| 2 |      1 | /*
 | 
|  |      2 | ** 2001 September 15
 | 
|  |      3 | **
 | 
|  |      4 | ** The author disclaims copyright to this source code.  In place of
 | 
|  |      5 | ** a legal notice, here is a blessing:
 | 
|  |      6 | **
 | 
|  |      7 | **    May you do good and not evil.
 | 
|  |      8 | **    May you find forgiveness for yourself and forgive others.
 | 
|  |      9 | **    May you share freely, never taking more than you give.
 | 
|  |     10 | **
 | 
|  |     11 | *************************************************************************
 | 
|  |     12 | ** This file contains routines used for analyzing expressions and
 | 
|  |     13 | ** for generating VDBE code that evaluates expressions in SQLite.
 | 
|  |     14 | **
 | 
|  |     15 | ** $Id: expr.cpp 1282 2008-11-13 09:31:33Z LarsPson $
 | 
|  |     16 | */
 | 
|  |     17 | #include "sqliteInt.h"
 | 
|  |     18 | #include <ctype.h>
 | 
|  |     19 | 
 | 
|  |     20 | /*
 | 
|  |     21 | ** Return the 'affinity' of the expression pExpr if any.
 | 
|  |     22 | **
 | 
|  |     23 | ** If pExpr is a column, a reference to a column via an 'AS' alias,
 | 
|  |     24 | ** or a sub-select with a column as the return value, then the 
 | 
|  |     25 | ** affinity of that column is returned. Otherwise, 0x00 is returned,
 | 
|  |     26 | ** indicating no affinity for the expression.
 | 
|  |     27 | **
 | 
|  |     28 | ** i.e. the WHERE clause expresssions in the following statements all
 | 
|  |     29 | ** have an affinity:
 | 
|  |     30 | **
 | 
|  |     31 | ** CREATE TABLE t1(a);
 | 
|  |     32 | ** SELECT * FROM t1 WHERE a;
 | 
|  |     33 | ** SELECT a AS b FROM t1 WHERE b;
 | 
|  |     34 | ** SELECT * FROM t1 WHERE (select a from t1);
 | 
|  |     35 | */
 | 
|  |     36 | char sqlite3ExprAffinity(Expr *pExpr){
 | 
|  |     37 |   int op = pExpr->op;
 | 
|  |     38 |   if( op==TK_SELECT ){
 | 
|  |     39 |     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
 | 
|  |     40 |   }
 | 
|  |     41 | #ifndef SQLITE_OMIT_CAST
 | 
|  |     42 |   if( op==TK_CAST ){
 | 
|  |     43 |     return sqlite3AffinityType(&pExpr->token);
 | 
|  |     44 |   }
 | 
|  |     45 | #endif
 | 
|  |     46 |   return pExpr->affinity;
 | 
|  |     47 | }
 | 
|  |     48 | 
 | 
|  |     49 | /*
 | 
|  |     50 | ** Set the collating sequence for expression pExpr to be the collating
 | 
|  |     51 | ** sequence named by pToken.   Return a pointer to the revised expression.
 | 
|  |     52 | ** The collating sequence is marked as "explicit" using the EP_ExpCollate
 | 
|  |     53 | ** flag.  An explicit collating sequence will override implicit
 | 
|  |     54 | ** collating sequences.
 | 
|  |     55 | */
 | 
|  |     56 | Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
 | 
|  |     57 |   char *zColl = 0;            /* Dequoted name of collation sequence */
 | 
|  |     58 |   CollSeq *pColl;
 | 
|  |     59 |   zColl = sqlite3NameFromToken(pParse->db, pName);
 | 
|  |     60 |   if( pExpr && zColl ){
 | 
|  |     61 |     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
 | 
|  |     62 |     if( pColl ){
 | 
|  |     63 |       pExpr->pColl = pColl;
 | 
|  |     64 |       pExpr->flags |= EP_ExpCollate;
 | 
|  |     65 |     }
 | 
|  |     66 |   }
 | 
|  |     67 |   sqlite3_free(zColl);
 | 
|  |     68 |   return pExpr;
 | 
|  |     69 | }
 | 
|  |     70 | 
 | 
|  |     71 | /*
 | 
|  |     72 | ** Return the default collation sequence for the expression pExpr. If
 | 
|  |     73 | ** there is no default collation type, return 0.
 | 
|  |     74 | */
 | 
|  |     75 | CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
 | 
|  |     76 |   CollSeq *pColl = 0;
 | 
|  |     77 |   if( pExpr ){
 | 
|  |     78 |     int op;
 | 
|  |     79 |     pColl = pExpr->pColl;
 | 
|  |     80 |     op = pExpr->op;
 | 
|  |     81 |     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
 | 
|  |     82 |       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
 | 
|  |     83 |     }
 | 
|  |     84 |   }
 | 
|  |     85 |   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
 | 
|  |     86 |     pColl = 0;
 | 
|  |     87 |   }
 | 
|  |     88 |   return pColl;
 | 
|  |     89 | }
 | 
|  |     90 | 
 | 
|  |     91 | /*
 | 
|  |     92 | ** pExpr is an operand of a comparison operator.  aff2 is the
 | 
|  |     93 | ** type affinity of the other operand.  This routine returns the
 | 
|  |     94 | ** type affinity that should be used for the comparison operator.
 | 
|  |     95 | */
 | 
|  |     96 | char sqlite3CompareAffinity(Expr *pExpr, char aff2){
 | 
|  |     97 |   char aff1 = sqlite3ExprAffinity(pExpr);
 | 
|  |     98 |   if( aff1 && aff2 ){
 | 
|  |     99 |     /* Both sides of the comparison are columns. If one has numeric
 | 
|  |    100 |     ** affinity, use that. Otherwise use no affinity.
