 
|         |    204 } | 
|         |    205  | 
|         |    206 /* | 
|         |    207 ** Generate code for a comparison operator. | 
|         |    208 */ | 
|         |    209 static int codeCompare( | 
|         |    210   Parse *pParse,    /* The parsing (and code generating) context */ | 
|         |    211   Expr *pLeft,      /* The left operand */ | 
|         |    212   Expr *pRight,     /* The right operand */ | 
|         |    213   int opcode,       /* The comparison opcode */ | 
|         |    214   int dest,         /* Jump here if true.  */ | 
|         |    215   int jumpIfNull    /* If true, jump if either operand is NULL */ | 
|         |    216 ){ | 
|         |    217   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); | 
|         |    218   CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); | 
|         |    219   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (const char*)p3, P3_COLLSEQ); | 
|         |    220 } | 
|         |    221  | 
|         |    222 /* | 
|         |    223 ** Construct a new expression node and return a pointer to it.  Memory | 
|         |    224 ** for this node is obtained from sqlite3_malloc().  The calling function | 
|         |    225 ** is responsible for making sure the node eventually gets freed. | 
|         |    226 */ | 
|         |    227 Expr *sqlite3Expr( | 
|         |    228   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */ | 
|         |    229   int op,                 /* Expression opcode */ | 
|         |    230   Expr *pLeft,            /* Left operand */ | 
|         |    231   Expr *pRight,           /* Right operand */ | 
|         |    232   const Token *pToken     /* Argument token */ | 
|         |    233 ){ | 
|         |    234   Expr *pNew; | 
|         |    235   pNew = (Expr*)sqlite3DbMallocZero(db, sizeof(Expr)); | 
|         |    236   if( pNew==0 ){ | 
|         |    237     /* When malloc fails, delete pLeft and pRight. Expressions passed to  | 
|         |    238     ** this function must always be allocated with sqlite3Expr() for this  | 
|         |    239     ** reason.  | 
|         |    240     */ | 
|         |    241     sqlite3ExprDelete(pLeft); | 
|         |    242     sqlite3ExprDelete(pRight); | 
|         |    243     return 0; | 
|         |    244   } | 
|         |    245   pNew->op = op; | 
|         |    246   pNew->pLeft = pLeft; | 
|         |    247   pNew->pRight = pRight; | 
|         |    248   pNew->iAgg = -1; | 
|         |    249   if( pToken ){ | 
|         |    250     assert( pToken->dyn==0 ); | 
|         |    251     pNew->span = pNew->token = *pToken; | 
|         |    252   }else if( pLeft ){ | 
|         |    253     if( pRight ){ | 
|         |    254       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); | 
|         |    255       if( pRight->flags & EP_ExpCollate ){ | 
|         |    256         pNew->flags |= EP_ExpCollate; | 
|         |    257         pNew->pColl = pRight->pColl; | 
|         |    258       } | 
|         |    259     } | 
|         |    260     if( pLeft->flags & EP_ExpCollate ){ | 
|         |    261       pNew->flags |= EP_ExpCollate; | 
|         |    262       pNew->pColl = pLeft->pColl; | 
|         |    263     } | 
|         |    264   } | 
|         |    265  | 
|         |    266   sqlite3ExprSetHeight(pNew); | 
|         |    267   return pNew; | 
|         |    268 } | 
|         |    269  | 
|         |    270 /* | 
|         |    271 ** Works like sqlite3Expr() except that it takes an extra Parse* | 
|         |    272 ** argument and notifies the associated connection object if malloc fails. | 
|         |    273 */ | 
|         |    274 Expr *sqlite3PExpr( | 
|         |    275   Parse *pParse,          /* Parsing context */ | 
|         |    276   int op,                 /* Expression opcode */ | 
|         |    277   Expr *pLeft,            /* Left operand */ | 
|         |    278   Expr *pRight,           /* Right operand */ | 
|         |    279   const Token *pToken     /* Argument token */ | 
|         |    280 ){ | 
|         |    281   return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); | 
|         |    282 } | 
|         |    283  | 
|         |    284 /* | 
|         |    285 ** When doing a nested parse, you can include terms in an expression | 
|         |    286 ** that look like this:   #0 #1 #2 ...  These terms refer to elements | 
|         |    287 ** on the stack.  "#0" means the top of the stack. | 
|         |    288 ** "#1" means the next down on the stack.  And so forth. | 
|         |    289 ** | 
|         |    290 ** This routine is called by the parser to deal with on of those terms. | 
|         |    291 ** It immediately generates code to store the value in a memory location. | 
|         |    292 ** The returns an expression that will code to extract the value from | 
|         |    293 ** that memory location as needed. | 
|         |    294 */ | 
|         |    295 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ | 
|         |    296   Vdbe *v = pParse->pVdbe; | 
|         |    297   Expr *p; | 
|         |    298   int depth; | 
|         |    299   if( pParse->nested==0 ){ | 
|         |    300     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); | 
|         |    301     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); | 
|         |    302   } | 
|         |    303   if( v==0 ) return 0; | 
|         |    304   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); | 
|         |    305   if( p==0 ){ | 
|         |    306     return 0;  /* Malloc failed */ | 
|         |    307   } | 
|         |    308   depth = atoi((char*)&pToken->z[1]); | 
|         |    309   p->iTable = pParse->nMem++; | 
|         |    310   sqlite3VdbeAddOp(v, OP_Dup, depth, 0); | 
|         |    311   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); | 
|         |    312   return p; | 
|         |    313 } | 
|         |    314  | 
|         |    315 /* | 
|         |    316 ** Join two expressions using an AND operator.  If either expression is | 
|         |    317 ** NULL, then just return the other expression. | 
|         |    318 */ | 
|         |    319 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ | 
|         |    320   if( pLeft==0 ){ | 
|         |    321     return pRight; | 
|         |    322   }else if( pRight==0 ){ | 
|         |    323     return pLeft; | 
|         |    324   }else{ | 
|         |    325     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); | 
|         |    326   } | 
|         |    327 } | 
|         |    328  | 
|         |    329 /* | 
|         |    330 ** Set the Expr.span field of the given expression to span all | 
|         |    331 ** text between the two given tokens. | 
|         |    332 */ | 
|         |    333 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ | 
|         |    334   assert( pRight!=0 ); | 
|         |    335   assert( pLeft!=0 ); | 
|         |    336   if( pExpr && pRight->z && pLeft->z ){ | 
|         |    337     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); | 
|         |    338     if( pLeft->dyn==0 && pRight->dyn==0 ){ | 
|         |    339       pExpr->span.z = pLeft->z; | 
|         |    340       pExpr->span.n = pRight->n + (pRight->z - pLeft->z); | 
|         |    341     }else{ | 
|         |    342       pExpr->span.z = 0; | 
|         |    343     } | 
|         |    344   } | 
|         |    345 } | 
|         |    346  | 
|         |    347 /* | 
|         |    348 ** Construct a new expression node for a function with multiple | 
|         |    349 ** arguments. | 
|         |    350 */ | 
|         |    351 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ | 
|         |    352   Expr *pNew; | 
|         |    353   assert( pToken ); | 
|         |    354   pNew = (Expr*)sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); | 
|         |    355   if( pNew==0 ){ | 
|         |    356     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ | 
|         |    357     return 0; | 
|         |    358   } | 
|         |    359   pNew->op = TK_FUNCTION; | 
|         |    360   pNew->pList = pList; | 
|         |    361   assert( pToken->dyn==0 ); | 
|         |    362   pNew->token = *pToken; | 
|         |    363   pNew->span = pNew->token; | 
|         |    364  | 
|         |    365   sqlite3ExprSetHeight(pNew); | 
|         |    366   return pNew; | 
|         |    367 } | 
|         |    368  | 
|         |    369 /* | 
|         |    370 ** Assign a variable number to an expression that encodes a wildcard | 
|         |    371 ** in the original SQL statement.   | 
|         |    372 ** | 
|         |    373 ** Wildcards consisting of a single "?" are assigned the next sequential | 
|         |    374 ** variable number. | 
|         |    375 ** | 
|         |    376 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make | 
|         |    377 ** sure "nnn" is not too be to avoid a denial of service attack when | 
|         |    378 ** the SQL statement comes from an external source. | 
|         |    379 ** | 
|         |    380 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number | 
|         |    381 ** as the previous instance of the same wildcard.  Or if this is the first | 
|         |    382 ** instance of the wildcard, the next sequenial variable number is | 
|         |    383 ** assigned. | 
|         |    384 */ | 
|         |    385 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ | 
|         |    386   Token *pToken; | 
|         |    387   sqlite3 *db = pParse->db; | 
|         |    388  | 
|         |    389   if( pExpr==0 ) return; | 
|         |    390   pToken = &pExpr->token; | 
|         |    391   assert( pToken->n>=1 ); | 
|         |    392   assert( pToken->z!=0 ); | 
|         |    393   assert( pToken->z[0]!=0 ); | 
|         |    394   if( pToken->n==1 ){ | 
|         |    395     /* Wildcard of the form "?".  Assign the next variable number */ | 
|         |    396     pExpr->iTable = ++pParse->nVar; | 
|         |    397   }else if( pToken->z[0]=='?' ){ | 
|         |    398     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and | 
|         |    399     ** use it as the variable number */ | 
|         |    400     int i; | 
|         |    401     pExpr->iTable = i = atoi((char*)&pToken->z[1]); | 
|         |    402     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ | 
|         |    403       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", | 
|         |    404           SQLITE_MAX_VARIABLE_NUMBER); | 
|         |    405     } | 
|         |    406     if( i>pParse->nVar ){ | 
|         |    407       pParse->nVar = i; | 
|         |    408     } | 
|         |    409   }else{ | 
|         |    410     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable | 
|         |    411     ** number as the prior appearance of the same name, or if the name | 
|         |    412     ** has never appeared before, reuse the same variable number | 
|         |    413     */ | 
|         |    414     int i, n; | 
|         |    415     n = pToken->n; | 
|         |    416     for(i=0; i<pParse->nVarExpr; i++){ | 
|         |    417       Expr *pE; | 
|         |    418       if( (pE = pParse->apVarExpr[i])!=0 | 
|         |    419           && pE->token.n==n | 
|         |    420           && memcmp(pE->token.z, pToken->z, n)==0 ){ | 
|         |    421         pExpr->iTable = pE->iTable; | 
|         |    422         break; | 
|         |    423       } | 
|         |    424     } | 
|         |    425     if( i>=pParse->nVarExpr ){ | 
|         |    426       pExpr->iTable = ++pParse->nVar; | 
|         |    427       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ | 
|         |    428         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; | 
|         |    429         pParse->apVarExpr = | 
|         |    430             (Expr**)sqlite3DbReallocOrFree( | 
|         |    431               db, | 
|         |    432               pParse->apVarExpr, | 
|         |    433               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) | 
|         |    434             ); | 
|         |    435       } | 
|         |    436       if( !db->mallocFailed ){ | 
|         |    437         assert( pParse->apVarExpr!=0 ); | 
|         |    438         pParse->apVarExpr[pParse->nVarExpr++] = pExpr; | 
|         |    439       } | 
|         |    440     } | 
|         |    441   }  | 
|         |    442   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ | 
|         |    443     sqlite3ErrorMsg(pParse, "too many SQL variables"); | 
|         |    444   } | 
|         |    445 } | 
|         |    446  | 
|         |    447 /* | 
|         |    448 ** Recursively delete an expression tree. | 
|         |    449 */ | 
|         |    450 void sqlite3ExprDelete(Expr *p){ | 
|         |    451   if( p==0 ) return; | 
|         |    452   if( p->span.dyn ) sqlite3_free((char*)p->span.z); | 
|         |    453   if( p->token.dyn ) sqlite3_free((char*)p->token.z); | 
|         |    454   sqlite3ExprDelete(p->pLeft); | 
|         |    455   sqlite3ExprDelete(p->pRight); | 
|         |    456   sqlite3ExprListDelete(p->pList); | 
|         |    457   sqlite3SelectDelete(p->pSelect); | 
|         |    458   sqlite3_free(p); | 
|         |    459 } | 
|         |    460  | 
|         |    461 /* | 
|         |    462 ** The Expr.token field might be a string literal that is quoted. | 
|         |    463 ** If so, remove the quotation marks. | 
|         |    464 */ | 
|         |    465 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ | 
|         |    466   if( ExprHasAnyProperty(p, EP_Dequoted) ){ | 
|         |    467     return; | 
|         |    468   } | 
|         |    469   ExprSetProperty(p, EP_Dequoted); | 
|         |    470   if( p->token.dyn==0 ){ | 
|         |    471     sqlite3TokenCopy(db, &p->token, &p->token); | 
|         |    472   } | 
|         |    473   sqlite3Dequote((char*)p->token.z); | 
|         |    474 } | 
|         |    475  | 
|         |    476  | 
|         |    477 /* | 
|         |    478 ** The following group of routines make deep copies of expressions, | 
|         |    479 ** expression lists, ID lists, and select statements.  The copies can | 
|         |    480 ** be deleted (by being passed to their respective ...Delete() routines) | 
|         |    481 ** without effecting the originals. | 
|         |    482 ** | 
|         |    483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), | 
|         |    484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded  | 
|         |    485 ** by subsequent calls to sqlite*ListAppend() routines. | 
|         |    486 ** | 
|         |    487 ** Any tables that the SrcList might point to are not duplicated. | 
|         |    488 */ | 
|         |    489 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ | 
|         |    490   Expr *pNew; | 
|         |    491   if( p==0 ) return 0; | 
|         |    492   pNew = (Expr*)sqlite3DbMallocRaw(db, sizeof(*p) ); | 
|         |    493   if( pNew==0 ) return 0; | 
|         |    494   memcpy(pNew, p, sizeof(*pNew)); | 
|         |    495   if( p->token.z!=0 ){ | 
|         |    496     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); | 
|         |    497     pNew->token.dyn = 1; | 
|         |    498   }else{ | 
|         |    499     assert( pNew->token.z==0 ); | 
|         |    500   } | 
|         |    501   pNew->span.z = 0; | 
|         |    502   pNew->pLeft = sqlite3ExprDup(db, p->pLeft); | 
|         |    503   pNew->pRight = sqlite3ExprDup(db, p->pRight); | 
|         |    504   pNew->pList = sqlite3ExprListDup(db, p->pList); | 
|         |    505   pNew->pSelect = sqlite3SelectDup(db, p->pSelect); | 
|         |    506   return pNew; | 
|         |    507 } | 
|         |    508 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ | 
|         |    509   if( pTo->dyn ) sqlite3_free((char*)pTo->z); | 
|         |    510   if( pFrom->z ){ | 
|         |    511     pTo->n = pFrom->n; | 
|         |    512     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); | 
|         |    513     pTo->dyn = 1; | 
|         |    514   }else{ | 
|         |    515     pTo->z = 0; | 
|         |    516   } | 
|         |    517 } | 
|         |    518 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ | 
|         |    519   ExprList *pNew; | 
|         |    520   ExprList::ExprList_item *pItem, *pOldItem; | 
|         |    521   int i; | 
|         |    522   if( p==0 ) return 0; | 
|         |    523   pNew = (ExprList*)sqlite3DbMallocRaw(db, sizeof(*pNew) ); | 
|         |    524   if( pNew==0 ) return 0; | 
|         |    525   pNew->iECursor = 0; | 
|         |    526   pNew->nExpr = pNew->nAlloc = p->nExpr; | 
|         |    527   pNew->a = pItem = (ExprList::ExprList_item*)sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) ); | 
|         |    528   if( pItem==0 ){ | 
|         |    529     sqlite3_free(pNew); | 
|         |    530     return 0; | 
|         |    531   }  | 
|         |    532   pOldItem = p->a; | 
|         |    533   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ | 
|         |    534     Expr *pNewExpr, *pOldExpr; | 
|         |    535     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); | 
|         |    536     if( pOldExpr->span.z!=0 && pNewExpr ){ | 
|         |    537       /* Always make a copy of the span for top-level expressions in the | 
|         |    538       ** expression list.  The logic in SELECT processing that determines | 
|         |    539       ** the names of columns in the result set needs this information */ | 
|         |    540       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); | 
|         |    541     } | 
|         |    542     assert( pNewExpr==0 || pNewExpr->span.z!=0  | 
|         |    543             || pOldExpr->span.z==0 | 
|         |    544             || db->mallocFailed ); | 
|         |    545     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | 
|         |    546     pItem->sortOrder = pOldItem->sortOrder; | 
|         |    547     pItem->isAgg = pOldItem->isAgg; | 
|         |    548     pItem->done = 0; | 
|         |    549   } | 
|         |    550   return pNew; | 
|         |    551 } | 
|         |    552  | 
|         |    553 /* | 
|         |    554 ** If cursors, triggers, views and subqueries are all omitted from | 
|         |    555 ** the build, then none of the following routines, except for  | 
|         |    556 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes | 
|         |    557 ** called with a NULL argument. | 
|         |    558 */ | 
|         |    559 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ | 
|         |    560  || !defined(SQLITE_OMIT_SUBQUERY) | 
|         |    561 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ | 
|         |    562   SrcList *pNew; | 
|         |    563   int i; | 
|         |    564   int nByte; | 
|         |    565   if( p==0 ) return 0; | 
|         |    566   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); | 
|         |    567   pNew = (SrcList*)sqlite3DbMallocRaw(db, nByte ); | 
|         |    568   if( pNew==0 ) return 0; | 
|         |    569   pNew->nSrc = pNew->nAlloc = p->nSrc; | 
|         |    570   for(i=0; i<p->nSrc; i++){ | 
|         |    571 	  SrcList::SrcList_item *pNewItem = &pNew->a[i]; | 
|         |    572 	  SrcList::SrcList_item *pOldItem = &p->a[i]; | 
|         |    573     Table *pTab; | 
|         |    574     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); | 
|         |    575     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | 
|         |    576     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); | 
|         |    577     pNewItem->jointype = pOldItem->jointype; | 
|         |    578     pNewItem->iCursor = pOldItem->iCursor; | 
|         |    579     pNewItem->isPopulated = pOldItem->isPopulated; | 
|         |    580     pTab = pNewItem->pTab = pOldItem->pTab; | 
|         |    581     if( pTab ){ | 
|         |    582       pTab->nRef++; | 
|         |    583     } | 
|         |    584     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); | 
|         |    585     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); | 
|         |    586     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); | 
|         |    587     pNewItem->colUsed = pOldItem->colUsed; | 
|         |    588   } | 
|         |    589   return pNew; | 
|         |    590 } | 
|         |    591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ | 
|         |    592   IdList *pNew; | 
|         |    593   int i; | 
|         |    594   if( p==0 ) return 0; | 
|         |    595   pNew = (IdList*)sqlite3DbMallocRaw(db, sizeof(*pNew) ); | 
|         |    596   if( pNew==0 ) return 0; | 
|         |    597   pNew->nId = pNew->nAlloc = p->nId; | 
|         |    598   pNew->a = (IdList::IdList_item*)sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); | 
|         |    599   if( pNew->a==0 ){ | 
|         |    600     sqlite3_free(pNew); | 
|         |    601     return 0; | 
|         |    602   } | 
|         |    603   for(i=0; i<p->nId; i++){ | 
|         |    604 	  IdList::IdList_item *pNewItem = &pNew->a[i]; | 
|         |    605 	  IdList::IdList_item *pOldItem = &p->a[i]; | 
|         |    606     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | 
|         |    607     pNewItem->idx = pOldItem->idx; | 
|         |    608   } | 
|         |    609   return pNew; | 
|         |    610 } | 
|         |    611 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ | 
|         |    612   Select *pNew; | 
|         |    613   if( p==0 ) return 0; | 
|         |    614   pNew = (Select*)sqlite3DbMallocRaw(db, sizeof(*p) ); | 
|         |    615   if( pNew==0 ) return 0; | 
|         |    616   pNew->isDistinct = p->isDistinct; | 
|         |    617   pNew->pEList = sqlite3ExprListDup(db, p->pEList); | 
|         |    618   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); | 
|         |    619   pNew->pWhere = sqlite3ExprDup(db, p->pWhere); | 
|         |    620   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); | 
|         |    621   pNew->pHaving = sqlite3ExprDup(db, p->pHaving); | 
|         |    622   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); | 
|         |    623   pNew->op = p->op; | 
|         |    624   pNew->pPrior = sqlite3SelectDup(db, p->pPrior); | 
|         |    625   pNew->pLimit = sqlite3ExprDup(db, p->pLimit); | 
|         |    626   pNew->pOffset = sqlite3ExprDup(db, p->pOffset); | 
|         |    627   pNew->iLimit = -1; | 
|         |    628   pNew->iOffset = -1; | 
|         |    629   pNew->isResolved = p->isResolved; | 
|         |    630   pNew->isAgg = p->isAgg; | 
|         |    631   pNew->usesEphm = 0; | 
|         |    632   pNew->disallowOrderBy = 0; | 
|         |    633   pNew->pRightmost = 0; | 
|         |    634   pNew->addrOpenEphm[0] = -1; | 
|         |    635   pNew->addrOpenEphm[1] = -1; | 
|         |    636   pNew->addrOpenEphm[2] = -1; | 
|         |    637   return pNew; | 
|         |    638 } | 
|         |    639 #else | 
|         |    640 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ | 
|         |    641   assert( p==0 ); | 
|         |    642   return 0; | 
|         |    643 } | 
|         |    644 #endif | 
|         |    645  | 
|         |    646  | 
|         |    647 /* | 
|         |    648 ** Add a new element to the end of an expression list.  If pList is | 
|         |    649 ** initially NULL, then create a new expression list. | 
|         |    650 */ | 
|         |    651 ExprList *sqlite3ExprListAppend( | 
|         |    652   Parse *pParse,          /* Parsing context */ | 
|         |    653   ExprList *pList,        /* List to which to append. Might be NULL */ | 
|         |    654   Expr *pExpr,            /* Expression to be appended */ | 
|         |    655   Token *pName            /* AS keyword for the expression */ | 
|         |    656 ){ | 
|         |    657   sqlite3 *db = pParse->db; | 
|         |    658   if( pList==0 ){ | 
|         |    659     pList = (ExprList*)sqlite3DbMallocZero(db, sizeof(ExprList) ); | 
|         |    660     if( pList==0 ){ | 
|         |    661       goto no_mem; | 
|         |    662     } | 
|         |    663     assert( pList->nAlloc==0 ); | 
|         |    664   } | 
|         |    665   if( pList->nAlloc<=pList->nExpr ){ | 
|         |    666 	  ExprList::ExprList_item *a; | 
|         |    667     int n = pList->nAlloc*2 + 4; | 
|         |    668 	a = (ExprList::ExprList_item*)sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); | 
|         |    669     if( a==0 ){ | 
|         |    670       goto no_mem; | 
|         |    671     } | 
|         |    672     pList->a = a; | 
|         |    673     pList->nAlloc = n; | 
|         |    674   } | 
|         |    675   assert( pList->a!=0 ); | 
|         |    676   if( pExpr || pName ){ | 
|         |    677 	  ExprList::ExprList_item *pItem = &pList->a[pList->nExpr++]; | 
|         |    678     memset(pItem, 0, sizeof(*pItem)); | 
|         |    679     pItem->zName = sqlite3NameFromToken(db, pName); | 
|         |    680     pItem->pExpr = pExpr; | 
|         |    681   } | 
|         |    682   return pList; | 
|         |    683  | 
|         |    684 no_mem:      | 
|         |    685   /* Avoid leaking memory if malloc has failed. */ | 
|         |    686   sqlite3ExprDelete(pExpr); | 
|         |    687   sqlite3ExprListDelete(pList); | 
|         |    688   return 0; | 
|         |    689 } | 
|         |    690  | 
|         |    691 /* | 
|         |    692 ** If the expression list pEList contains more than iLimit elements, | 
|         |    693 ** leave an error message in pParse. | 
|         |    694 */ | 
|         |    695 void sqlite3ExprListCheckLength( | 
|         |    696   Parse *pParse, | 
|         |    697   ExprList *pEList, | 
|         |    698   int iLimit, | 
|         |    699   const char *zObject | 
|         |    700 ){ | 
|         |    701   if( pEList && pEList->nExpr>iLimit ){ | 
|         |    702     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); | 
|         |    703   } | 
|         |    704 } | 
|         |    705  | 
|         |    706  | 
|         |    707 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 | 
|         |    708 /* The following three functions, heightOfExpr(), heightOfExprList() | 
|         |    709 ** and heightOfSelect(), are used to determine the maximum height | 
|         |    710 ** of any expression tree referenced by the structure passed as the | 
|         |    711 ** first argument. | 
|         |    712 ** | 
|         |    713 ** If this maximum height is greater than the current value pointed | 
|         |    714 ** to by pnHeight, the second parameter, then set *pnHeight to that | 
|         |    715 ** value. | 
|         |    716 */ | 
|         |    717 static void heightOfExpr(Expr *p, int *pnHeight){ | 
|         |    718   if( p ){ | 
|         |    719     if( p->nHeight>*pnHeight ){ | 
|         |    720       *pnHeight = p->nHeight; | 
|         |    721     } | 
|         |    722   } | 
|         |    723 } | 
|         |    724 static void heightOfExprList(ExprList *p, int *pnHeight){ | 
|         |    725   if( p ){ | 
|         |    726     int i; | 
|         |    727     for(i=0; i<p->nExpr; i++){ | 
|         |    728       heightOfExpr(p->a[i].pExpr, pnHeight); | 
|         |    729     } | 
|         |    730   } | 
|         |    731 } | 
|         |    732 static void heightOfSelect(Select *p, int *pnHeight){ | 
|         |    733   if( p ){ | 
|         |    734     heightOfExpr(p->pWhere, pnHeight); | 
|         |    735     heightOfExpr(p->pHaving, pnHeight); | 
|         |    736     heightOfExpr(p->pLimit, pnHeight); | 
|         |    737     heightOfExpr(p->pOffset, pnHeight); | 
|         |    738     heightOfExprList(p->pEList, pnHeight); | 
|         |    739     heightOfExprList(p->pGroupBy, pnHeight); | 
|         |    740     heightOfExprList(p->pOrderBy, pnHeight); | 
|         |    741     heightOfSelect(p->pPrior, pnHeight); | 
|         |    742   } | 
|         |    743 } | 
|         |    744  | 
|         |    745 /* | 
|         |    746 ** Set the Expr.nHeight variable in the structure passed as an  | 
|         |    747 ** argument. An expression with no children, Expr.pList or  | 
|         |    748 ** Expr.pSelect member has a height of 1. Any other expression | 
|         |    749 ** has a height equal to the maximum height of any other  | 
|         |    750 ** referenced Expr plus one. | 
|         |    751 */ | 
|         |    752 void sqlite3ExprSetHeight(Expr *p){ | 
|         |    753   int nHeight = 0; | 
|         |    754   heightOfExpr(p->pLeft, &nHeight); | 
|         |    755   heightOfExpr(p->pRight, &nHeight); | 
|         |    756   heightOfExprList(p->pList, &nHeight); | 
|         |    757   heightOfSelect(p->pSelect, &nHeight); | 
|         |    758   p->nHeight = nHeight + 1; | 
|         |    759 } | 
|         |    760  | 
|         |    761 /* | 
|         |    762 ** Return the maximum height of any expression tree referenced | 
|         |    763 ** by the select statement passed as an argument. | 
|         |    764 */ | 
|         |    765 int sqlite3SelectExprHeight(Select *p){ | 
|         |    766   int nHeight = 0; | 
|         |    767   heightOfSelect(p, &nHeight); | 
|         |    768   return nHeight; | 
|         |    769 } | 
|         |    770 #endif | 
|         |    771  | 
|         |    772 /* | 
|         |    773 ** Delete an entire expression list. | 
|         |    774 */ | 
|         |    775 void sqlite3ExprListDelete(ExprList *pList){ | 
|         |    776   int i; | 
|         |    777   ExprList::ExprList_item *pItem; | 
|         |    778   if( pList==0 ) return; | 
|         |    779   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); | 
|         |    780   assert( pList->nExpr<=pList->nAlloc ); | 
|         |    781   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ | 
|         |    782     sqlite3ExprDelete(pItem->pExpr); | 
|         |    783     sqlite3_free(pItem->zName); | 
|         |    784   } | 
|         |    785   sqlite3_free(pList->a); | 
|         |    786   sqlite3_free(pList); | 
|         |    787 } | 
|         |    788  | 
|         |    789 /* | 
|         |    790 ** Walk an expression tree.  Call xFunc for each node visited. | 
|         |    791 ** | 
|         |    792 ** The return value from xFunc determines whether the tree walk continues. | 
|         |    793 ** 0 means continue walking the tree.  1 means do not walk children | 
|         |    794 ** of the current node but continue with siblings.  2 means abandon | 
|         |    795 ** the tree walk completely. | 
|         |    796 ** | 
|         |    797 ** The return value from this routine is 1 to abandon the tree walk | 
|         |    798 ** and 0 to continue. | 
|         |    799 ** | 
|         |    800 ** NOTICE:  This routine does *not* descend into subqueries. | 
|         |    801 */ | 
|         |    802 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); | 
|         |    803 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ | 
|         |    804   int rc; | 
|         |    805   if( pExpr==0 ) return 0; | 
|         |    806   rc = (*xFunc)(pArg, pExpr); | 
|         |    807   if( rc==0 ){ | 
|         |    808     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; | 
|         |    809     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; | 
|         |    810     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; | 
|         |    811   } | 
|         |    812   return rc>1; | 
|         |    813 } | 
|         |    814  | 
|         |    815 /* | 
|         |    816 ** Call walkExprTree() for every expression in list p. | 
|         |    817 */ | 
|         |    818 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ | 
|         |    819   int i; | 
|         |    820   ExprList::ExprList_item *pItem; | 
|         |    821   if( !p ) return 0; | 
|         |    822   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ | 
|         |    823     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; | 
|         |    824   } | 
|         |    825   return 0; | 
|         |    826 } | 
|         |    827  | 
|         |    828 /* | 
|         |    829 ** Call walkExprTree() for every expression in Select p, not including | 
|         |    830 ** expressions that are part of sub-selects in any FROM clause or the LIMIT | 
|         |    831 ** or OFFSET expressions.. | 
|         |    832 */ | 
|         |    833 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ | 
|         |    834   walkExprList(p->pEList, xFunc, pArg); | 
|         |    835   walkExprTree(p->pWhere, xFunc, pArg); | 
|         |    836   walkExprList(p->pGroupBy, xFunc, pArg); | 
|         |    837   walkExprTree(p->pHaving, xFunc, pArg); | 
|         |    838   walkExprList(p->pOrderBy, xFunc, pArg); | 
|         |    839   if( p->pPrior ){ | 
|         |    840     walkSelectExpr(p->pPrior, xFunc, pArg); | 
|         |    841   } | 
|         |    842   return 0; | 
|         |    843 } | 
|         |    844  | 
|         |    845  | 
|         |    846 /* | 
|         |    847 ** This routine is designed as an xFunc for walkExprTree(). | 
|         |    848 ** | 
|         |    849 ** pArg is really a pointer to an integer.  If we can tell by looking | 
|         |    850 ** at pExpr that the expression that contains pExpr is not a constant | 
|         |    851 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. | 
|         |    852 ** If pExpr does does not disqualify the expression from being a constant | 
|         |    853 ** then do nothing. | 
|         |    854 ** | 
|         |    855 ** After walking the whole tree, if no nodes are found that disqualify | 
|         |    856 ** the expression as constant, then we assume the whole expression | 
|         |    857 ** is constant.  See sqlite3ExprIsConstant() for additional information. | 
|         |    858 */ | 
|         |    859 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ | 
|         |    860   int *pN = (int*)pArg; | 
|         |    861  | 
|         |    862   /* If *pArg is 3 then any term of the expression that comes from | 
|         |    863   ** the ON or USING clauses of a join disqualifies the expression | 
|         |    864   ** from being considered constant. */ | 
|         |    865   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ | 
|         |    866     *pN = 0; | 
|         |    867     return 2; | 
|         |    868   } | 
|         |    869  | 
|         |    870   switch( pExpr->op ){ | 
|         |    871     /* Consider functions to be constant if all their arguments are constant | 
|         |    872     ** and *pArg==2 */ | 
|         |    873     case TK_FUNCTION: | 
|         |    874       if( (*pN)==2 ) return 0; | 
|         |    875       /* Fall through */ | 