 | 
|  |    101 |     */
 | 
|  |    102 |     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
 | 
|  |    103 |       return SQLITE_AFF_NUMERIC;
 | 
|  |    104 |     }else{
 | 
|  |    105 |       return SQLITE_AFF_NONE;
 | 
|  |    106 |     }
 | 
|  |    107 |   }else if( !aff1 && !aff2 ){
 | 
|  |    108 |     /* Neither side of the comparison is a column.  Compare the
 | 
|  |    109 |     ** results directly.
 | 
|  |    110 |     */
 | 
|  |    111 |     return SQLITE_AFF_NONE;
 | 
|  |    112 |   }else{
 | 
|  |    113 |     /* One side is a column, the other is not. Use the columns affinity. */
 | 
|  |    114 |     assert( aff1==0 || aff2==0 );
 | 
|  |    115 |     return (aff1 + aff2);
 | 
|  |    116 |   }
 | 
|  |    117 | }
 | 
|  |    118 | 
 | 
|  |    119 | /*
 | 
|  |    120 | ** pExpr is a comparison operator.  Return the type affinity that should
 | 
|  |    121 | ** be applied to both operands prior to doing the comparison.
 | 
|  |    122 | */
 | 
|  |    123 | static char comparisonAffinity(Expr *pExpr){
 | 
|  |    124 |   char aff;
 | 
|  |    125 |   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
 | 
|  |    126 |           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
 | 
|  |    127 |           pExpr->op==TK_NE );
 | 
|  |    128 |   assert( pExpr->pLeft );
 | 
|  |    129 |   aff = sqlite3ExprAffinity(pExpr->pLeft);
 | 
|  |    130 |   if( pExpr->pRight ){
 | 
|  |    131 |     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
 | 
|  |    132 |   }
 | 
|  |    133 |   else if( pExpr->pSelect ){
 | 
|  |    134 |     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
 | 
|  |    135 |   }
 | 
|  |    136 |   else if( !aff ){
 | 
|  |    137 |     aff = SQLITE_AFF_NONE;
 | 
|  |    138 |   }
 | 
|  |    139 |   return aff;
 | 
|  |    140 | }
 | 
|  |    141 | 
 | 
|  |    142 | /*
 | 
|  |    143 | ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
 | 
|  |    144 | ** idx_affinity is the affinity of an indexed column. Return true
 | 
|  |    145 | ** if the index with affinity idx_affinity may be used to implement
 | 
|  |    146 | ** the comparison in pExpr.
 | 
|  |    147 | */
 | 
|  |    148 | int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
 | 
|  |    149 |   char aff = comparisonAffinity(pExpr);
 | 
|  |    150 |   switch( aff ){
 | 
|  |    151 |     case SQLITE_AFF_NONE:
 | 
|  |    152 |       return 1;
 | 
|  |    153 |     case SQLITE_AFF_TEXT:
 | 
|  |    154 |       return idx_affinity==SQLITE_AFF_TEXT;
 | 
|  |    155 |     default:
 | 
|  |    156 |       return sqlite3IsNumericAffinity(idx_affinity);
 | 
|  |    157 |   }
 | 
|  |    158 | }
 | 
|  |    159 | 
 | 
|  |    160 | /*
 | 
|  |    161 | ** Return the P1 value that should be used for a binary comparison
 | 
|  |    162 | ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
 | 
|  |    163 | ** If jumpIfNull is true, then set the low byte of the returned
 | 
|  |    164 | ** P1 value to tell the opcode to jump if either expression
 | 
|  |    165 | ** evaluates to NULL.
 | 
|  |    166 | */
 | 
|  |    167 | static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
 | 
|  |    168 |   char aff = sqlite3ExprAffinity(pExpr2);
 | 
|  |    169 |   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
 | 
|  |    170 | }
 | 
|  |    171 | 
 | 
|  |    172 | /*
 | 
|  |    173 | ** Return a pointer to the collation sequence that should be used by
 | 
|  |    174 | ** a binary comparison operator comparing pLeft and pRight.
 | 
|  |    175 | **
 | 
|  |    176 | ** If the left hand expression has a collating sequence type, then it is
 | 
|  |    177 | ** used. Otherwise the collation sequence for the right hand expression
 | 
|  |    178 | ** is used, or the default (BINARY) if neither expression has a collating
 | 
|  |    179 | ** type.
 | 
|  |    180 | **
 | 
|  |    181 | ** Argument pRight (but not pLeft) may be a null pointer. In this case,
 | 
|  |    182 | ** it is not considered.
 | 
|  |    183 | */
 | 
|  |    184 | CollSeq *sqlite3BinaryCompareCollSeq(
 | 
|  |    185 |   Parse *pParse, 
 | 
|  |    186 |   Expr *pLeft, 
 | 
|  |    187 |   Expr *pRight
 | 
|  |    188 | ){
 | 
|  |    189 |   CollSeq *pColl;
 | 
|  |    190 |   assert( pLeft );
 | 
|  |    191 |   if( pLeft->flags & EP_ExpCollate ){
 | 
|  |    192 |     assert( pLeft->pColl );
 | 
|  |    193 |     pColl = pLeft->pColl;
 | 
|  |    194 |   }else if( pRight && pRight->flags & EP_ExpCollate ){
 | 
|  |    195 |     assert( pRight->pColl );
 | 
|  |    196 |     pColl = pRight->pColl;
 | 
|  |    197 |   }else{
 | 
|  |    198 |     pColl = sqlite3ExprCollSeq(pParse, pLeft);
 | 
|  |    199 |     if( !pColl ){
 | 
|  |    200 |       pColl = sqlite3ExprCollSeq(pParse, pRight);
 | 
|  |    201 |     }
 | 
|  |    202 |   }
 | 
|  |    203 |   return pColl;
 | 
|  |    204 | }
 | 
|  |    205 | 
 | 
|  |    206 | /*
 | 
|  |    207 | ** Generate code for a comparison operator.