|         |    876     case TK_ID: | 
|         |    877     case TK_COLUMN: | 
|         |    878     case TK_DOT: | 
|         |    879     case TK_AGG_FUNCTION: | 
|         |    880     case TK_AGG_COLUMN: | 
|         |    881 #ifndef SQLITE_OMIT_SUBQUERY | 
|         |    882     case TK_SELECT: | 
|         |    883     case TK_EXISTS: | 
|         |    884 #endif | 
|         |    885       *pN = 0; | 
|         |    886       return 2; | 
|         |    887     case TK_IN: | 
|         |    888       if( pExpr->pSelect ){ | 
|         |    889         *pN = 0; | 
|         |    890         return 2; | 
|         |    891       } | 
|         |    892     default: | 
|         |    893       return 0; | 
|         |    894   } | 
|         |    895 } | 
|         |    896  | 
|         |    897 /* | 
|         |    898 ** Walk an expression tree.  Return 1 if the expression is constant | 
|         |    899 ** and 0 if it involves variables or function calls. | 
|         |    900 ** | 
|         |    901 ** For the purposes of this function, a double-quoted string (ex: "abc") | 
|         |    902 ** is considered a variable but a single-quoted string (ex: 'abc') is | 
|         |    903 ** a constant. | 
|         |    904 */ | 
|         |    905 int sqlite3ExprIsConstant(Expr *p){ | 
|         |    906   int isConst = 1; | 
|         |    907   walkExprTree(p, exprNodeIsConstant, &isConst); | 
|         |    908   return isConst; | 
|         |    909 } | 
|         |    910  | 
|         |    911 /* | 
|         |    912 ** Walk an expression tree.  Return 1 if the expression is constant | 
|         |    913 ** that does no originate from the ON or USING clauses of a join. | 
|         |    914 ** Return 0 if it involves variables or function calls or terms from | 
|         |    915 ** an ON or USING clause. | 
|         |    916 */ | 
|         |    917 int sqlite3ExprIsConstantNotJoin(Expr *p){ | 
|         |    918   int isConst = 3; | 
|         |    919   walkExprTree(p, exprNodeIsConstant, &isConst); | 
|         |    920   return isConst!=0; | 
|         |    921 } | 
|         |    922  | 
|         |    923 /* | 
|         |    924 ** Walk an expression tree.  Return 1 if the expression is constant | 
|         |    925 ** or a function call with constant arguments.  Return and 0 if there | 
|         |    926 ** are any variables. | 
|         |    927 ** | 
|         |    928 ** For the purposes of this function, a double-quoted string (ex: "abc") | 
|         |    929 ** is considered a variable but a single-quoted string (ex: 'abc') is | 
|         |    930 ** a constant. | 
|         |    931 */ | 
|         |    932 int sqlite3ExprIsConstantOrFunction(Expr *p){ | 
|         |    933   int isConst = 2; | 
|         |    934   walkExprTree(p, exprNodeIsConstant, &isConst); | 
|         |    935   return isConst!=0; | 
|         |    936 } | 
|         |    937  | 
|         |    938 /* | 
|         |    939 ** If the expression p codes a constant integer that is small enough | 
|         |    940 ** to fit in a 32-bit integer, return 1 and put the value of the integer | 
|         |    941 ** in *pValue.  If the expression is not an integer or if it is too big | 
|         |    942 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. | 
|         |    943 */ | 
|         |    944 int sqlite3ExprIsInteger(Expr *p, int *pValue){ | 
|         |    945   switch( p->op ){ | 
|         |    946     case TK_INTEGER: { | 
|         |    947       if( sqlite3GetInt32((char*)p->token.z, pValue) ){ | 
|         |    948         return 1; | 
|         |    949       } | 
|         |    950       break; | 
|         |    951     } | 
|         |    952     case TK_UPLUS: { | 
|         |    953       return sqlite3ExprIsInteger(p->pLeft, pValue); | 
|         |    954     } | 
|         |    955     case TK_UMINUS: { | 
|         |    956       int v; | 
|         |    957       if( sqlite3ExprIsInteger(p->pLeft, &v) ){ | 
|         |    958         *pValue = -v; | 
|         |    959         return 1; | 
|         |    960       } | 
|         |    961       break; | 
|         |    962     } | 
|         |    963     default: break; | 
|         |    964   } | 
|         |    965   return 0; | 
|         |    966 } | 
|         |    967  | 
|         |    968 /* | 
|         |    969 ** Return TRUE if the given string is a row-id column name. | 
|         |    970 */ | 
|         |    971 int sqlite3IsRowid(const char *z){ | 
|         |    972   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; | 
|         |    973   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; | 
|         |    974   if( sqlite3StrICmp(z, "OID")==0 ) return 1; | 
|         |    975   return 0; | 
|         |    976 } | 
|         |    977  | 
|         |    978 /* | 
|         |    979 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up | 
|         |    980 ** that name in the set of source tables in pSrcList and make the pExpr  | 
|         |    981 ** expression node refer back to that source column.  The following changes | 
|         |    982 ** are made to pExpr: | 
|         |    983 ** | 
|         |    984 **    pExpr->iDb           Set the index in db->aDb[] of the database holding | 
|         |    985 **                         the table. | 
|         |    986 **    pExpr->iTable        Set to the cursor number for the table obtained | 
|         |    987 **                         from pSrcList. | 
|         |    988 **    pExpr->iColumn       Set to the column number within the table. | 
|         |    989 **    pExpr->op            Set to TK_COLUMN. | 
|         |    990 **    pExpr->pLeft         Any expression this points to is deleted | 
|         |    991 **    pExpr->pRight        Any expression this points to is deleted. | 
|         |    992 ** | 
|         |    993 ** The pDbToken is the name of the database (the "X").  This value may be | 
|         |    994 ** NULL meaning that name is of the form Y.Z or Z.  Any available database | 
|         |    995 ** can be used.  The pTableToken is the name of the table (the "Y").  This | 
|         |    996 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it | 
|         |    997 ** means that the form of the name is Z and that columns from any table | 
|         |    998 ** can be used. | 
|         |    999 ** | 
|         |   1000 ** If the name cannot be resolved unambiguously, leave an error message | 
|         |   1001 ** in pParse and return non-zero.  Return zero on success. | 
|         |   1002 */ | 
|         |   1003 static int lookupName( | 
|         |   1004   Parse *pParse,       /* The parsing context */ | 
|         |   1005   Token *pDbToken,     /* Name of the database containing table, or NULL */ | 
|         |   1006   Token *pTableToken,  /* Name of table containing column, or NULL */ | 
|         |   1007   Token *pColumnToken, /* Name of the column. */ | 
|         |   1008   NameContext *pNC,    /* The name context used to resolve the name */ | 
|         |   1009   Expr *pExpr          /* Make this EXPR node point to the selected column */ | 
|         |   1010 ){ | 
|         |   1011   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */ | 
|         |   1012   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */ | 
|         |   1013   char *zCol = 0;      /* Name of the column.  The "Z" */ | 
|         |   1014   int i, j;            /* Loop counters */ | 
|         |   1015   int cnt = 0;         /* Number of matching column names */ | 
|         |   1016   int cntTab = 0;      /* Number of matching table names */ | 
|         |   1017   sqlite3 *db = pParse->db;  /* The database */ | 
|         |   1018   SrcList::SrcList_item *pItem;       /* Use for looping over pSrcList items */ | 
|         |   1019   SrcList::SrcList_item *pMatch = 0;  /* The matching pSrcList item */ | 
|         |   1020   NameContext *pTopNC = pNC;        /* First namecontext in the list */ | 
|         |   1021   Schema *pSchema = 0;              /* Schema of the expression */ | 
|         |   1022  | 
|         |   1023   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ | 
|         |   1024   zDb = sqlite3NameFromToken(db, pDbToken); | 
|         |   1025   zTab = sqlite3NameFromToken(db, pTableToken); | 
|         |   1026   zCol = sqlite3NameFromToken(db, pColumnToken); | 
|         |   1027   if( db->mallocFailed ){ | 
|         |   1028     goto lookupname_end; | 
|         |   1029   } | 
|         |   1030  | 
|         |   1031   pExpr->iTable = -1; | 
|         |   1032   while( pNC && cnt==0 ){ | 
|         |   1033     ExprList *pEList; | 
|         |   1034     SrcList *pSrcList = pNC->pSrcList; | 
|         |   1035  | 
|         |   1036     if( pSrcList ){ | 
|         |   1037       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ | 
|         |   1038         Table *pTab; | 
|         |   1039         int iDb; | 
|         |   1040         Column *pCol; | 
|         |   1041    | 
|         |   1042         pTab = pItem->pTab; | 
|         |   1043         assert( pTab!=0 ); | 
|         |   1044         iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | 
|         |   1045         assert( pTab->nCol>0 ); | 
|         |   1046         if( zTab ){ | 
|         |   1047           if( pItem->zAlias ){ | 
|         |   1048             char *zTabName = pItem->zAlias; | 
|         |   1049             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; | 
|         |   1050           }else{ | 
|         |   1051             char *zTabName = pTab->zName; | 
|         |   1052             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; | 
|         |   1053             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ | 
|         |   1054               continue; | 
|         |   1055             } | 
|         |   1056           } | 
|         |   1057         } | 
|         |   1058         if( 0==(cntTab++) ){ | 
|         |   1059           pExpr->iTable = pItem->iCursor; | 
|         |   1060           pSchema = pTab->pSchema; | 
|         |   1061           pMatch = pItem; | 
|         |   1062         } | 
|         |   1063         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ | 
|         |   1064           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | 
|         |   1065             const char *zColl = pTab->aCol[j].zColl; | 
|         |   1066             IdList *pUsing; | 
|         |   1067             cnt++; | 
|         |   1068             pExpr->iTable = pItem->iCursor; | 
|         |   1069             pMatch = pItem; | 
|         |   1070             pSchema = pTab->pSchema; | 
|         |   1071             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ | 
|         |   1072             pExpr->iColumn = j==pTab->iPKey ? -1 : j; | 
|         |   1073             pExpr->affinity = pTab->aCol[j].affinity; | 
|         |   1074             if( (pExpr->flags & EP_ExpCollate)==0 ){ | 
|         |   1075               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); | 
|         |   1076             } | 
|         |   1077             if( i<pSrcList->nSrc-1 ){ | 
|         |   1078               if( pItem[1].jointype & JT_NATURAL ){ | 
|         |   1079                 /* If this match occurred in the left table of a natural join, | 
|         |   1080                 ** then skip the right table to avoid a duplicate match */ | 
|         |   1081                 pItem++; | 
|         |   1082                 i++; | 
|         |   1083               }else if( (pUsing = pItem[1].pUsing)!=0 ){ | 
|         |   1084                 /* If this match occurs on a column that is in the USING clause | 
|         |   1085                 ** of a join, skip the search of the right table of the join | 
|         |   1086                 ** to avoid a duplicate match there. */ | 
|         |   1087                 int k; | 
|         |   1088                 for(k=0; k<pUsing->nId; k++){ | 
|         |   1089                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ | 
|         |   1090                     pItem++; | 
|         |   1091                     i++; | 
|         |   1092                     break; | 
|         |   1093                   } | 
|         |   1094                 } | 
|         |   1095               } | 
|         |   1096             } | 
|         |   1097             break; | 
|         |   1098           } | 
|         |   1099         } | 
|         |   1100       } | 
|         |   1101     } | 
|         |   1102  | 
|         |   1103 #ifndef SQLITE_OMIT_TRIGGER | 
|         |   1104     /* If we have not already resolved the name, then maybe  | 
|         |   1105     ** it is a new.* or old.* trigger argument reference | 
|         |   1106     */ | 
|         |   1107     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ | 
|         |   1108       TriggerStack *pTriggerStack = pParse->trigStack; | 
|         |   1109       Table *pTab = 0; | 
|         |   1110       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ | 
|         |   1111         pExpr->iTable = pTriggerStack->newIdx; | 
|         |   1112         assert( pTriggerStack->pTab ); | 
|         |   1113         pTab = pTriggerStack->pTab; | 
|         |   1114       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ | 
|         |   1115         pExpr->iTable = pTriggerStack->oldIdx; | 
|         |   1116         assert( pTriggerStack->pTab ); | 
|         |   1117         pTab = pTriggerStack->pTab; | 
|         |   1118       } | 
|         |   1119  | 
|         |   1120       if( pTab ){  | 
|         |   1121         int iCol; | 
|         |   1122         Column *pCol = pTab->aCol; | 
|         |   1123  | 
|         |   1124         pSchema = pTab->pSchema; | 
|         |   1125         cntTab++; | 
|         |   1126         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { | 
|         |   1127           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | 
|         |   1128             const char *zColl = pTab->aCol[iCol].zColl; | 
|         |   1129             cnt++; | 
|         |   1130             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; | 
|         |   1131             pExpr->affinity = pTab->aCol[iCol].affinity; | 
|         |   1132             if( (pExpr->flags & EP_ExpCollate)==0 ){ | 
|         |   1133               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); | 
|         |   1134             } | 
|         |   1135             pExpr->pTab = pTab; | 
|         |   1136             break; | 
|         |   1137           } | 
|         |   1138         } | 
|         |   1139       } | 
|         |   1140     } | 
|         |   1141 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ | 
|         |   1142  | 
|         |   1143     /* | 
|         |   1144     ** Perhaps the name is a reference to the ROWID | 
|         |   1145     */ | 
|         |   1146     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ | 
|         |   1147       cnt = 1; | 
|         |   1148       pExpr->iColumn = -1; | 
|         |   1149       pExpr->affinity = SQLITE_AFF_INTEGER; | 
|         |   1150     } | 
|         |   1151  | 
|         |   1152     /* | 
|         |   1153     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z | 
|         |   1154     ** might refer to an result-set alias.  This happens, for example, when | 
|         |   1155     ** we are resolving names in the WHERE clause of the following command: | 
|         |   1156     ** | 
|         |   1157     **     SELECT a+b AS x FROM table WHERE x<10; | 
|         |   1158     ** | 
|         |   1159     ** In cases like this, replace pExpr with a copy of the expression that | 
|         |   1160     ** forms the result set entry ("a+b" in the example) and return immediately. | 
|         |   1161     ** Note that the expression in the result set should have already been | 
|         |   1162     ** resolved by the time the WHERE clause is resolved. | 
|         |   1163     */ | 
|         |   1164     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ | 
|         |   1165       for(j=0; j<pEList->nExpr; j++){ | 
|         |   1166         char *zAs = pEList->a[j].zName; | 
|         |   1167         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ | 
|         |   1168           Expr *pDup, *pOrig; | 
|         |   1169           assert( pExpr->pLeft==0 && pExpr->pRight==0 ); | 
|         |   1170           assert( pExpr->pList==0 ); | 
|         |   1171           assert( pExpr->pSelect==0 ); | 
|         |   1172           pOrig = pEList->a[j].pExpr; | 
|         |   1173           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ | 
|         |   1174             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); | 
|         |   1175             sqlite3_free(zCol); | 
|         |   1176             return 2; | 
|         |   1177           } | 
|         |   1178           pDup = sqlite3ExprDup(db, pOrig); | 
|         |   1179           if( pExpr->flags & EP_ExpCollate ){ | 
|         |   1180             pDup->pColl = pExpr->pColl; | 
|         |   1181             pDup->flags |= EP_ExpCollate; | 
|         |   1182           } | 
|         |   1183           if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); | 
|         |   1184           if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); | 
|         |   1185           memcpy(pExpr, pDup, sizeof(*pExpr)); | 
|         |   1186           sqlite3_free(pDup); | 
|         |   1187           cnt = 1; | 
|         |   1188           pMatch = 0; | 
|         |   1189           assert( zTab==0 && zDb==0 ); | 
|         |   1190           goto lookupname_end_2; | 
|         |   1191         } | 
|         |   1192       }  | 
|         |   1193     } | 
|         |   1194  | 
|         |   1195     /* Advance to the next name context.  The loop will exit when either | 
|         |   1196     ** we have a match (cnt>0) or when we run out of name contexts. | 
|         |   1197     */ | 
|         |   1198     if( cnt==0 ){ | 
|         |   1199       pNC = pNC->pNext; | 
|         |   1200     } | 
|         |   1201   } | 
|         |   1202  | 
|         |   1203   /* | 
|         |   1204   ** If X and Y are NULL (in other words if only the column name Z is | 
|         |   1205   ** supplied) and the value of Z is enclosed in double-quotes, then | 
|         |   1206   ** Z is a string literal if it doesn't match any column names.  In that | 
|         |   1207   ** case, we need to return right away and not make any changes to | 
|         |   1208   ** pExpr. | 
|         |   1209   ** | 
|         |   1210   ** Because no reference was made to outer contexts, the pNC->nRef | 
|         |   1211   ** fields are not changed in any context. | 
|         |   1212   */ | 
|         |   1213   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ | 
|         |   1214     sqlite3_free(zCol); | 
|         |   1215     return 0; | 
|         |   1216   } | 
|         |   1217  | 
|         |   1218   /* | 
|         |   1219   ** cnt==0 means there was not match.  cnt>1 means there were two or | 
|         |   1220   ** more matches.  Either way, we have an error. | 
|         |   1221   */ | 
|         |   1222   if( cnt!=1 ){ | 
|         |   1223     char *z = 0; | 
|         |   1224     char *zErr; | 
|         |   1225     zErr = (char*)(cnt==0 ? "no such column: %s" : "ambiguous column name: %s"); | 
|         |   1226     if( zDb ){ | 
|         |   1227       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); | 
|         |   1228     }else if( zTab ){ | 
|         |   1229       sqlite3SetString(&z, zTab, ".", zCol, (char*)0); | 
|         |   1230     }else{ | 
|         |   1231       z = sqlite3StrDup(zCol); | 
|         |   1232     } | 
|         |   1233     if( z ){ | 
|         |   1234       sqlite3ErrorMsg(pParse, zErr, z); | 
|         |   1235       sqlite3_free(z); | 
|         |   1236       pTopNC->nErr++; | 
|         |   1237     }else{ | 
|         |   1238       db->mallocFailed = 1; | 
|         |   1239     } | 
|         |   1240   } | 
|         |   1241  | 
|         |   1242   /* If a column from a table in pSrcList is referenced, then record | 
|         |   1243   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes | 
|         |   1244   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the | 
|         |   1245   ** column number is greater than the number of bits in the bitmask | 
|         |   1246   ** then set the high-order bit of the bitmask. | 
|         |   1247   */ | 
|         |   1248   if( pExpr->iColumn>=0 && pMatch!=0 ){ | 
|         |   1249     int n = pExpr->iColumn; | 
|         |   1250     if( n>=sizeof(Bitmask)*8 ){ | 
|         |   1251       n = sizeof(Bitmask)*8-1; | 
|         |   1252     } | 
|         |   1253     assert( pMatch->iCursor==pExpr->iTable ); | 
|         |   1254     pMatch->colUsed |= ((Bitmask)1)<<n; | 
|         |   1255   } | 
|         |   1256  | 
|         |   1257 lookupname_end: | 
|         |   1258   /* Clean up and return | 
|         |   1259   */ | 
|         |   1260   sqlite3_free(zDb); | 
|         |   1261   sqlite3_free(zTab); | 
|         |   1262   sqlite3ExprDelete(pExpr->pLeft); | 
|         |   1263   pExpr->pLeft = 0; | 
|         |   1264   sqlite3ExprDelete(pExpr->pRight); | 
|         |   1265   pExpr->pRight = 0; | 
|         |   1266   pExpr->op = TK_COLUMN; | 
|         |   1267 lookupname_end_2: | 
|         |   1268   sqlite3_free(zCol); | 
|         |   1269   if( cnt==1 ){ | 
|         |   1270     assert( pNC!=0 ); | 
|         |   1271     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); | 
|         |   1272     if( pMatch && !pMatch->pSelect ){ | 
|         |   1273       pExpr->pTab = pMatch->pTab; | 
|         |   1274     } | 
|         |   1275     /* Increment the nRef value on all name contexts from TopNC up to | 
|         |   1276     ** the point where the name matched. */ | 
|         |   1277     for(;;){ | 
|         |   1278       assert( pTopNC!=0 ); | 
|         |   1279       pTopNC->nRef++; | 
|         |   1280       if( pTopNC==pNC ) break; | 
|         |   1281       pTopNC = pTopNC->pNext; | 
|         |   1282     } | 
|         |   1283     return 0; | 
|         |   1284   } else { | 
|         |   1285     return 1; | 
|         |   1286   } | 
|         |   1287 } | 
|         |   1288  | 
|         |   1289 /* | 
|         |   1290 ** This routine is designed as an xFunc for walkExprTree(). | 
|         |   1291 ** | 
|         |   1292 ** Resolve symbolic names into TK_COLUMN operators for the current | 
|         |   1293 ** node in the expression tree.  Return 0 to continue the search down | 
|         |   1294 ** the tree or 2 to abort the tree walk. | 
|         |   1295 ** | 
|         |   1296 ** This routine also does error checking and name resolution for | 
|         |   1297 ** function names.  The operator for aggregate functions is changed | 
|         |   1298 ** to TK_AGG_FUNCTION. | 
|         |   1299 */ | 
|         |   1300 static int nameResolverStep(void *pArg, Expr *pExpr){ | 
|         |   1301   NameContext *pNC = (NameContext*)pArg; | 
|         |   1302   Parse *pParse; | 
|         |   1303  | 
|         |   1304   if( pExpr==0 ) return 1; | 
|         |   1305   assert( pNC!=0 ); | 
|         |   1306   pParse = pNC->pParse; | 
|         |   1307  | 
|         |   1308   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; | 
|         |   1309   ExprSetProperty(pExpr, EP_Resolved); | 
|         |   1310 #ifndef NDEBUG | 
|         |   1311   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ | 
|         |   1312     SrcList *pSrcList = pNC->pSrcList; | 
|         |   1313     int i; | 
|         |   1314     for(i=0; i<pNC->pSrcList->nSrc; i++){ | 
|         |   1315       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); | 
|         |   1316     } | 
|         |   1317   } | 
|         |   1318 #endif | 
|         |   1319   switch( pExpr->op ){ | 
|         |   1320     /* Double-quoted strings (ex: "abc") are used as identifiers if | 
|         |   1321     ** possible.  Otherwise they remain as strings.  Single-quoted | 
|         |   1322     ** strings (ex: 'abc') are always string literals. | 
|         |   1323     */ | 
|         |   1324     case TK_STRING: { | 
|         |   1325       if( pExpr->token.z[0]=='\'' ) break; | 
|         |   1326       /* Fall thru into the TK_ID case if this is a double-quoted string */ | 
|         |   1327     } | 
|         |   1328     /* A lone identifier is the name of a column. | 
|         |   1329     */ | 
|         |   1330     case TK_ID: { | 
|         |   1331       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); | 
|         |   1332       return 1; | 
|         |   1333     } | 
|         |   1334    | 
|         |   1335     /* A table name and column name:     ID.ID | 
|         |   1336     ** Or a database, table and column:  ID.ID.ID | 
|         |   1337     */ | 
|         |   1338     case TK_DOT: { | 
|         |   1339       Token *pColumn; | 
|         |   1340       Token *pTable; | 
|         |   1341       Token *pDb; | 
|         |   1342       Expr *pRight; | 
|         |   1343  | 
|         |   1344       /* if( pSrcList==0 ) break; */ | 
|         |   1345       pRight = pExpr->pRight; | 
|         |   1346       if( pRight->op==TK_ID ){ | 
|         |   1347         pDb = 0; | 
|         |   1348         pTable = &pExpr->pLeft->token; | 
|         |   1349         pColumn = &pRight->token; | 
|         |   1350       }else{ | 
|         |   1351         assert( pRight->op==TK_DOT ); | 
|         |   1352         pDb = &pExpr->pLeft->token; | 
|         |   1353         pTable = &pRight->pLeft->token; | 
|         |   1354         pColumn = &pRight->pRight->token; | 
|         |   1355       } | 
|         |   1356       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); | 
|         |   1357       return 1; | 
|         |   1358     } | 
|         |   1359  | 
|         |   1360     /* Resolve function names | 
|         |   1361     */ | 
|         |   1362     case TK_CONST_FUNC: | 
|         |   1363     case TK_FUNCTION: { | 
|         |   1364       ExprList *pList = pExpr->pList;    /* The argument list */ | 
|         |   1365       int n = pList ? pList->nExpr : 0;  /* Number of arguments */ | 
|         |   1366       int no_such_func = 0;       /* True if no such function exists */ | 
|         |   1367       int wrong_num_args = 0;     /* True if wrong number of arguments */ | 
|         |   1368       int is_agg = 0;             /* True if is an aggregate function */ | 
|         |   1369       int i; | 
|         |   1370       int auth;                   /* Authorization to use the function */ | 
|         |   1371       int nId;                    /* Number of characters in function name */ | 
|         |   1372       const char *zId;            /* The function name. */ | 
|         |   1373       FuncDef *pDef;              /* Information about the function */ | 
|         |   1374       int enc = ENC(pParse->db);  /* The database encoding */ | 
|         |   1375  | 
|         |   1376       zId = (char*)pExpr->token.z; | 
|         |   1377       nId = pExpr->token.n; | 
|         |   1378       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); | 
|         |   1379       if( pDef==0 ){ | 
|         |   1380         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); | 
|         |   1381         if( pDef==0 ){ | 
|         |   1382           no_such_func = 1; | 
|         |   1383         }else{ | 
|         |   1384           wrong_num_args = 1; | 
|         |   1385         } | 
|         |   1386       }else{ | 
|         |   1387         is_agg = pDef->xFunc==0; | 
|         |   1388       } | 
|         |   1389 #ifndef SQLITE_OMIT_AUTHORIZATION | 
|         |   1390       if( pDef ){ | 
|         |   1391         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); | 
|         |   1392         if( auth!=SQLITE_OK ){ | 
|         |   1393           if( auth==SQLITE_DENY ){ | 
|         |   1394             sqlite3ErrorMsg(pParse, "not authorized to use function: %s", | 
|         |   1395                                     pDef->zName); | 
|         |   1396             pNC->nErr++; | 
|         |   1397           } | 
|         |   1398           pExpr->op = TK_NULL; | 
|         |   1399           return 1; | 
|         |   1400         } | 
|         |   1401       } | 
|         |   1402 #endif | 
|         |   1403       if( is_agg && !pNC->allowAgg ){ | 
|         |   1404         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); | 
|         |   1405         pNC->nErr++; | 
|         |   1406         is_agg = 0; | 
|         |   1407       }else if( no_such_func ){ | 
|         |   1408         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); | 
|         |   1409         pNC->nErr++; | 
|         |   1410       }else if( wrong_num_args ){ | 
|         |   1411         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", | 
|         |   1412              nId, zId); | 
|         |   1413         pNC->nErr++; | 
|         |   1414       } | 
|         |   1415       if( is_agg ){ | 
|         |   1416         pExpr->op = TK_AGG_FUNCTION; | 
|         |   1417         pNC->hasAgg = 1; | 
|         |   1418       } | 
|         |   1419       if( is_agg ) pNC->allowAgg = 0; | 
|         |   1420       for(i=0; pNC->nErr==0 && i<n; i++){ | 
|         |   1421         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); | 
|         |   1422       } | 
|         |   1423       if( is_agg ) pNC->allowAgg = 1; | 
|         |   1424       /* FIX ME:  Compute pExpr->affinity based on the expected return | 
|         |   1425       ** type of the function  | 
|         |   1426       */ | 
|         |   1427       return is_agg; | 
|         |   1428     } | 
|         |   1429 #ifndef SQLITE_OMIT_SUBQUERY | 
|         |   1430     case TK_SELECT: | 
|         |   1431     case TK_EXISTS: | 
|         |   1432 #endif | 
|         |   1433     case TK_IN: { | 
|         |   1434       if( pExpr->pSelect ){ | 
|         |   1435         int nRef = pNC->nRef; | 
|         |   1436 #ifndef SQLITE_OMIT_CHECK | 
|         |   1437         if( pNC->isCheck ){ | 
|         |   1438           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); | 
|         |   1439         } | 
|         |   1440 #endif | 
|         |   1441         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); | 
|         |   1442         assert( pNC->nRef>=nRef ); | 
|         |   1443         if( nRef!=pNC->nRef ){ | 
|         |   1444           ExprSetProperty(pExpr, EP_VarSelect); | 
|         |   1445         } | 
|         |   1446       } | 
|         |   1447       break; | 
|         |   1448     } | 
|         |   1449 #ifndef SQLITE_OMIT_CHECK | 
|         |   1450     case TK_VARIABLE: { | 
|         |   1451       if( pNC->isCheck ){ | 
|         |   1452         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); | 
|         |   1453       } | 
|         |   1454       break; | 
|         |   1455     } | 
|         |   1456 #endif | 
|         |   1457   } | 
|         |   1458   return 0; | 
|         |   1459 } | 
|         |   1460  | 
|         |   1461 /* | 
|         |   1462 ** This routine walks an expression tree and resolves references to | 
|         |   1463 ** table columns.  Nodes of the form ID.ID or ID resolve into an | 
|         |   1464 ** index to the table in the table list and a column offset.  The  | 
|         |   1465 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable | 
|         |   1466 ** value is changed to the index of the referenced table in pTabList | 
|         |   1467 ** plus the "base" value.  The base value will ultimately become the | 
|         |   1468 ** VDBE cursor number for a cursor that is pointing into the referenced | 
|         |   1469 ** table.  The Expr.iColumn value is changed to the index of the column  | 
|         |   1470 ** of the referenced table.  The Expr.iColumn value for the special | 
|         |   1471 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an | 
|         |   1472 ** alias for ROWID. | 
|         |   1473 ** | 
|         |   1474 ** Also resolve function names and check the functions for proper | 
|         |   1475 ** usage.  Make sure all function names are recognized and all functions | 
|         |   1476 ** have the correct number of arguments.  Leave an error message | 
|         |   1477 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors. | 
|         |   1478 ** | 
|         |   1479 ** If the expression contains aggregate functions then set the EP_Agg | 
|         |   1480 ** property on the expression. | 
|         |   1481 */ | 
|         |   1482 int sqlite3ExprResolveNames(  | 
|         |   1483   NameContext *pNC,       /* Namespace to resolve expressions in. */ | 
|         |   1484   Expr *pExpr             /* The expression to be analyzed. */ | 
|         |   1485 ){ | 
|         |   1486   int savedHasAgg; | 
|         |   1487   if( pExpr==0 ) return 0; | 
|         |   1488 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 | 
|         |   1489   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ | 
|         |   1490     sqlite3ErrorMsg(pNC->pParse,  | 
|         |   1491        "Expression tree is too large (maximum depth %d)", | 
|         |   1492        SQLITE_MAX_EXPR_DEPTH | 
|         |   1493     ); | 
|         |   1494     return 1; | 
|         |   1495   } | 
|         |   1496   pNC->pParse->nHeight += pExpr->nHeight; | 
|         |   1497 #endif | 
|         |   1498   savedHasAgg = pNC->hasAgg; | 
|         |   1499   pNC->hasAgg = 0; | 
|         |   1500   walkExprTree(pExpr, nameResolverStep, pNC); | 
|         |   1501 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 | 
|         |   1502   pNC->pParse->nHeight -= pExpr->nHeight; | 
|         |   1503 #endif | 
|         |   1504   if( pNC->nErr>0 ){ | 
|         |   1505     ExprSetProperty(pExpr, EP_Error); | 
|         |   1506   } | 
|         |   1507   if( pNC->hasAgg ){ | 
|         |   1508     ExprSetProperty(pExpr, EP_Agg); | 
|         |   1509   }else if( savedHasAgg ){ | 
|         |   1510     pNC->hasAgg = 1; | 
|         |   1511   } | 
|         |   1512   return ExprHasProperty(pExpr, EP_Error); | 
|         |   1513 } | 
|         |   1514  | 
|         |   1515 /* | 
|         |   1516 ** A pointer instance of this structure is used to pass information | 
|         |   1517 ** through walkExprTree into codeSubqueryStep(). | 
|         |   1518 */ | 
|         |   1519 typedef struct QueryCoder QueryCoder; | 
|         |   1520 struct QueryCoder { | 
|         |   1521   Parse *pParse;       /* The parsing context */ | 
|         |   1522   NameContext *pNC;    /* Namespace of first enclosing query */ | 
|         |   1523 }; | 
|         |   1524  | 