 | 
|  |    208 | */
 | 
|  |    209 | static int codeCompare(
 | 
|  |    210 |   Parse *pParse,    /* The parsing (and code generating) context */
 | 
|  |    211 |   Expr *pLeft,      /* The left operand */
 | 
|  |    212 |   Expr *pRight,     /* The right operand */
 | 
|  |    213 |   int opcode,       /* The comparison opcode */
 | 
|  |    214 |   int dest,         /* Jump here if true.  */
 | 
|  |    215 |   int jumpIfNull    /* If true, jump if either operand is NULL */
 | 
|  |    216 | ){
 | 
|  |    217 |   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
 | 
|  |    218 |   CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
 | 
|  |    219 |   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (const char*)p3, P3_COLLSEQ);
 | 
|  |    220 | }
 | 
|  |    221 | 
 | 
|  |    222 | /*
 | 
|  |    223 | ** Construct a new expression node and return a pointer to it.  Memory
 | 
|  |    224 | ** for this node is obtained from sqlite3_malloc().  The calling function
 | 
|  |    225 | ** is responsible for making sure the node eventually gets freed.
 | 
|  |    226 | */
 | 
|  |    227 | Expr *sqlite3Expr(
 | 
|  |    228 |   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
 | 
|  |    229 |   int op,                 /* Expression opcode */
 | 
|  |    230 |   Expr *pLeft,            /* Left operand */
 | 
|  |    231 |   Expr *pRight,           /* Right operand */
 | 
|  |    232 |   const Token *pToken     /* Argument token */
 | 
|  |    233 | ){
 | 
|  |    234 |   Expr *pNew;
 | 
|  |    235 |   pNew = (Expr*)sqlite3DbMallocZero(db, sizeof(Expr));
 | 
|  |    236 |   if( pNew==0 ){
 | 
|  |    237 |     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
 | 
|  |    238 |     ** this function must always be allocated with sqlite3Expr() for this 
 | 
|  |    239 |     ** reason. 
 | 
|  |    240 |     */
 | 
|  |    241 |     sqlite3ExprDelete(pLeft);
 | 
|  |    242 |     sqlite3ExprDelete(pRight);
 | 
|  |    243 |     return 0;
 | 
|  |    244 |   }
 | 
|  |    245 |   pNew->op = op;
 | 
|  |    246 |   pNew->pLeft = pLeft;
 | 
|  |    247 |   pNew->pRight = pRight;
 | 
|  |    248 |   pNew->iAgg = -1;
 | 
|  |    249 |   if( pToken ){
 | 
|  |    250 |     assert( pToken->dyn==0 );
 | 
|  |    251 |     pNew->span = pNew->token = *pToken;
 | 
|  |    252 |   }else if( pLeft ){
 | 
|  |    253 |     if( pRight ){
 | 
|  |    254 |       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
 | 
|  |    255 |       if( pRight->flags & EP_ExpCollate ){
 | 
|  |    256 |         pNew->flags |= EP_ExpCollate;
 | 
|  |    257 |         pNew->pColl = pRight->pColl;
 | 
|  |    258 |       }
 | 
|  |    259 |     }
 | 
|  |    260 |     if( pLeft->flags & EP_ExpCollate ){
 | 
|  |    261 |       pNew->flags |= EP_ExpCollate;
 | 
|  |    262 |       pNew->pColl = pLeft->pColl;
 | 
|  |    263 |     }
 | 
|  |    264 |   }
 | 
|  |    265 | 
 | 
|  |    266 |   sqlite3ExprSetHeight(pNew);
 | 
|  |    267 |   return pNew;
 | 
|  |    268 | }
 | 
|  |    269 | 
 | 
|  |    270 | /*
 | 
|  |    271 | ** Works like sqlite3Expr() except that it takes an extra Parse*
 | 
|  |    272 | ** argument and notifies the associated connection object if malloc fails.
 | 
|  |    273 | */
 | 
|  |    274 | Expr *sqlite3PExpr(
 | 
|  |    275 |   Parse *pParse,          /* Parsing context */
 | 
|  |    276 |   int op,                 /* Expression opcode */
 | 
|  |    277 |   Expr *pLeft,            /* Left operand */
 | 
|  |    278 |   Expr *pRight,           /* Right operand */
 | 
|  |    279 |   const Token *pToken     /* Argument token */
 | 
|  |    280 | ){
 | 
|  |    281 |   return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
 | 
|  |    282 | }
 | 
|  |    283 | 
 | 
|  |    284 | /*
 | 
|  |    285 | ** When doing a nested parse, you can include terms in an expression
 | 
|  |    286 | ** that look like this:   #0 #1 #2 ...  These terms refer to elements
 | 
|  |    287 | ** on the stack.  "#0" means the top of the stack.
 | 
|  |    288 | ** "#1" means the next down on the stack.  And so forth.
 | 
|  |    289 | **
 | 
|  |    290 | ** This routine is called by the parser to deal with on of those terms.
 | 
|  |    291 | ** It immediately generates code to store the value in a memory location.
 | 
|  |    292 | ** The returns an expression that will code to extract the value from
 | 
|  |    293 | ** that memory location as needed.
 | 
|  |    294 | */
 | 
|  |    295 | Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
 | 
|  |    296 |   Vdbe *v = pParse->pVdbe;
 | 
|  |    297 |   Expr *p;
 | 
|  |    298 |   int depth;
 | 
|  |    299 |   if( pParse->nested==0 ){
 | 
|  |    300 |     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
 | 
|  |    301 |     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
 | 
|  |    302 |   }
 | 
|  |    303 |   if( v==0 ) return 0;
 | 
|  |    304 |   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
 | 
|  |    305 |   if( p==0 ){
 | 
|  |    306 |     return 0;  /* Malloc failed */
 | 
|  |    307 |   }
 | 
|  |    308 |   depth = atoi((char*)&pToken->z[1]);
 | 
|  |    309 |   p->iTable = pParse->nMem++;
 | 
|  |    310 |   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
 | 
|  |    311 |   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
 | 
|  |    312 |   return p;
 | 
|  |    313 | }
 | 
|  |    314 | 
 | 
|  |    315 | /*
 | 
|  |    316 | ** Join two expressions using an AND operator.  If either expression is
 | 
|  |    317 | ** NULL, then just return the other expression.
 | 
|  |    318 | */
 | 
|  |    319 | Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
 | 
|  |    320 |   if( pLeft==0 ){
 | 
|  |    321 |     return pRight;
 | 
|  |    322 |   }else if( pRight==0 ){
 | 
|  |    323 |     return pLeft;
 | 
|  |    324 |   }else{
 | 
|  |    325 |     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
 | 
|  |    326 |   }
 | 
|  |    327 | }
 | 
|  |    328 | 
 | 
|  |    329 | /*
 | 
|  |    330 | ** Set the Expr.span field of the given expression to span all
 | 
|  |    331 | ** text between the two given tokens.
 | 
|  |    332 | */
 | 
|  |    333 | void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
 | 
|  |    334 |   assert( pRight!=0 );
 | 
|  |    335 |   assert( pLeft!=0 );
 | 
|  |    336 |   if( pExpr && pRight->z && pLeft->z ){
 | 
|  |    337 |     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
 | 
|  |    338 |     if( pLeft->dyn==0 && pRight->dyn==0 ){
 | 
|  |    339 |       pExpr->span.z = pLeft->z;
 | 
|  |    340 |       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
 | 
|  |    341 |     }else{
 | 
|  |    342 |       pExpr->span.z = 0;
 | 
|  |    343 |     }
 | 
|  |    344 |   }
 | 
|  |    345 | }
 | 
|  |    346 | 
 | 
|  |    347 | /*
 | 
|  |    348 | ** Construct a new expression node for a function with multiple
 | 
|  |    349 | ** arguments.
 | 
|  |    350 | */
 | 
|  |    351 | Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
 | 
|  |    352 |   Expr *pNew;
 | 
|  |    353 |   assert( pToken );
 | 
|  |    354 |   pNew = (Expr*)sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
 | 
|  |    355 |   if( pNew==0 ){
 | 
|  |    356 |     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
 | 
|  |    357 |     return 0;
 | 
|  |    358 |   }
 | 
|  |    359 |   pNew->op = TK_FUNCTION;
 | 
|  |    360 |   pNew->pList = pList;
 | 
|  |    361 |   assert( pToken->dyn==0 );
 | 
|  |    362 |   pNew->token = *pToken;
 | 
|  |    363 |   pNew->span = pNew->token;
 | 
|  |    364 | 
 | 
|  |    365 |   sqlite3ExprSetHeight(pNew);
 | 
|  |    366 |   return pNew;
 | 
|  |    367 | }
 | 
|  |    368 | 
 | 
|  |    369 | /*
 | 
|  |    370 | ** Assign a variable number to an expression that encodes a wildcard
 | 
|  |    371 | ** in the original SQL statement.  
 | 
|  |    372 | **
 | 
|  |    373 | ** Wildcards consisting of a single "?" are assigned the next sequential
 | 
|  |    374 | ** variable number.
 | 
|  |    375 | **
 | 
|  |    376 | ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
 | 
|  |    377 | ** sure "nnn" is not too be to avoid a denial of service attack when
 | 
|  |    378 | ** the SQL statement comes from an external source.
 | 
|  |    379 | **
 | 
|  |    380 | ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
 | 
|  |    381 | ** as the previous instance of the same wildcard.  Or if this is the first
 | 
|  |    382 | ** instance of the wildcard, the next sequenial variable number is
 | 
|  |    383 | ** assigned.
 | 
|  |    384 | */
 | 
|  |    385 | void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
 | 
|  |    386 |   Token *pToken;
 | 
|  |    387 |   sqlite3 *db = pParse->db;
 | 
|  |    388 | 
 | 
|  |    389 |   if( pExpr==0 ) return;
 | 
|  |    390 |   pToken = &pExpr->token;
 | 
|  |    391 |   assert( pToken->n>=1 );
 | 
|  |    392 |   assert( pToken->z!=0 );
 | 
|  |    393 |   assert( pToken->z[0]!=0 );
 | 
|  |    394 |   if( pToken->n==1 ){
 | 
|  |    395 |     /* Wildcard of the form "?".  Assign the next variable number */
 | 
|  |    396 |     pExpr->iTable = ++pParse->nVar;
 | 
|  |    397 |   }else if( pToken->z[0]=='?' ){
 | 
|  |    398 |     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
 | 
|  |    399 |     ** use it as the variable number */
 | 
|  |    400 |     int i;
 | 
|  |    401 |     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
 | 
|  |    402 |     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
 | 
|  |    403 |       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
 | 
|  |    404 |           SQLITE_MAX_VARIABLE_NUMBER);
 | 
|  |    405 |     }
 | 
|  |    406 |     if( i>pParse->nVar ){
 | 
|  |    407 |       pParse->nVar = i;
 | 
|  |    408 |     }
 | 
|  |    409 |   }else{
 | 
|  |    410 |     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
 | 
|  |    411 |     ** number as the prior appearance of the same name, or if the name
 | 
|  |    412 |     ** has never appeared before, reuse the same variable number
 | 
|  |    413 |     */
 | 
|  |    414 |     int i, n;
 | 
|  |    415 |     n = pToken->n;
 | 
|  |    416 |     for(i=0; i<pParse->nVarExpr; i++){
 | 
|  |    417 |       Expr *pE;
 | 
|  |    418 |       if( (pE = pParse->apVarExpr[i])!=0
 | 
|  |    419 |           && pE->token.n==n
 | 
|  |    420 |           && memcmp(pE->token.z, pToken->z, n)==0 ){
 | 
|  |    421 |         pExpr->iTable = pE->iTable;
 | 
|  |    422 |         break;
 | 
|  |    423 |       }
 | 
|  |    424 |     }
 | 
|  |    425 |     if( i>=pParse->nVarExpr ){
 | 
|  |    426 |       pExpr->iTable = ++pParse->nVar;
 | 
|  |    427 |       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
 | 
|  |    428 |         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
 | 
|  |    429 |         pParse->apVarExpr =
 | 
|  |    430 |             (Expr**)sqlite3DbReallocOrFree(
 | 
|  |    431 |               db,
 | 
|  |    432 |               pParse->apVarExpr,
 | 
|  |    433 |               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
 | 
|  |    434 |             );
 | 
|  |    435 |       }
 | 
|  |    436 |       if( !db->mallocFailed ){
 | 
|  |    437 |         assert( pParse->apVarExpr!=0 );
 | 
|  |    438 |         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
 | 
|  |    439 |       }
 | 
|  |    440 |     }
 | 
|  |    441 |   } 
 | 
|  |    442 |   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
 | 
|  |    443 |     sqlite3ErrorMsg(pParse, "too many SQL variables");
 | 
|  |    444 |   }
 | 
|  |    445 | }
 | 
|  |    446 | 
 | 
|  |    447 | /*
 | 
|  |    448 | ** Recursively delete an expression tree.