|         |   1525 #ifdef SQLITE_TEST | 
|         |   1526   int sqlite3_enable_in_opt = 1; | 
|         |   1527 #else | 
|         |   1528   #define sqlite3_enable_in_opt 1 | 
|         |   1529 #endif | 
|         |   1530  | 
|         |   1531 /* | 
|         |   1532 ** This function is used by the implementation of the IN (...) operator. | 
|         |   1533 ** It's job is to find or create a b-tree structure that may be used | 
|         |   1534 ** either to test for membership of the (...) set or to iterate through | 
|         |   1535 ** its members, skipping duplicates. | 
|         |   1536 ** | 
|         |   1537 ** The cursor opened on the structure (database table, database index  | 
|         |   1538 ** or ephermal table) is stored in pX->iTable before this function returns. | 
|         |   1539 ** The returned value indicates the structure type, as follows: | 
|         |   1540 ** | 
|         |   1541 **   IN_INDEX_ROWID - The cursor was opened on a database table. | 
|         |   1542 **   IN_INDEX_INDEX - The cursor was opened on a database indec. | 
|         |   1543 **   IN_INDEX_EPH -   The cursor was opened on a specially created and | 
|         |   1544 **                    populated epheremal table. | 
|         |   1545 ** | 
|         |   1546 ** An existing structure may only be used if the SELECT is of the simple | 
|         |   1547 ** form: | 
|         |   1548 ** | 
|         |   1549 **     SELECT <column> FROM <table> | 
|         |   1550 ** | 
|         |   1551 ** If the mustBeUnique parameter is false, the structure will be used  | 
|         |   1552 ** for fast set membership tests. In this case an epheremal table must  | 
|         |   1553 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can  | 
|         |   1554 ** be found with <column> as its left-most column. | 
|         |   1555 ** | 
|         |   1556 ** If mustBeUnique is true, then the structure will be used to iterate | 
|         |   1557 ** through the set members, skipping any duplicates. In this case an | 
|         |   1558 ** epheremal table must be used unless the selected <column> is guaranteed | 
|         |   1559 ** to be unique - either because it is an INTEGER PRIMARY KEY or it | 
|         |   1560 ** is unique by virtue of a constraint or implicit index. | 
|         |   1561 */ | 
|         |   1562 #ifndef SQLITE_OMIT_SUBQUERY | 
|         |   1563 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){ | 
|         |   1564   Select *p; | 
|         |   1565   int eType = 0; | 
|         |   1566   int iTab = pParse->nTab++; | 
|         |   1567  | 
|         |   1568   /* The follwing if(...) expression is true if the SELECT is of the  | 
|         |   1569   ** simple form: | 
|         |   1570   ** | 
|         |   1571   **     SELECT <column> FROM <table> | 
|         |   1572   ** | 
|         |   1573   ** If this is the case, it may be possible to use an existing table | 
|         |   1574   ** or index instead of generating an epheremal table. | 
|         |   1575   */ | 
|         |   1576   if( sqlite3_enable_in_opt | 
|         |   1577    && (p=pX->pSelect) && !p->pPrior | 
|         |   1578    && !p->isDistinct && !p->isAgg && !p->pGroupBy | 
|         |   1579    && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect | 
|         |   1580    && !p->pSrc->a[0].pTab->pSelect                                   | 
|         |   1581    && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN | 
|         |   1582    && !p->pLimit && !p->pOffset && !p->pWhere | 
|         |   1583   ){ | 
|         |   1584     sqlite3 *db = pParse->db; | 
|         |   1585     Index *pIdx; | 
|         |   1586     Expr *pExpr = p->pEList->a[0].pExpr; | 
|         |   1587     int iCol = pExpr->iColumn; | 
|         |   1588     Vdbe *v = sqlite3GetVdbe(pParse); | 
|         |   1589  | 
|         |   1590     /* This function is only called from two places. In both cases the vdbe | 
|         |   1591     ** has already been allocated. So assume sqlite3GetVdbe() is always | 
|         |   1592     ** successful here. | 
|         |   1593     */ | 
|         |   1594     assert(v); | 
|         |   1595     if( iCol<0 ){ | 
|         |   1596       int iMem = pParse->nMem++; | 
|         |   1597       int iAddr; | 
|         |   1598       Table *pTab = p->pSrc->a[0].pTab; | 
|         |   1599       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | 
|         |   1600       sqlite3VdbeUsesBtree(v, iDb); | 
|         |   1601  | 
|         |   1602       sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); | 
|         |   1603       iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); | 
|         |   1604       sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); | 
|         |   1605  | 
|         |   1606       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); | 
|         |   1607       eType = IN_INDEX_ROWID; | 
|         |   1608  | 
|         |   1609       sqlite3VdbeJumpHere(v, iAddr); | 
|         |   1610     }else{ | 
|         |   1611       /* The collation sequence used by the comparison. If an index is to  | 
|         |   1612       ** be used in place of a temp-table, it must be ordered according | 
|         |   1613       ** to this collation sequence. | 
|         |   1614       */ | 
|         |   1615       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); | 
|         |   1616  | 
|         |   1617       /* Check that the affinity that will be used to perform the  | 
|         |   1618       ** comparison is the same as the affinity of the column. If | 
|         |   1619       ** it is not, it is not possible to use any index. | 
|         |   1620       */ | 
|         |   1621       Table *pTab = p->pSrc->a[0].pTab; | 
|         |   1622       char aff = comparisonAffinity(pX); | 
|         |   1623       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); | 
|         |   1624  | 
|         |   1625       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ | 
|         |   1626         if( (pIdx->aiColumn[0]==iCol) | 
|         |   1627          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) | 
|         |   1628          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) | 
|         |   1629         ){ | 
|         |   1630           int iDb; | 
|         |   1631           int iMem = pParse->nMem++; | 
|         |   1632           int iAddr; | 
|         |   1633           char *pKey; | 
|         |   1634    | 
|         |   1635           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); | 
|         |   1636           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); | 
|         |   1637           sqlite3VdbeUsesBtree(v, iDb); | 
|         |   1638  | 
|         |   1639           sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0); | 
|         |   1640           iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem); | 
|         |   1641           sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem); | 
|         |   1642    | 
|         |   1643           sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); | 
|         |   1644           VdbeComment((v, "# %s", pIdx->zName)); | 
|         |   1645           sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF); | 
|         |   1646           eType = IN_INDEX_INDEX; | 
|         |   1647           sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn); | 
|         |   1648  | 
|         |   1649           sqlite3VdbeJumpHere(v, iAddr); | 
|         |   1650         } | 
|         |   1651       } | 
|         |   1652     } | 
|         |   1653   } | 
|         |   1654  | 
|         |   1655   if( eType==0 ){ | 
|         |   1656     sqlite3CodeSubselect(pParse, pX); | 
|         |   1657     eType = IN_INDEX_EPH; | 
|         |   1658   }else{ | 
|         |   1659     pX->iTable = iTab; | 
|         |   1660   } | 
|         |   1661   return eType; | 
|         |   1662 } | 
|         |   1663 #endif | 
|         |   1664  | 
|         |   1665 /* | 
|         |   1666 ** Generate code for scalar subqueries used as an expression | 
|         |   1667 ** and IN operators.  Examples: | 
|         |   1668 ** | 
|         |   1669 **     (SELECT a FROM b)          -- subquery | 
|         |   1670 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery | 
|         |   1671 **     x IN (4,5,11)              -- IN operator with list on right-hand side | 
|         |   1672 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right | 
|         |   1673 ** | 
|         |   1674 ** The pExpr parameter describes the expression that contains the IN | 
|         |   1675 ** operator or subquery. | 
|         |   1676 */ | 
|         |   1677 #ifndef SQLITE_OMIT_SUBQUERY | 
|         |   1678 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ | 
|         |   1679   int testAddr = 0;                       /* One-time test address */ | 
|         |   1680   Vdbe *v = sqlite3GetVdbe(pParse); | 
|         |   1681   if( v==0 ) return; | 
|         |   1682  | 
|         |   1683  | 
|         |   1684   /* This code must be run in its entirety every time it is encountered | 
|         |   1685   ** if any of the following is true: | 
|         |   1686   ** | 
|         |   1687   **    *  The right-hand side is a correlated subquery | 
|         |   1688   **    *  The right-hand side is an expression list containing variables | 
|         |   1689   **    *  We are inside a trigger | 
|         |   1690   ** | 
|         |   1691   ** If all of the above are false, then we can run this code just once | 
|         |   1692   ** save the results, and reuse the same result on subsequent invocations. | 
|         |   1693   */ | 
|         |   1694   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ | 
|         |   1695     int mem = pParse->nMem++; | 
|         |   1696     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); | 
|         |   1697     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); | 
|         |   1698     assert( testAddr>0 || pParse->db->mallocFailed ); | 
|         |   1699     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); | 
|         |   1700   } | 
|         |   1701  | 
|         |   1702   switch( pExpr->op ){ | 
|         |   1703     case TK_IN: { | 
|         |   1704       char affinity; | 
|         |   1705       KeyInfo keyInfo; | 
|         |   1706       int addr;        /* Address of OP_OpenEphemeral instruction */ | 
|         |   1707  | 
|         |   1708       affinity = sqlite3ExprAffinity(pExpr->pLeft); | 
|         |   1709  | 
|         |   1710       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' | 
|         |   1711       ** expression it is handled the same way. A virtual table is  | 
|         |   1712       ** filled with single-field index keys representing the results | 
|         |   1713       ** from the SELECT or the <exprlist>. | 
|         |   1714       ** | 
|         |   1715       ** If the 'x' expression is a column value, or the SELECT... | 
|         |   1716       ** statement returns a column value, then the affinity of that | 
|         |   1717       ** column is used to build the index keys. If both 'x' and the | 
|         |   1718       ** SELECT... statement are columns, then numeric affinity is used | 
|         |   1719       ** if either column has NUMERIC or INTEGER affinity. If neither | 
|         |   1720       ** 'x' nor the SELECT... statement are columns, then numeric affinity | 
|         |   1721       ** is used. | 
|         |   1722       */ | 
|         |   1723       pExpr->iTable = pParse->nTab++; | 
|         |   1724       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); | 
|         |   1725       memset(&keyInfo, 0, sizeof(keyInfo)); | 
|         |   1726       keyInfo.nField = 1; | 
|         |   1727       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); | 
|         |   1728  | 
|         |   1729       if( pExpr->pSelect ){ | 
|         |   1730         /* Case 1:     expr IN (SELECT ...) | 
|         |   1731         ** | 
|         |   1732         ** Generate code to write the results of the select into the temporary | 
|         |   1733         ** table allocated and opened above. | 
|         |   1734         */ | 
|         |   1735         int iParm = pExpr->iTable +  (((int)affinity)<<16); | 
|         |   1736         ExprList *pEList; | 
|         |   1737         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); | 
|         |   1738         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ | 
|         |   1739           return; | 
|         |   1740         } | 
|         |   1741         pEList = pExpr->pSelect->pEList; | 
|         |   1742         if( pEList && pEList->nExpr>0 ){  | 
|         |   1743           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, | 
|         |   1744               pEList->a[0].pExpr); | 
|         |   1745         } | 
|         |   1746       }else if( pExpr->pList ){ | 
|         |   1747         /* Case 2:     expr IN (exprlist) | 
|         |   1748         ** | 
|         |   1749         ** For each expression, build an index key from the evaluation and | 
|         |   1750         ** store it in the temporary table. If <expr> is a column, then use | 
|         |   1751         ** that columns affinity when building index keys. If <expr> is not | 
|         |   1752         ** a column, use numeric affinity. | 
|         |   1753         */ | 
|         |   1754         int i; | 
|         |   1755         ExprList *pList = pExpr->pList; | 
|         |   1756 		ExprList::ExprList_item *pItem; | 
|         |   1757  | 
|         |   1758         if( !affinity ){ | 
|         |   1759           affinity = SQLITE_AFF_NONE; | 
|         |   1760         } | 
|         |   1761         keyInfo.aColl[0] = pExpr->pLeft->pColl; | 
|         |   1762  | 
|         |   1763         /* Loop through each expression in <exprlist>. */ | 
|         |   1764         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ | 
|         |   1765           Expr *pE2 = pItem->pExpr; | 
|         |   1766  | 
|         |   1767           /* If the expression is not constant then we will need to | 
|         |   1768           ** disable the test that was generated above that makes sure | 
|         |   1769           ** this code only executes once.  Because for a non-constant | 
|         |   1770           ** expression we need to rerun this code each time. | 
|         |   1771           */ | 
|         |   1772           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ | 
|         |   1773             sqlite3VdbeChangeToNoop(v, testAddr-1, 3); | 
|         |   1774             testAddr = 0; | 
|         |   1775           } | 
|         |   1776  | 
|         |   1777           /* Evaluate the expression and insert it into the temp table */ | 
|         |   1778           sqlite3ExprCode(pParse, pE2); | 
|         |   1779           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); | 
|         |   1780           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); | 
|         |   1781         } | 
|         |   1782       } | 
|         |   1783       sqlite3VdbeChangeP3(v, addr, (const char *)&keyInfo, P3_KEYINFO); | 
|         |   1784       break; | 
|         |   1785     } | 
|         |   1786  | 
|         |   1787     case TK_EXISTS: | 
|         |   1788     case TK_SELECT: { | 
|         |   1789       /* This has to be a scalar SELECT.  Generate code to put the | 
|         |   1790       ** value of this select in a memory cell and record the number | 
|         |   1791       ** of the memory cell in iColumn. | 
|         |   1792       */ | 
|         |   1793       static const Token one = { (u8*)"1", 0, 1 }; | 
|         |   1794       Select *pSel; | 
|         |   1795       int iMem; | 
|         |   1796       int sop; | 
|         |   1797  | 
|         |   1798       pExpr->iColumn = iMem = pParse->nMem++; | 
|         |   1799       pSel = pExpr->pSelect; | 
|         |   1800       if( pExpr->op==TK_SELECT ){ | 
|         |   1801         sop = SRT_Mem; | 
|         |   1802         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); | 
|         |   1803         VdbeComment((v, "# Init subquery result")); | 
|         |   1804       }else{ | 
|         |   1805         sop = SRT_Exists; | 
|         |   1806         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); | 
|         |   1807         VdbeComment((v, "# Init EXISTS result")); | 
|         |   1808       } | 
|         |   1809       sqlite3ExprDelete(pSel->pLimit); | 
|         |   1810       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); | 
|         |   1811       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ | 
|         |   1812         return; | 
|         |   1813       } | 
|         |   1814       break; | 
|         |   1815     } | 
|         |   1816   } | 
|         |   1817  | 
|         |   1818   if( testAddr ){ | 
|         |   1819     sqlite3VdbeJumpHere(v, testAddr); | 
|         |   1820   } | 
|         |   1821  | 
|         |   1822   return; | 
|         |   1823 } | 
|         |   1824 #endif /* SQLITE_OMIT_SUBQUERY */ | 
|         |   1825  | 
|         |   1826 /* | 
|         |   1827 ** Duplicate an 8-byte value | 
|         |   1828 */ | 
|         |   1829 static char *dup8bytes(Vdbe *v, const char *in){ | 
|         |   1830   char *out = (char*)sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); | 