 | 
|  |    449 | */
 | 
|  |    450 | void sqlite3ExprDelete(Expr *p){
 | 
|  |    451 |   if( p==0 ) return;
 | 
|  |    452 |   if( p->span.dyn ) sqlite3_free((char*)p->span.z);
 | 
|  |    453 |   if( p->token.dyn ) sqlite3_free((char*)p->token.z);
 | 
|  |    454 |   sqlite3ExprDelete(p->pLeft);
 | 
|  |    455 |   sqlite3ExprDelete(p->pRight);
 | 
|  |    456 |   sqlite3ExprListDelete(p->pList);
 | 
|  |    457 |   sqlite3SelectDelete(p->pSelect);
 | 
|  |    458 |   sqlite3_free(p);
 | 
|  |    459 | }
 | 
|  |    460 | 
 | 
|  |    461 | /*
 | 
|  |    462 | ** The Expr.token field might be a string literal that is quoted.
 | 
|  |    463 | ** If so, remove the quotation marks.
 | 
|  |    464 | */
 | 
|  |    465 | void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
 | 
|  |    466 |   if( ExprHasAnyProperty(p, EP_Dequoted) ){
 | 
|  |    467 |     return;
 | 
|  |    468 |   }
 | 
|  |    469 |   ExprSetProperty(p, EP_Dequoted);
 | 
|  |    470 |   if( p->token.dyn==0 ){
 | 
|  |    471 |     sqlite3TokenCopy(db, &p->token, &p->token);
 | 
|  |    472 |   }
 | 
|  |    473 |   sqlite3Dequote((char*)p->token.z);
 | 
|  |    474 | }
 | 
|  |    475 | 
 | 
|  |    476 | 
 | 
|  |    477 | /*
 | 
|  |    478 | ** The following group of routines make deep copies of expressions,
 | 
|  |    479 | ** expression lists, ID lists, and select statements.  The copies can
 | 
|  |    480 | ** be deleted (by being passed to their respective ...Delete() routines)
 | 
|  |    481 | ** without effecting the originals.
 | 
|  |    482 | **
 | 
|  |    483 | ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
 | 
|  |    484 | ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
 | 
|  |    485 | ** by subsequent calls to sqlite*ListAppend() routines.
 | 
|  |    486 | **
 | 
|  |    487 | ** Any tables that the SrcList might point to are not duplicated.
 | 
|  |    488 | */
 | 
|  |    489 | Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
 | 
|  |    490 |   Expr *pNew;
 | 
|  |    491 |   if( p==0 ) return 0;
 | 
|  |    492 |   pNew = (Expr*)sqlite3DbMallocRaw(db, sizeof(*p) );
 | 
|  |    493 |   if( pNew==0 ) return 0;
 | 
|  |    494 |   memcpy(pNew, p, sizeof(*pNew));
 | 
|  |    495 |   if( p->token.z!=0 ){
 | 
|  |    496 |     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
 | 
|  |    497 |     pNew->token.dyn = 1;
 | 
|  |    498 |   }else{
 | 
|  |    499 |     assert( pNew->token.z==0 );
 | 
|  |    500 |   }
 | 
|  |    501 |   pNew->span.z = 0;
 | 
|  |    502 |   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
 | 
|  |    503 |   pNew->pRight = sqlite3ExprDup(db, p->pRight);
 | 
|  |    504 |   pNew->pList = sqlite3ExprListDup(db, p->pList);
 | 
|  |    505 |   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
 | 
|  |    506 |   return pNew;
 | 
|  |    507 | }
 | 
|  |    508 | void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
 | 
|  |    509 |   if( pTo->dyn ) sqlite3_free((char*)pTo->z);
 | 
|  |    510 |   if( pFrom->z ){
 | 
|  |    511 |     pTo->n = pFrom->n;
 | 
|  |    512 |     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
 | 
|  |    513 |     pTo->dyn = 1;
 | 
|  |    514 |   }else{
 | 
|  |    515 |     pTo->z = 0;
 | 
|  |    516 |   }
 | 
|  |    517 | }
 | 
|  |    518 | ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
 | 
|  |    519 |   ExprList *pNew;
 | 
|  |    520 |   ExprList::ExprList_item *pItem, *pOldItem;
 | 
|  |    521 |   int i;
 | 
|  |    522 |   if( p==0 ) return 0;
 | 
|  |    523 |   pNew = (ExprList*)sqlite3DbMallocRaw(db, sizeof(*pNew) );
 | 
|  |    524 |   if( pNew==0 ) return 0;
 | 
|  |    525 |   pNew->iECursor = 0;
 | 
|  |    526 |   pNew->nExpr = pNew->nAlloc = p->nExpr;
 | 
|  |    527 |   pNew->a = pItem = (ExprList::ExprList_item*)sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
 | 
|  |    528 |   if( pItem==0 ){
 | 
|  |    529 |     sqlite3_free(pNew);
 | 
|  |    530 |     return 0;
 | 
|  |    531 |   } 
 | 
|  |    532 |   pOldItem = p->a;
 | 
|  |    533 |   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
 | 
|  |    534 |     Expr *pNewExpr, *pOldExpr;
 | 
|  |    535 |     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
 | 
|  |    536 |     if( pOldExpr->span.z!=0 && pNewExpr ){
 | 
|  |    537 |       /* Always make a copy of the span for top-level expressions in the
 | 
|  |    538 |       ** expression list.  The logic in SELECT processing that determines
 | 
|  |    539 |       ** the names of columns in the result set needs this information */
 | 
|  |    540 |       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
 | 
|  |    541 |     }
 | 
|  |    542 |     assert( pNewExpr==0 || pNewExpr->span.z!=0 
 | 
|  |    543 |             || pOldExpr->span.z==0
 | 
|  |    544 |             || db->mallocFailed );
 | 
|  |    545 |     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
 | 
|  |    546 |     pItem->sortOrder = pOldItem->sortOrder;
 | 
|  |    547 |     pItem->isAgg = pOldItem->isAgg;
 | 
|  |    548 |     pItem->done = 0;
 | 
|  |    549 |   }
 | 
|  |    550 |   return pNew;
 | 
|  |    551 | }
 | 
|  |    552 | 
 | 
|  |    553 | /*
 | 
|  |    554 | ** If cursors, triggers, views and subqueries are all omitted from
 | 
|  |    555 | ** the build, then none of the following routines, except for 
 | 
|  |    556 | ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
 | 
|  |    557 | ** called with a NULL argument.
 | 
|  |    558 | */
 | 
|  |    559 | #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
 | 
|  |    560 |  || !defined(SQLITE_OMIT_SUBQUERY)
 | 
|  |    561 | SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
 | 
|  |    562 |   SrcList *pNew;
 | 
|  |    563 |   int i;
 | 
|  |    564 |   int nByte;
 | 
|  |    565 |   if( p==0 ) return 0;
 | 
|  |    566 |   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
 | 
|  |    567 |   pNew = (SrcList*)sqlite3DbMallocRaw(db, nByte );
 | 
|  |    568 |   if( pNew==0 ) return 0;
 | 
|  |    569 |   pNew->nSrc = pNew->nAlloc = p->nSrc;
 | 
|  |    570 |   for(i=0; i<p->nSrc; i++){
 | 
|  |    571 | 	  SrcList::SrcList_item *pNewItem = &pNew->a[i];
 | 
|  |    572 | 	  SrcList::SrcList_item *pOldItem = &p->a[i];
 | 
|  |    573 |     Table *pTab;
 | 
|  |    574 |     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
 | 
|  |    575 |     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
 | 
|  |    576 |     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
 | 
|  |    577 |     pNewItem->jointype = pOldItem->jointype;
 | 
|  |    578 |     pNewItem->iCursor = pOldItem->iCursor;
 | 
|  |    579 |     pNewItem->isPopulated = pOldItem->isPopulated;
 | 
|  |    580 |     pTab = pNewItem->pTab = pOldItem->pTab;
 | 
|  |    581 |     if( pTab ){
 | 
|  |    582 |       pTab->nRef++;
 | 
|  |    583 |     }
 | 
|  |    584 |     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
 | 
|  |    585 |     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
 | 
|  |    586 |     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
 | 
|  |    587 |     pNewItem->colUsed = pOldItem->colUsed;
 | 
|  |    588 |   }
 | 
|  |    589 |   return pNew;
 | 
|  |    590 | }
 | 
|  |    591 | IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
 | 
|  |    592 |   IdList *pNew;
 | 
|  |    593 |   int i;
 | 
|  |    594 |   if( p==0 ) return 0;
 | 
|  |    595 |   pNew = (IdList*)sqlite3DbMallocRaw(db, sizeof(*pNew) );
 | 
|  |    596 |   if( pNew==0 ) return 0;
 | 
|  |    597 |   pNew->nId = pNew->nAlloc = p->nId;
 | 
|  |    598 |   pNew->a = (IdList::IdList_item*)sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
 | 
|  |    599 |   if( pNew->a==0 ){
 | 
|  |    600 |     sqlite3_free(pNew);
 | 
|  |    601 |     return 0;
 | 
|  |    602 |   }
 | 
|  |    603 |   for(i=0; i<p->nId; i++){
 | 
|  |    604 | 	  IdList::IdList_item *pNewItem = &pNew->a[i];
 | 
|  |    605 | 	  IdList::IdList_item *pOldItem = &p->a[i];
 | 
|  |    606 |     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
 | 
|  |    607 |     pNewItem->idx = pOldItem->idx;
 | 
|  |    608 |   }
 | 
|  |    609 |   return pNew;
 | 
|  |    610 | }
 | 
|  |    611 | Select *sqlite3SelectDup(sqlite3 *db, Select *p){
 | 
|  |    612 |   Select *pNew;
 | 
|  |    613 |   if( p==0 ) return 0;
 | 
|  |    614 |   pNew = (Select*)sqlite3DbMallocRaw(db, sizeof(*p) );
 | 
|  |    615 |   if( pNew==0 ) return 0;
 | 
|  |    616 |   pNew->isDistinct = p->isDistinct;
 | 
|  |    617 |   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
 | 
|  |    618 |   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
 | 
|  |    619 |   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
 | 
|  |    620 |   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
 | 
|  |    621 |   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
 | 
|  |    622 |   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
 | 
|  |    623 |   pNew->op = p->op;
 | 
|  |    624 |   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
 | 
|  |    625 |   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
 | 
|  |    626 |   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
 | 
|  |    627 |   pNew->iLimit = -1;
 | 
|  |    628 |   pNew->iOffset = -1;
 | 
|  |    629 |   pNew->isResolved = p->isResolved;
 | 
|  |    630 |   pNew->isAgg = p->isAgg;
 | 
|  |    631 |   pNew->usesEphm = 0;
 | 
|  |    632 |   pNew->disallowOrderBy = 0;
 | 
|  |    633 |   pNew->pRightmost = 0;
 | 
|  |    634 |   pNew->addrOpenEphm[0] = -1;
 | 
|  |    635 |   pNew->addrOpenEphm[1] = -1;
 | 
|  |    636 |   pNew->addrOpenEphm[2] = -1;
 | 
|  |    637 |   return pNew;
 | 
|  |    638 | }
 | 
|  |    639 | #else
 | 
|  |    640 | Select *sqlite3SelectDup(sqlite3 *db, Select *p){
 | 
|  |    641 |   assert( p==0 );
 | 
|  |    642 |   return 0;
 | 
|  |    643 | }
 | 
|  |    644 | #endif
 | 
|  |    645 | 
 | 
|  |    646 | 
 | 
|  |    647 | /*
 | 
|  |    648 | ** Add a new element to the end of an expression list.  If pList is
 | 
|  |    649 | ** initially NULL, then create a new expression list.