|         |   1831   if( out ){ | 
|         |   1832     memcpy(out, in, 8); | 
|         |   1833   } | 
|         |   1834   return out; | 
|         |   1835 } | 
|         |   1836  | 
|         |   1837 /* | 
|         |   1838 ** Generate an instruction that will put the floating point | 
|         |   1839 ** value described by z[0..n-1] on the stack. | 
|         |   1840 ** | 
|         |   1841 ** The z[] string will probably not be zero-terminated.  But the  | 
|         |   1842 ** z[n] character is guaranteed to be something that does not look | 
|         |   1843 ** like the continuation of the number. | 
|         |   1844 */ | 
|         |   1845 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){ | 
|         |   1846   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); | 
|         |   1847   if( z ){ | 
|         |   1848     double value; | 
|         |   1849     char *zV; | 
|         |   1850     assert( !isdigit(z[n]) ); | 
|         |   1851     sqlite3AtoF(z, &value); | 
|         |   1852     if( negateFlag ) value = -value; | 
|         |   1853     zV = dup8bytes(v, (char*)&value); | 
|         |   1854     sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL); | 
|         |   1855   } | 
|         |   1856 } | 
|         |   1857  | 
|         |   1858  | 
|         |   1859 /* | 
|         |   1860 ** Generate an instruction that will put the integer describe by | 
|         |   1861 ** text z[0..n-1] on the stack. | 
|         |   1862 ** | 
|         |   1863 ** The z[] string will probably not be zero-terminated.  But the  | 
|         |   1864 ** z[n] character is guaranteed to be something that does not look | 
|         |   1865 ** like the continuation of the number. | 
|         |   1866 */ | 
|         |   1867 static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){ | 
|         |   1868   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); | 
|         |   1869   if( z ){ | 
|         |   1870     int i; | 
|         |   1871     assert( !isdigit(z[n]) ); | 
|         |   1872     if( sqlite3GetInt32(z, &i) ){ | 
|         |   1873       if( negateFlag ) i = -i; | 
|         |   1874       sqlite3VdbeAddOp(v, OP_Integer, i, 0); | 
|         |   1875     }else if( sqlite3FitsIn64Bits(z, negateFlag) ){ | 
|         |   1876       i64 value; | 
|         |   1877       char *zV; | 
|         |   1878       sqlite3Atoi64(z, &value); | 
|         |   1879       if( negateFlag ) value = -value; | 
|         |   1880       zV = dup8bytes(v, (char*)&value); | 
|         |   1881       sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64); | 
|         |   1882     }else{ | 
|         |   1883       codeReal(v, z, n, negateFlag); | 
|         |   1884     } | 
|         |   1885   } | 
|         |   1886 } | 
|         |   1887  | 
|         |   1888  | 
|         |   1889 /* | 
|         |   1890 ** Generate code that will extract the iColumn-th column from | 
|         |   1891 ** table pTab and push that column value on the stack.  There | 
|         |   1892 ** is an open cursor to pTab in iTable.  If iColumn<0 then | 
|         |   1893 ** code is generated that extracts the rowid. | 
|         |   1894 */ | 
|         |   1895 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ | 
|         |   1896   if( iColumn<0 ){ | 
|         |   1897     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; | 
|         |   1898     sqlite3VdbeAddOp(v, op, iTable, 0); | 
|         |   1899   }else if( pTab==0 ){ | 
|         |   1900     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); | 
|         |   1901   }else{ | 
|         |   1902     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; | 
|         |   1903     sqlite3VdbeAddOp(v, op, iTable, iColumn); | 
|         |   1904     sqlite3ColumnDefault(v, pTab, iColumn); | 
|         |   1905 #ifndef SQLITE_OMIT_FLOATING_POINT | 
|         |   1906     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ | 
|         |   1907       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); | 
|         |   1908     } | 
|         |   1909 #endif | 
|         |   1910   } | 
|         |   1911 } | 
|         |   1912  | 
|         |   1913 /* | 
|         |   1914 ** Generate code into the current Vdbe to evaluate the given | 
|         |   1915 ** expression and leave the result on the top of stack. | 
|         |   1916 ** | 
|         |   1917 ** This code depends on the fact that certain token values (ex: TK_EQ) | 
|         |   1918 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding | 
|         |   1919 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in | 
|         |   1920 ** the make process cause these values to align.  Assert()s in the code | 
|         |   1921 ** below verify that the numbers are aligned correctly. | 
|         |   1922 */ | 
|         |   1923 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ | 
|         |   1924   Vdbe *v = pParse->pVdbe; | 
|         |   1925   int op; | 
|         |   1926   int stackChng = 1;    /* Amount of change to stack depth */ | 
|         |   1927  | 
|         |   1928   if( v==0 ) return; | 
|         |   1929   if( pExpr==0 ){ | 
|         |   1930     sqlite3VdbeAddOp(v, OP_Null, 0, 0); | 
|         |   1931     return; | 
|         |   1932   } | 
|         |   1933   op = pExpr->op; | 
|         |   1934   switch( op ){ | 
|         |   1935     case TK_AGG_COLUMN: { | 
|         |   1936       AggInfo *pAggInfo = pExpr->pAggInfo; | 
|         |   1937 	  AggInfo::AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; | 
|         |   1938       if( !pAggInfo->directMode ){ | 
|         |   1939         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); | 
|         |   1940         break; | 
|         |   1941       }else if( pAggInfo->useSortingIdx ){ | 
|         |   1942         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, | 
|         |   1943                               pCol->iSorterColumn); | 
|         |   1944         break; | 
|         |   1945       } | 
|         |   1946       /* Otherwise, fall thru into the TK_COLUMN case */ | 
|         |   1947     } | 
|         |   1948     case TK_COLUMN: { | 
|         |   1949       if( pExpr->iTable<0 ){ | 
|         |   1950         /* This only happens when coding check constraints */ | 
|         |   1951         assert( pParse->ckOffset>0 ); | 
|         |   1952         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); | 
|         |   1953       }else{ | 
|         |   1954         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); | 
|         |   1955       } | 
|         |   1956       break; | 
|         |   1957     } | 
|         |   1958     case TK_INTEGER: { | 
|         |   1959       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0); | 
|         |   1960       break; | 
|         |   1961     } | 
|         |   1962     case TK_FLOAT: { | 
|         |   1963       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0); | 
|         |   1964       break; | 
|         |   1965     } | 
|         |   1966     case TK_STRING: { | 
|         |   1967       sqlite3DequoteExpr(pParse->db, pExpr); | 
|         |   1968       sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n); | 
|         |   1969       break; | 
|         |   1970     } | 
|         |   1971     case TK_NULL: { | 
|         |   1972       sqlite3VdbeAddOp(v, OP_Null, 0, 0); | 
|         |   1973       break; | 
|         |   1974     } | 
|         |   1975 #ifndef SQLITE_OMIT_BLOB_LITERAL | 
|         |   1976     case TK_BLOB: { | 
|         |   1977       int n; | 
|         |   1978       const char *z; | 
|         |   1979       assert( TK_BLOB==OP_HexBlob ); | 
|         |   1980       n = pExpr->token.n - 3; | 
|         |   1981       z = (char*)pExpr->token.z + 2; | 
|         |   1982       assert( n>=0 ); | 
|         |   1983       if( n==0 ){ | 
|         |   1984         z = ""; | 
|         |   1985       } | 
|         |   1986       sqlite3VdbeOp3(v, op, 0, 0, z, n); | 
|         |   1987       break; | 
|         |   1988     } | 
|         |   1989 #endif | 
|         |   1990     case TK_VARIABLE: { | 
|         |   1991       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); | 
|         |   1992       if( pExpr->token.n>1 ){ | 
|         |   1993         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); | 
|         |   1994       } | 
|         |   1995       break; | 
|         |   1996     } | 
|         |   1997     case TK_REGISTER: { | 
|         |   1998       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); | 
|         |   1999       break; | 
|         |   2000     } | 
|         |   2001 #ifndef SQLITE_OMIT_CAST | 
|         |   2002     case TK_CAST: { | 
|         |   2003       /* Expressions of the form:   CAST(pLeft AS token) */ | 
|         |   2004       int aff, to_op; | 
|         |   2005       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2006       aff = sqlite3AffinityType(&pExpr->token); | 
|         |   2007       to_op = aff - SQLITE_AFF_TEXT + OP_ToText; | 
|         |   2008       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    ); | 
|         |   2009       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    ); | 
|         |   2010       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); | 
|         |   2011       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER ); | 
|         |   2012       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    ); | 
|         |   2013       sqlite3VdbeAddOp(v, to_op, 0, 0); | 
|         |   2014       stackChng = 0; | 
|         |   2015       break; | 
|         |   2016     } | 
|         |   2017 #endif /* SQLITE_OMIT_CAST */ | 
|         |   2018     case TK_LT: | 
|         |   2019     case TK_LE: | 
|         |   2020     case TK_GT: | 
|         |   2021     case TK_GE: | 
|         |   2022     case TK_NE: | 
|         |   2023     case TK_EQ: { | 
|         |   2024       assert( TK_LT==OP_Lt ); | 
|         |   2025       assert( TK_LE==OP_Le ); | 
|         |   2026       assert( TK_GT==OP_Gt ); | 
|         |   2027       assert( TK_GE==OP_Ge ); | 
|         |   2028       assert( TK_EQ==OP_Eq ); | 
|         |   2029       assert( TK_NE==OP_Ne ); | 
|         |   2030       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2031       sqlite3ExprCode(pParse, pExpr->pRight); | 
|         |   2032       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); | 
|         |   2033       stackChng = -1; | 
|         |   2034       break; | 
|         |   2035     } | 
|         |   2036     case TK_AND: | 
|         |   2037     case TK_OR: | 
|         |   2038     case TK_PLUS: | 
|         |   2039     case TK_STAR: | 
|         |   2040     case TK_MINUS: | 
|         |   2041     case TK_REM: | 
|         |   2042     case TK_BITAND: | 
|         |   2043     case TK_BITOR: | 
|         |   2044     case TK_SLASH: | 
|         |   2045     case TK_LSHIFT: | 
|         |   2046     case TK_RSHIFT:  | 
|         |   2047     case TK_CONCAT: { | 
|         |   2048       assert( TK_AND==OP_And ); | 
|         |   2049       assert( TK_OR==OP_Or ); | 
|         |   2050       assert( TK_PLUS==OP_Add ); | 
|         |   2051       assert( TK_MINUS==OP_Subtract ); | 
|         |   2052       assert( TK_REM==OP_Remainder ); | 
|         |   2053       assert( TK_BITAND==OP_BitAnd ); | 
|         |   2054       assert( TK_BITOR==OP_BitOr ); | 
|         |   2055       assert( TK_SLASH==OP_Divide ); | 
|         |   2056       assert( TK_LSHIFT==OP_ShiftLeft ); | 
|         |   2057       assert( TK_RSHIFT==OP_ShiftRight ); | 
|         |   2058       assert( TK_CONCAT==OP_Concat ); | 
|         |   2059       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2060       sqlite3ExprCode(pParse, pExpr->pRight); | 
|         |   2061       sqlite3VdbeAddOp(v, op, 0, 0); | 
|         |   2062       stackChng = -1; | 
|         |   2063       break; | 
|         |   2064     } | 
|         |   2065     case TK_UMINUS: { | 
|         |   2066       Expr *pLeft = pExpr->pLeft; | 
|         |   2067       assert( pLeft ); | 
|         |   2068       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ | 
|         |   2069         Token *p = &pLeft->token; | 
|         |   2070         if( pLeft->op==TK_FLOAT ){ | 
|         |   2071           codeReal(v, (char*)p->z, p->n, 1); | 
|         |   2072         }else{ | 
|         |   2073           codeInteger(v, (char*)p->z, p->n, 1); | 
|         |   2074         } | 
|         |   2075         break; | 
|         |   2076       } | 
|         |   2077       /* Fall through into TK_NOT */ | 
|         |   2078     } | 
|         |   2079     case TK_BITNOT: | 
|         |   2080     case TK_NOT: { | 
|         |   2081       assert( TK_BITNOT==OP_BitNot ); | 
|         |   2082       assert( TK_NOT==OP_Not ); | 
|         |   2083       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2084       sqlite3VdbeAddOp(v, op, 0, 0); | 
|         |   2085       stackChng = 0; | 
|         |   2086       break; | 
|         |   2087     } | 
|         |   2088     case TK_ISNULL: | 
|         |   2089     case TK_NOTNULL: { | 
|         |   2090       int dest; | 
|         |   2091       assert( TK_ISNULL==OP_IsNull ); | 
|         |   2092       assert( TK_NOTNULL==OP_NotNull ); | 
|         |   2093       sqlite3VdbeAddOp(v, OP_Integer, 1, 0); | 
|         |   2094       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2095       dest = sqlite3VdbeCurrentAddr(v) + 2; | 
|         |   2096       sqlite3VdbeAddOp(v, op, 1, dest); | 
|         |   2097       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); | 
|         |   2098       stackChng = 0; | 
|         |   2099       break; | 
|         |   2100     } | 
|         |   2101     case TK_AGG_FUNCTION: { | 
|         |   2102       AggInfo *pInfo = pExpr->pAggInfo; | 
|         |   2103       if( pInfo==0 ){ | 
|         |   2104         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", | 
|         |   2105             &pExpr->span); | 
|         |   2106       }else{ | 
|         |   2107         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); | 
|         |   2108       } | 
|         |   2109       break; | 
|         |   2110     } | 
|         |   2111     case TK_CONST_FUNC: | 
|         |   2112     case TK_FUNCTION: { | 
|         |   2113       ExprList *pList = pExpr->pList; | 
|         |   2114       int nExpr = pList ? pList->nExpr : 0; | 
|         |   2115       FuncDef *pDef; | 
|         |   2116       int nId; | 
|         |   2117       const char *zId; | 
|         |   2118       int constMask = 0; | 
|         |   2119       int i; | 
|         |   2120       sqlite3 *db = pParse->db; | 
|         |   2121       u8 enc = ENC(db); | 
|         |   2122       CollSeq *pColl = 0; | 
|         |   2123  | 
|         |   2124       zId = (char*)pExpr->token.z; | 
|         |   2125       nId = pExpr->token.n; | 
|         |   2126       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); | 
|         |   2127       assert( pDef!=0 ); | 
|         |   2128       nExpr = sqlite3ExprCodeExprList(pParse, pList); | 
|         |   2129 #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|         |   2130       /* Possibly overload the function if the first argument is | 
|         |   2131       ** a virtual table column. | 
|         |   2132       ** | 
|         |   2133       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the | 
|         |   2134       ** second argument, not the first, as the argument to test to | 
|         |   2135       ** see if it is a column in a virtual table.  This is done because | 
|         |   2136       ** the left operand of infix functions (the operand we want to | 
|         |   2137       ** control overloading) ends up as the second argument to the | 
|         |   2138       ** function.  The expression "A glob B" is equivalent to  | 
|         |   2139       ** "glob(B,A).  We want to use the A in "A glob B" to test | 
|         |   2140       ** for function overloading.  But we use the B term in "glob(B,A)". | 
|         |   2141       */ | 
|         |   2142       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ | 
|         |   2143         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); | 
|         |   2144       }else if( nExpr>0 ){ | 
|         |   2145         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); | 
|         |   2146       } | 
|         |   2147 #endif | 
|         |   2148       for(i=0; i<nExpr && i<32; i++){ | 
|         |   2149         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ | 
|         |   2150           constMask |= (1<<i); | 
|         |   2151         } | 
|         |   2152         if( pDef->needCollSeq && !pColl ){ | 
|         |   2153           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); | 
|         |   2154         } | 
|         |   2155       } | 
|         |   2156       if( pDef->needCollSeq ){ | 
|         |   2157         if( !pColl ) pColl = pParse->db->pDfltColl;  | 
|         |   2158         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); | 
|         |   2159       } | 
|         |   2160       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); | 
|         |   2161       stackChng = 1-nExpr; | 
|         |   2162       break; | 
|         |   2163     } | 
|         |   2164 #ifndef SQLITE_OMIT_SUBQUERY | 