 | 
|  |    650 | */
 | 
|  |    651 | ExprList *sqlite3ExprListAppend(
 | 
|  |    652 |   Parse *pParse,          /* Parsing context */
 | 
|  |    653 |   ExprList *pList,        /* List to which to append. Might be NULL */
 | 
|  |    654 |   Expr *pExpr,            /* Expression to be appended */
 | 
|  |    655 |   Token *pName            /* AS keyword for the expression */
 | 
|  |    656 | ){
 | 
|  |    657 |   sqlite3 *db = pParse->db;
 | 
|  |    658 |   if( pList==0 ){
 | 
|  |    659 |     pList = (ExprList*)sqlite3DbMallocZero(db, sizeof(ExprList) );
 | 
|  |    660 |     if( pList==0 ){
 | 
|  |    661 |       goto no_mem;
 | 
|  |    662 |     }
 | 
|  |    663 |     assert( pList->nAlloc==0 );
 | 
|  |    664 |   }
 | 
|  |    665 |   if( pList->nAlloc<=pList->nExpr ){
 | 
|  |    666 | 	  ExprList::ExprList_item *a;
 | 
|  |    667 |     int n = pList->nAlloc*2 + 4;
 | 
|  |    668 | 	a = (ExprList::ExprList_item*)sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
 | 
|  |    669 |     if( a==0 ){
 | 
|  |    670 |       goto no_mem;
 | 
|  |    671 |     }
 | 
|  |    672 |     pList->a = a;
 | 
|  |    673 |     pList->nAlloc = n;
 | 
|  |    674 |   }
 | 
|  |    675 |   assert( pList->a!=0 );
 | 
|  |    676 |   if( pExpr || pName ){
 | 
|  |    677 | 	  ExprList::ExprList_item *pItem = &pList->a[pList->nExpr++];
 | 
|  |    678 |     memset(pItem, 0, sizeof(*pItem));
 | 
|  |    679 |     pItem->zName = sqlite3NameFromToken(db, pName);
 | 
|  |    680 |     pItem->pExpr = pExpr;
 | 
|  |    681 |   }
 | 
|  |    682 |   return pList;
 | 
|  |    683 | 
 | 
|  |    684 | no_mem:     
 | 
|  |    685 |   /* Avoid leaking memory if malloc has failed. */
 | 
|  |    686 |   sqlite3ExprDelete(pExpr);
 | 
|  |    687 |   sqlite3ExprListDelete(pList);
 | 
|  |    688 |   return 0;
 | 
|  |    689 | }
 | 
|  |    690 | 
 | 
|  |    691 | /*
 | 
|  |    692 | ** If the expression list pEList contains more than iLimit elements,
 | 
|  |    693 | ** leave an error message in pParse.
 | 
|  |    694 | */
 | 
|  |    695 | void sqlite3ExprListCheckLength(
 | 
|  |    696 |   Parse *pParse,
 | 
|  |    697 |   ExprList *pEList,
 | 
|  |    698 |   int iLimit,
 | 
|  |    699 |   const char *zObject
 | 
|  |    700 | ){
 | 
|  |    701 |   if( pEList && pEList->nExpr>iLimit ){
 | 
|  |    702 |     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
 | 
|  |    703 |   }
 | 
|  |    704 | }
 | 
|  |    705 | 
 | 
|  |    706 | 
 | 
|  |    707 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | 
|  |    708 | /* The following three functions, heightOfExpr(), heightOfExprList()
 | 
|  |    709 | ** and heightOfSelect(), are used to determine the maximum height
 | 
|  |    710 | ** of any expression tree referenced by the structure passed as the
 | 
|  |    711 | ** first argument.
 | 
|  |    712 | **
 | 
|  |    713 | ** If this maximum height is greater than the current value pointed
 | 
|  |    714 | ** to by pnHeight, the second parameter, then set *pnHeight to that
 | 
|  |    715 | ** value.