|         |   2165     case TK_EXISTS: | 
|         |   2166     case TK_SELECT: { | 
|         |   2167       if( pExpr->iColumn==0 ){ | 
|         |   2168         sqlite3CodeSubselect(pParse, pExpr); | 
|         |   2169       } | 
|         |   2170       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); | 
|         |   2171       VdbeComment((v, "# load subquery result")); | 
|         |   2172       break; | 
|         |   2173     } | 
|         |   2174     case TK_IN: { | 
|         |   2175       int addr; | 
|         |   2176       char affinity; | 
|         |   2177       int ckOffset = pParse->ckOffset; | 
|         |   2178       int eType; | 
|         |   2179       int iLabel = sqlite3VdbeMakeLabel(v); | 
|         |   2180  | 
|         |   2181       eType = sqlite3FindInIndex(pParse, pExpr, 0); | 
|         |   2182  | 
|         |   2183       /* Figure out the affinity to use to create a key from the results | 
|         |   2184       ** of the expression. affinityStr stores a static string suitable for | 
|         |   2185       ** P3 of OP_MakeRecord. | 
|         |   2186       */ | 
|         |   2187       affinity = comparisonAffinity(pExpr); | 
|         |   2188  | 
|         |   2189       sqlite3VdbeAddOp(v, OP_Integer, 1, 0); | 
|         |   2190       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); | 
|         |   2191  | 
|         |   2192       /* Code the <expr> from "<expr> IN (...)". The temporary table | 
|         |   2193       ** pExpr->iTable contains the values that make up the (...) set. | 
|         |   2194       */ | 
|         |   2195       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2196       addr = sqlite3VdbeCurrentAddr(v); | 
|         |   2197       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */ | 
|         |   2198       sqlite3VdbeAddOp(v, OP_Pop, 2, 0); | 
|         |   2199       sqlite3VdbeAddOp(v, OP_Null, 0, 0); | 
|         |   2200       sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel); | 
|         |   2201       if( eType==IN_INDEX_ROWID ){ | 
|         |   2202         int iAddr = sqlite3VdbeCurrentAddr(v)+3; | 
|         |   2203         sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr); | 
|         |   2204         sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr); | 
|         |   2205         sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel); | 
|         |   2206       }else{ | 
|         |   2207         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */ | 
|         |   2208         sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel); | 
|         |   2209       } | 
|         |   2210       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */ | 
|         |   2211       sqlite3VdbeResolveLabel(v, iLabel); | 
|         |   2212  | 
|         |   2213       break; | 
|         |   2214     } | 
|         |   2215 #endif | 
|         |   2216     case TK_BETWEEN: { | 
|         |   2217       Expr *pLeft = pExpr->pLeft; | 
|         |   2218 	  ExprList::ExprList_item *pLItem = pExpr->pList->a; | 
|         |   2219       Expr *pRight = pLItem->pExpr; | 
|         |   2220       sqlite3ExprCode(pParse, pLeft); | 
|         |   2221       sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | 
|         |   2222       sqlite3ExprCode(pParse, pRight); | 
|         |   2223       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); | 
|         |   2224       sqlite3VdbeAddOp(v, OP_Pull, 1, 0); | 
|         |   2225       pLItem++; | 
|         |   2226       pRight = pLItem->pExpr; | 
|         |   2227       sqlite3ExprCode(pParse, pRight); | 
|         |   2228       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); | 
|         |   2229       sqlite3VdbeAddOp(v, OP_And, 0, 0); | 
|         |   2230       break; | 
|         |   2231     } | 
|         |   2232     case TK_UPLUS: { | 
|         |   2233       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2234       stackChng = 0; | 
|         |   2235       break; | 
|         |   2236     } | 
|         |   2237     case TK_CASE: { | 
|         |   2238       int expr_end_label; | 
|         |   2239       int jumpInst; | 
|         |   2240       int nExpr; | 
|         |   2241       int i; | 
|         |   2242       ExprList *pEList; | 
|         |   2243 	  ExprList::ExprList_item *aListelem; | 
|         |   2244  | 
|         |   2245       assert(pExpr->pList); | 
|         |   2246       assert((pExpr->pList->nExpr % 2) == 0); | 
|         |   2247       assert(pExpr->pList->nExpr > 0); | 
|         |   2248       pEList = pExpr->pList; | 
|         |   2249       aListelem = pEList->a; | 
|         |   2250       nExpr = pEList->nExpr; | 
|         |   2251       expr_end_label = sqlite3VdbeMakeLabel(v); | 
|         |   2252       if( pExpr->pLeft ){ | 
|         |   2253         sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2254       } | 
|         |   2255       for(i=0; i<nExpr; i=i+2){ | 
|         |   2256         sqlite3ExprCode(pParse, aListelem[i].pExpr); | 
|         |   2257         if( pExpr->pLeft ){ | 
|         |   2258           sqlite3VdbeAddOp(v, OP_Dup, 1, 1); | 
|         |   2259           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, | 
|         |   2260                                  OP_Ne, 0, 1); | 
|         |   2261           sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | 
|         |   2262         }else{ | 
|         |   2263           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); | 
|         |   2264         } | 
|         |   2265         sqlite3ExprCode(pParse, aListelem[i+1].pExpr); | 
|         |   2266         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); | 
|         |   2267         sqlite3VdbeJumpHere(v, jumpInst); | 
|         |   2268       } | 
|         |   2269       if( pExpr->pLeft ){ | 
|         |   2270         sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | 
|         |   2271       } | 
|         |   2272       if( pExpr->pRight ){ | 
|         |   2273         sqlite3ExprCode(pParse, pExpr->pRight); | 
|         |   2274       }else{ | 
|         |   2275         sqlite3VdbeAddOp(v, OP_Null, 0, 0); | 
|         |   2276       } | 
|         |   2277       sqlite3VdbeResolveLabel(v, expr_end_label); | 
|         |   2278       break; | 
|         |   2279     } | 
|         |   2280 #ifndef SQLITE_OMIT_TRIGGER | 
|         |   2281     case TK_RAISE: { | 
|         |   2282       if( !pParse->trigStack ){ | 
|         |   2283         sqlite3ErrorMsg(pParse, | 
|         |   2284                        "RAISE() may only be used within a trigger-program"); | 
|         |   2285         return; | 
|         |   2286       } | 
|         |   2287       if( pExpr->iColumn!=OE_Ignore ){ | 
|         |   2288          assert( pExpr->iColumn==OE_Rollback || | 
|         |   2289                  pExpr->iColumn == OE_Abort || | 
|         |   2290                  pExpr->iColumn == OE_Fail ); | 
|         |   2291          sqlite3DequoteExpr(pParse->db, pExpr); | 
|         |   2292          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, | 
|         |   2293                         (char*)pExpr->token.z, pExpr->token.n); | 
|         |   2294       } else { | 
|         |   2295          assert( pExpr->iColumn == OE_Ignore ); | 
|         |   2296          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); | 
|         |   2297          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); | 
|         |   2298          VdbeComment((v, "# raise(IGNORE)")); | 
|         |   2299       } | 
|         |   2300       stackChng = 0; | 
|         |   2301       break; | 
|         |   2302     } | 
|         |   2303 #endif | 
|         |   2304   } | 
|         |   2305  | 
|         |   2306   if( pParse->ckOffset ){ | 
|         |   2307     pParse->ckOffset += stackChng; | 
|         |   2308     assert( pParse->ckOffset ); | 
|         |   2309   } | 
|         |   2310 } | 
|         |   2311  | 
|         |   2312 #ifndef SQLITE_OMIT_TRIGGER | 
|         |   2313 /* | 
|         |   2314 ** Generate code that evalutes the given expression and leaves the result | 
|         |   2315 ** on the stack.  See also sqlite3ExprCode(). | 
|         |   2316 ** | 
|         |   2317 ** This routine might also cache the result and modify the pExpr tree | 
|         |   2318 ** so that it will make use of the cached result on subsequent evaluations | 
|         |   2319 ** rather than evaluate the whole expression again.  Trivial expressions are | 
|         |   2320 ** not cached.  If the expression is cached, its result is stored in a  | 
|         |   2321 ** memory location. | 
|         |   2322 */ | 
|         |   2323 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ | 
|         |   2324   Vdbe *v = pParse->pVdbe; | 
|         |   2325   VdbeOp *pOp; | 
|         |   2326   int iMem; | 
|         |   2327   int addr1, addr2; | 
|         |   2328   if( v==0 ) return; | 
|         |   2329   addr1 = sqlite3VdbeCurrentAddr(v); | 
|         |   2330   sqlite3ExprCode(pParse, pExpr); | 
|         |   2331   addr2 = sqlite3VdbeCurrentAddr(v); | 
|         |   2332   if( addr2>addr1+1 | 
|         |   2333    || ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){ | 
|         |   2334     iMem = pExpr->iTable = pParse->nMem++; | 
|         |   2335     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); | 
|         |   2336     pExpr->op = TK_REGISTER; | 
|         |   2337   } | 
|         |   2338 } | 
|         |   2339 #endif | 
|         |   2340  | 
|         |   2341 /* | 
|         |   2342 ** Generate code that pushes the value of every element of the given | 
|         |   2343 ** expression list onto the stack. | 
|         |   2344 ** | 
|         |   2345 ** Return the number of elements pushed onto the stack. | 
|         |   2346 */ | 
|         |   2347 int sqlite3ExprCodeExprList( | 
|         |   2348   Parse *pParse,     /* Parsing context */ | 
|         |   2349   ExprList *pList    /* The expression list to be coded */ | 
|         |   2350 ){ | 
|         |   2351 	ExprList::ExprList_item *pItem; | 
|         |   2352   int i, n; | 
|         |   2353   if( pList==0 ) return 0; | 
|         |   2354   n = pList->nExpr; | 
|         |   2355   for(pItem=pList->a, i=n; i>0; i--, pItem++){ | 
|         |   2356     sqlite3ExprCode(pParse, pItem->pExpr); | 
|         |   2357   } | 
|         |   2358   return n; | 
|         |   2359 } | 
|         |   2360  | 
|         |   2361 /* | 
|         |   2362 ** Generate code for a boolean expression such that a jump is made | 
|         |   2363 ** to the label "dest" if the expression is true but execution | 
|         |   2364 ** continues straight thru if the expression is false. | 
|         |   2365 ** | 
|         |   2366 ** If the expression evaluates to NULL (neither true nor false), then | 
|         |   2367 ** take the jump if the jumpIfNull flag is true. | 
|         |   2368 ** | 
|         |   2369 ** This code depends on the fact that certain token values (ex: TK_EQ) | 
|         |   2370 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding | 
|         |   2371 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in | 
|         |   2372 ** the make process cause these values to align.  Assert()s in the code | 
|         |   2373 ** below verify that the numbers are aligned correctly. | 
|         |   2374 */ | 
|         |   2375 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | 
|         |   2376   Vdbe *v = pParse->pVdbe; | 
|         |   2377   int op = 0; | 
|         |   2378   int ckOffset = pParse->ckOffset; | 
|         |   2379   if( v==0 || pExpr==0 ) return; | 
|         |   2380   op = pExpr->op; | 
|         |   2381   switch( op ){ | 
|         |   2382     case TK_AND: { | 
|         |   2383       int d2 = sqlite3VdbeMakeLabel(v); | 
|         |   2384       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); | 
|         |   2385       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | 
|         |   2386       sqlite3VdbeResolveLabel(v, d2); | 
|         |   2387       break; | 
|         |   2388     } | 
|         |   2389     case TK_OR: { | 
|         |   2390       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | 
|         |   2391       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | 
|         |   2392       break; | 
|         |   2393     } | 
|         |   2394     case TK_NOT: { | 
|         |   2395       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | 
|         |   2396       break; | 
|         |   2397     } | 
|         |   2398     case TK_LT: | 
|         |   2399     case TK_LE: | 
|         |   2400     case TK_GT: | 
|         |   2401     case TK_GE: | 
|         |   2402     case TK_NE: | 
|         |   2403     case TK_EQ: { | 
|         |   2404       assert( TK_LT==OP_Lt ); | 
|         |   2405       assert( TK_LE==OP_Le ); | 
|         |   2406       assert( TK_GT==OP_Gt ); | 
|         |   2407       assert( TK_GE==OP_Ge ); | 
|         |   2408       assert( TK_EQ==OP_Eq ); | 
|         |   2409       assert( TK_NE==OP_Ne ); | 
|         |   2410       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2411       sqlite3ExprCode(pParse, pExpr->pRight); | 
|         |   2412       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); | 
|         |   2413       break; | 
|         |   2414     } | 
|         |   2415     case TK_ISNULL: | 
|         |   2416     case TK_NOTNULL: { | 
|         |   2417       assert( TK_ISNULL==OP_IsNull ); | 
|         |   2418       assert( TK_NOTNULL==OP_NotNull ); | 
|         |   2419       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2420       sqlite3VdbeAddOp(v, op, 1, dest); | 
|         |   2421       break; | 
|         |   2422     } | 
|         |   2423     case TK_BETWEEN: { | 
|         |   2424       /* The expression "x BETWEEN y AND z" is implemented as: | 
|         |   2425       ** | 
|         |   2426       ** 1 IF (x < y) GOTO 3 | 
|         |   2427       ** 2 IF (x <= z) GOTO <dest> | 
|         |   2428       ** 3 ... | 
|         |   2429       */ | 
|         |   2430       int addr; | 
|         |   2431       Expr *pLeft = pExpr->pLeft; | 
|         |   2432       Expr *pRight = pExpr->pList->a[0].pExpr; | 
|         |   2433       sqlite3ExprCode(pParse, pLeft); | 
|         |   2434       sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | 
|         |   2435       sqlite3ExprCode(pParse, pRight); | 
|         |   2436       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); | 
|         |   2437  | 
|         |   2438       pRight = pExpr->pList->a[1].pExpr; | 
|         |   2439       sqlite3ExprCode(pParse, pRight); | 
|         |   2440       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); | 
|         |   2441  | 
|         |   2442       sqlite3VdbeAddOp(v, OP_Integer, 0, 0); | 
|         |   2443       sqlite3VdbeJumpHere(v, addr); | 
|         |   2444       sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | 
|         |   2445       break; | 
|         |   2446     } | 
|         |   2447     default: { | 
|         |   2448       sqlite3ExprCode(pParse, pExpr); | 
|         |   2449       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); | 
|         |   2450       break; | 
|         |   2451     } | 
|         |   2452   } | 
|         |   2453   pParse->ckOffset = ckOffset; | 
|         |   2454 } | 
|         |   2455  | 
|         |   2456 /* | 
|         |   2457 ** Generate code for a boolean expression such that a jump is made | 
|         |   2458 ** to the label "dest" if the expression is false but execution | 
|         |   2459 ** continues straight thru if the expression is true. | 
|         |   2460 ** | 
|         |   2461 ** If the expression evaluates to NULL (neither true nor false) then | 
|         |   2462 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. | 
|         |   2463 */ | 
|         |   2464 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | 
|         |   2465   Vdbe *v = pParse->pVdbe; | 
|         |   2466   int op = 0; | 
|         |   2467   int ckOffset = pParse->ckOffset; | 
|         |   2468   if( v==0 || pExpr==0 ) return; | 
|         |   2469  | 
|         |   2470   /* The value of pExpr->op and op are related as follows: | 
|         |   2471   ** | 
|         |   2472   **       pExpr->op            op | 
|         |   2473   **       ---------          ---------- | 
|         |   2474   **       TK_ISNULL          OP_NotNull | 
|         |   2475   **       TK_NOTNULL         OP_IsNull | 
|         |   2476   **       TK_NE              OP_Eq | 
|         |   2477   **       TK_EQ              OP_Ne | 
|         |   2478   **       TK_GT              OP_Le | 
|         |   2479   **       TK_LE              OP_Gt | 
|         |   2480   **       TK_GE              OP_Lt | 
|         |   2481   **       TK_LT              OP_Ge | 
|         |   2482   ** | 
|         |   2483   ** For other values of pExpr->op, op is undefined and unused. | 
|         |   2484   ** The value of TK_ and OP_ constants are arranged such that we | 
|         |   2485   ** can compute the mapping above using the following expression. | 
|         |   2486   ** Assert()s verify that the computation is correct. | 
|         |   2487   */ | 
|         |   2488   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); | 
|         |   2489  | 
|         |   2490   /* Verify correct alignment of TK_ and OP_ constants | 
|         |   2491   */ | 
|         |   2492   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); | 
|         |   2493   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); | 
|         |   2494   assert( pExpr->op!=TK_NE || op==OP_Eq ); | 
|         |   2495   assert( pExpr->op!=TK_EQ || op==OP_Ne ); | 
|         |   2496   assert( pExpr->op!=TK_LT || op==OP_Ge ); | 
|         |   2497   assert( pExpr->op!=TK_LE || op==OP_Gt ); | 
|         |   2498   assert( pExpr->op!=TK_GT || op==OP_Le ); | 
|         |   2499   assert( pExpr->op!=TK_GE || op==OP_Lt ); | 
|         |   2500  | 
|         |   2501   switch( pExpr->op ){ | 
|         |   2502     case TK_AND: { | 
|         |   2503       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | 
|         |   2504       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | 
|         |   2505       break; | 
|         |   2506     } | 
|         |   2507     case TK_OR: { | 
|         |   2508       int d2 = sqlite3VdbeMakeLabel(v); | 
|         |   2509       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); | 
|         |   2510       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | 
|         |   2511       sqlite3VdbeResolveLabel(v, d2); | 
|         |   2512       break; | 
|         |   2513     } | 
|         |   2514     case TK_NOT: { | 
|         |   2515       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | 
|         |   2516       break; | 
|         |   2517     } | 
|         |   2518     case TK_LT: | 
|         |   2519     case TK_LE: | 
|         |   2520     case TK_GT: | 
|         |   2521     case TK_GE: | 
|         |   2522     case TK_NE: | 
|         |   2523     case TK_EQ: { | 
|         |   2524       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2525       sqlite3ExprCode(pParse, pExpr->pRight); | 
|         |   2526       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); | 
|         |   2527       break; | 
|         |   2528     } | 
|         |   2529     case TK_ISNULL: | 
|         |   2530     case TK_NOTNULL: { | 
|         |   2531       sqlite3ExprCode(pParse, pExpr->pLeft); | 
|         |   2532       sqlite3VdbeAddOp(v, op, 1, dest); | 
|         |   2533       break; | 
|         |   2534     } | 
|         |   2535     case TK_BETWEEN: { | 
|         |   2536       /* The expression is "x BETWEEN y AND z". It is implemented as: | 
|         |   2537       ** | 
|         |   2538       ** 1 IF (x >= y) GOTO 3 | 
|         |   2539       ** 2 GOTO <dest> | 
|         |   2540       ** 3 IF (x > z) GOTO <dest> | 
|         |   2541       */ | 
|         |   2542       int addr; | 
|         |   2543       Expr *pLeft = pExpr->pLeft; | 
|         |   2544       Expr *pRight = pExpr->pList->a[0].pExpr; | 
|         |   2545       sqlite3ExprCode(pParse, pLeft); | 
|         |   2546       sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | 
|         |   2547       sqlite3ExprCode(pParse, pRight); | 
|         |   2548       addr = sqlite3VdbeCurrentAddr(v); | 
|         |   2549       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); | 
|         |   2550  | 
|         |   2551       sqlite3VdbeAddOp(v, OP_Pop, 1, 0); | 
|         |   2552       sqlite3VdbeAddOp(v, OP_Goto, 0, dest); | 
|         |   2553       pRight = pExpr->pList->a[1].pExpr; | 
|         |   2554       sqlite3ExprCode(pParse, pRight); | 
|         |   2555       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); | 
|         |   2556       break; | 
|         |   2557     } | 
|         |   2558     default: { | 
|         |   2559       sqlite3ExprCode(pParse, pExpr); | 
|         |   2560       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); | 
|         |   2561       break; | 
|         |   2562     } | 
|         |   2563   } | 
|         |   2564   pParse->ckOffset = ckOffset; | 
|         |   2565 } | 
|         |   2566  | 
|         |   2567 /* | 
|         |   2568 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero) | 
|         |   2569 ** if they are identical and return FALSE if they differ in any way. | 
|         |   2570 ** | 
|         |   2571 ** Sometimes this routine will return FALSE even if the two expressions | 
|         |   2572 ** really are equivalent.  If we cannot prove that the expressions are | 
|         |   2573 ** identical, we return FALSE just to be safe.  So if this routine | 
|         |   2574 ** returns false, then you do not really know for certain if the two | 
|         |   2575 ** expressions are the same.  But if you get a TRUE return, then you | 
|         |   2576 ** can be sure the expressions are the same.  In the places where | 
|         |   2577 ** this routine is used, it does not hurt to get an extra FALSE - that | 
|         |   2578 ** just might result in some slightly slower code.  But returning | 
|         |   2579 ** an incorrect TRUE could lead to a malfunction. | 
|         |   2580 */ | 
|         |   2581 int sqlite3ExprCompare(Expr *pA, Expr *pB){ | 
|         |   2582   int i; | 
|         |   2583   if( pA==0||pB==0 ){ | 
|         |   2584     return pB==pA; | 
|         |   2585   } | 
|         |   2586   if( pA->op!=pB->op ) return 0; | 
|         |   2587   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; | 
|         |   2588   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; | 
|         |   2589   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; | 
|         |   2590   if( pA->pList ){ | 
|         |   2591     if( pB->pList==0 ) return 0; | 
|         |   2592     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; | 
|         |   2593     for(i=0; i<pA->pList->nExpr; i++){ | 
|         |   2594       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ | 
|         |   2595         return 0; | 
|         |   2596       } | 
|         |   2597     } | 
|         |   2598   }else if( pB->pList ){ | 
|         |   2599     return 0; | 
|         |   2600   } | 
|         |   2601   if( pA->pSelect || pB->pSelect ) return 0; | 
|         |   2602   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; | 
|         |   2603   if( pA->op!=TK_COLUMN && pA->token.z ){ | 
|         |   2604     if( pB->token.z==0 ) return 0; | 
|         |   2605     if( pB->token.n!=pA->token.n ) return 0; | 
|         |   2606     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ | 
|         |   2607       return 0; | 
|         |   2608     } | 
|         |   2609   } | 
|         |   2610   return 1; | 
|         |   2611 } | 
|         |   2612  | 
|         |   2613  | 
|         |   2614 /* | 
|         |   2615 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of | 
|         |   2616 ** the new element.  Return a negative number if malloc fails. | 
|         |   2617 */ | 
|         |   2618 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ | 
|         |   2619   int i; | 
|         |   2620   pInfo->aCol = (AggInfo::AggInfo_col*)sqlite3ArrayAllocate( | 
|         |   2621        db, | 
|         |   2622        pInfo->aCol, | 
|         |   2623        sizeof(pInfo->aCol[0]), | 
|         |   2624        3, | 
|         |   2625        &pInfo->nColumn, | 
|         |   2626        &pInfo->nColumnAlloc, | 
|         |   2627        &i | 
|         |   2628   ); | 
|         |   2629   return i; | 
|         |   2630 }     | 
|         |   2631  | 
|         |   2632 /* | 
|         |   2633 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of | 
|         |   2634 ** the new element.  Return a negative number if malloc fails. | 
|         |   2635 */ | 
|         |   2636 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ | 
|         |   2637   int i; | 
|         |   2638   pInfo->aFunc = (AggInfo::AggInfo_func*)sqlite3ArrayAllocate( | 
|         |   2639        db,  | 
|         |   2640        pInfo->aFunc, | 
|         |   2641        sizeof(pInfo->aFunc[0]), | 
|         |   2642        3, | 
|         |   2643        &pInfo->nFunc, | 
|         |   2644        &pInfo->nFuncAlloc, | 
|         |   2645        &i | 
|         |   2646   ); | 
|         |   2647   return i; | 
|         |   2648 }     | 
|         |   2649  | 
|         |   2650 /* | 
|         |   2651 ** This is an xFunc for walkExprTree() used to implement  | 
|         |   2652 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates | 
|         |   2653 ** for additional information. | 
|         |   2654 ** | 
|         |   2655 ** This routine analyzes the aggregate function at pExpr. | 
|         |   2656 */ | 
|         |   2657 static int analyzeAggregate(void *pArg, Expr *pExpr){ | 
|         |   2658   int i; | 
|         |   2659   NameContext *pNC = (NameContext *)pArg; | 
|         |   2660   Parse *pParse = pNC->pParse; | 
|         |   2661   SrcList *pSrcList = pNC->pSrcList; | 
|         |   2662   AggInfo *pAggInfo = pNC->pAggInfo; | 
|         |   2663  | 
|         |   2664   switch( pExpr->op ){ | 
|         |   2665     case TK_AGG_COLUMN: | 
|         |   2666     case TK_COLUMN: { | 
|         |   2667       /* Check to see if the column is in one of the tables in the FROM | 
|         |   2668       ** clause of the aggregate query */ | 
|         |   2669       if( pSrcList ){ | 
|         |   2670 		  SrcList::SrcList_item *pItem = pSrcList->a; | 
|         |   2671         for(i=0; i<pSrcList->nSrc; i++, pItem++){ | 
|         |   2672 			AggInfo::AggInfo_col *pCol; | 
|         |   2673           if( pExpr->iTable==pItem->iCursor ){ | 
|         |   2674             /* If we reach this point, it means that pExpr refers to a table | 
|         |   2675             ** that is in the FROM clause of the aggregate query.   | 
|         |   2676             ** | 
|         |   2677             ** Make an entry for the column in pAggInfo->aCol[] if there | 
|         |   2678             ** is not an entry there already. | 
|         |   2679             */ | 
|         |   2680 			  int k=0; | 
|         |   2681             pCol = pAggInfo->aCol; | 
|         |   2682             for(k=0; k<pAggInfo->nColumn; k++, pCol++){ | 
|         |   2683               if( pCol->iTable==pExpr->iTable && | 
|         |   2684                   pCol->iColumn==pExpr->iColumn ){ | 
|         |   2685                 break; | 
|         |   2686               } | 
|         |   2687             } | 
|         |   2688             if( (k>=pAggInfo->nColumn) | 
|         |   2689              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0  | 
|         |   2690             ){ | 
|         |   2691               pCol = &pAggInfo->aCol[k]; | 
|         |   2692               pCol->pTab = pExpr->pTab; | 
|         |   2693               pCol->iTable = pExpr->iTable; | 
|         |   2694               pCol->iColumn = pExpr->iColumn; | 
|         |   2695               pCol->iMem = pParse->nMem++; | 
|         |   2696               pCol->iSorterColumn = -1; | 
|         |   2697               pCol->pExpr = pExpr; | 
|         |   2698               if( pAggInfo->pGroupBy ){ | 
|         |   2699                 int j, n; | 
|         |   2700                 ExprList *pGB = pAggInfo->pGroupBy; | 
|         |   2701 				ExprList::ExprList_item *pTerm = pGB->a; | 
|         |   2702                 n = pGB->nExpr; | 
|         |   2703                 for(j=0; j<n; j++, pTerm++){ | 
|         |   2704                   Expr *pE = pTerm->pExpr; | 
|         |   2705                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && | 
|         |   2706                       pE->iColumn==pExpr->iColumn ){ | 
|         |   2707                     pCol->iSorterColumn = j; | 
|         |   2708                     break; | 
|         |   2709                   } | 
|         |   2710                 } | 
|         |   2711               } | 
|         |   2712               if( pCol->iSorterColumn<0 ){ | 
|         |   2713                 pCol->iSorterColumn = pAggInfo->nSortingColumn++; | 
|         |   2714               } | 
|         |   2715             } | 
|         |   2716             /* There is now an entry for pExpr in pAggInfo->aCol[] (either | 
|         |   2717             ** because it was there before or because we just created it). | 
|         |   2718             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that | 
|         |   2719             ** pAggInfo->aCol[] entry. | 
|         |   2720             */ | 
|         |   2721             pExpr->pAggInfo = pAggInfo; | 
|         |   2722             pExpr->op = TK_AGG_COLUMN; | 
|         |   2723             pExpr->iAgg = k; | 
|         |   2724             break; | 
|         |   2725           } /* endif pExpr->iTable==pItem->iCursor */ | 
|         |   2726         } /* end loop over pSrcList */ | 
|         |   2727       } | 
|         |   2728       return 1; | 
|         |   2729     } | 
|         |   2730     case TK_AGG_FUNCTION: { | 
|         |   2731       /* The pNC->nDepth==0 test causes aggregate functions in subqueries | 
|         |   2732       ** to be ignored */ | 
|         |   2733       if( pNC->nDepth==0 ){ | 
|         |   2734         /* Check to see if pExpr is a duplicate of another aggregate  | 
|         |   2735         ** function that is already in the pAggInfo structure | 
|         |   2736         */ | 
|         |   2737 		  AggInfo::AggInfo_func *pItem = pAggInfo->aFunc; | 
|         |   2738         for(i=0; i<pAggInfo->nFunc; i++, pItem++){ | 
|         |   2739           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ | 
|         |   2740             break; | 
|         |   2741           } | 
|         |   2742         } | 
|         |   2743         if( i>=pAggInfo->nFunc ){ | 
|         |   2744           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[] | 
|         |   2745           */ | 
|         |   2746           u8 enc = ENC(pParse->db); | 
|         |   2747           i = addAggInfoFunc(pParse->db, pAggInfo); | 
|         |   2748           if( i>=0 ){ | 
|         |   2749             pItem = &pAggInfo->aFunc[i]; | 
|         |   2750             pItem->pExpr = pExpr; | 
|         |   2751             pItem->iMem = pParse->nMem++; | 
|         |   2752             pItem->pFunc = sqlite3FindFunction(pParse->db, | 
|         |   2753                    (char*)pExpr->token.z, pExpr->token.n, | 
|         |   2754                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); | 
|         |   2755             if( pExpr->flags & EP_Distinct ){ | 
|         |   2756               pItem->iDistinct = pParse->nTab++; | 
|         |   2757             }else{ | 
|         |   2758               pItem->iDistinct = -1; | 
|         |   2759             } | 
|         |   2760           } | 
|         |   2761         } | 
|         |   2762         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry | 
|         |   2763         */ | 
|         |   2764         pExpr->iAgg = i; | 
|         |   2765         pExpr->pAggInfo = pAggInfo; | 
|         |   2766         return 1; | 
|         |   2767       } | 
|         |   2768     } | 
|         |   2769   } | 
|         |   2770  | 
|         |   2771   /* Recursively walk subqueries looking for TK_COLUMN nodes that need | 
|         |   2772   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that | 
|         |   2773   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. | 
|         |   2774   */ | 
|         |   2775   if( pExpr->pSelect ){ | 
|         |   2776     pNC->nDepth++; | 
|         |   2777     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); | 
|         |   2778     pNC->nDepth--; | 
|         |   2779   } | 
|         |   2780   return 0; | 
|         |   2781 } | 
|         |   2782  | 
|         |   2783 /* | 
|         |   2784 ** Analyze the given expression looking for aggregate functions and | 
|         |   2785 ** for variables that need to be added to the pParse->aAgg[] array. | 
|         |   2786 ** Make additional entries to the pParse->aAgg[] array as necessary. | 
|         |   2787 ** | 
|         |   2788 ** This routine should only be called after the expression has been | 
|         |   2789 ** analyzed by sqlite3ExprResolveNames(). | 
|         |   2790 ** | 
|         |   2791 ** If errors are seen, leave an error message in zErrMsg and return | 
|         |   2792 ** the number of errors. | 
|         |   2793 */ | 
|         |   2794 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ | 
|         |   2795   int nErr = pNC->pParse->nErr; | 
|         |   2796   walkExprTree(pExpr, analyzeAggregate, pNC); | 
|         |   2797   return pNC->pParse->nErr - nErr; | 
|         |   2798 } | 
|         |   2799  | 
|         |   2800 /* | 
|         |   2801 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an | 
|         |   2802 ** expression list.  Return the number of errors. | 
|         |   2803 ** | 
|         |   2804 ** If an error is found, the analysis is cut short. | 
|         |   2805 */ | 
|         |   2806 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ | 
|         |   2807 	ExprList::ExprList_item *pItem; | 
|         |   2808   int i; | 
|         |   2809   int nErr = 0; | 
|         |   2810   if( pList ){ | 
|         |   2811     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ | 
|         |   2812       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); | 
|         |   2813     } | 
|         |   2814   } | 
|         |   2815   return nErr; | 
|         |   2816 } |