 | 
|  |    716 | */
 | 
|  |    717 | static void heightOfExpr(Expr *p, int *pnHeight){
 | 
|  |    718 |   if( p ){
 | 
|  |    719 |     if( p->nHeight>*pnHeight ){
 | 
|  |    720 |       *pnHeight = p->nHeight;
 | 
|  |    721 |     }
 | 
|  |    722 |   }
 | 
|  |    723 | }
 | 
|  |    724 | static void heightOfExprList(ExprList *p, int *pnHeight){
 | 
|  |    725 |   if( p ){
 | 
|  |    726 |     int i;
 | 
|  |    727 |     for(i=0; i<p->nExpr; i++){
 | 
|  |    728 |       heightOfExpr(p->a[i].pExpr, pnHeight);
 | 
|  |    729 |     }
 | 
|  |    730 |   }
 | 
|  |    731 | }
 | 
|  |    732 | static void heightOfSelect(Select *p, int *pnHeight){
 | 
|  |    733 |   if( p ){
 | 
|  |    734 |     heightOfExpr(p->pWhere, pnHeight);
 | 
|  |    735 |     heightOfExpr(p->pHaving, pnHeight);
 | 
|  |    736 |     heightOfExpr(p->pLimit, pnHeight);
 | 
|  |    737 |     heightOfExpr(p->pOffset, pnHeight);
 | 
|  |    738 |     heightOfExprList(p->pEList, pnHeight);
 | 
|  |    739 |     heightOfExprList(p->pGroupBy, pnHeight);
 | 
|  |    740 |     heightOfExprList(p->pOrderBy, pnHeight);
 | 
|  |    741 |     heightOfSelect(p->pPrior, pnHeight);
 | 
|  |    742 |   }
 | 
|  |    743 | }
 | 
|  |    744 | 
 | 
|  |    745 | /*
 | 
|  |    746 | ** Set the Expr.nHeight variable in the structure passed as an 
 | 
|  |    747 | ** argument. An expression with no children, Expr.pList or 
 | 
|  |    748 | ** Expr.pSelect member has a height of 1. Any other expression
 | 
|  |    749 | ** has a height equal to the maximum height of any other 
 | 
|  |    750 | ** referenced Expr plus one.
 | 
|  |    751 | */
 | 
|  |    752 | void sqlite3ExprSetHeight(Expr *p){
 | 
|  |    753 |   int nHeight = 0;
 | 
|  |    754 |   heightOfExpr(p->pLeft, &nHeight);
 | 
|  |    755 |   heightOfExpr(p->pRight, &nHeight);
 | 
|  |    756 |   heightOfExprList(p->pList, &nHeight);
 | 
|  |    757 |   heightOfSelect(p->pSelect, &nHeight);
 | 
|  |    758 |   p->nHeight = nHeight + 1;
 | 
|  |    759 | }
 | 
|  |    760 | 
 | 
|  |    761 | /*
 | 
|  |    762 | ** Return the maximum height of any expression tree referenced
 | 
|  |    763 | ** by the select statement passed as an argument.
 | 
|  |    764 | */
 | 
|  |    765 | int sqlite3SelectExprHeight(Select *p){
 | 
|  |    766 |   int nHeight = 0;
 | 
|  |    767 |   heightOfSelect(p, &nHeight);
 | 
|  |    768 |   return nHeight;
 | 
|  |    769 | }
 | 
|  |    770 | #endif
 | 
|  |    771 | 
 | 
|  |    772 | /*
 | 
|  |    773 | ** Delete an entire expression list.
 | 
|  |    774 | */
 | 
|  |    775 | void sqlite3ExprListDelete(ExprList *pList){
 | 
|  |    776 |   int i;
 | 
|  |    777 |   ExprList::ExprList_item *pItem;
 | 
|  |    778 |   if( pList==0 ) return;
 | 
|  |    779 |   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
 | 
|  |    780 |   assert( pList->nExpr<=pList->nAlloc );
 | 
|  |    781 |   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
 | 
|  |    782 |     sqlite3ExprDelete(pItem->pExpr);
 | 
|  |    783 |     sqlite3_free(pItem->zName);
 | 
|  |    784 |   }
 | 
|  |    785 |   sqlite3_free(pList->a);
 | 
|  |    786 |   sqlite3_free(pList);
 | 
|  |    787 | }
 | 
|  |    788 | 
 | 
|  |    789 | /*
 | 
|  |    790 | ** Walk an expression tree.  Call xFunc for each node visited.
 | 
|  |    791 | **
 | 
|  |    792 | ** The return value from xFunc determines whether the tree walk continues.
 | 
|  |    793 | ** 0 means continue walking the tree.  1 means do not walk children
 | 
|  |    794 | ** of the current node but continue with siblings.  2 means abandon
 | 
|  |    795 | ** the tree walk completely.
 | 
|  |    796 | **
 | 
|  |    797 | ** The return value from this routine is 1 to abandon the tree walk
 | 
|  |    798 | ** and 0 to continue.
 | 
|  |    799 | **
 | 
|  |    800 | ** NOTICE:  This routine does *not* descend into subqueries.
 | 
|  |    801 | */
 | 
|  |    802 | static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
 | 
|  |    803 | static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
 | 
|  |    804 |   int rc;
 | 
|  |    805 |   if( pExpr==0 ) return 0;
 | 
|  |    806 |   rc = (*xFunc)(pArg, pExpr);
 | 
|  |    807 |   if( rc==0 ){
 | 
|  |    808 |     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
 | 
|  |    809 |     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
 | 
|  |    810 |     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
 | 
|  |    811 |   }
 | 
|  |    812 |   return rc>1;
 | 
|  |    813 | }
 | 
|  |    814 | 
 | 
|  |    815 | /*
 | 
|  |    816 | ** Call walkExprTree() for every expression in list p.
 | 
|  |    817 | */
 | 
|  |    818 | static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
 | 
|  |    819 |   int i;
 | 
|  |    820 |   ExprList::ExprList_item *pItem;
 | 
|  |    821 |   if( !p ) return 0;
 | 
|  |    822 |   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
 | 
|  |    823 |     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
 | 
|  |    824 |   }
 | 
|  |    825 |   return 0;
 | 
|  |    826 | }
 | 
|  |    827 | 
 | 
|  |    828 | /*
 | 
|  |    829 | ** Call walkExprTree() for every expression in Select p, not including
 | 
|  |    830 | ** expressions that are part of sub-selects in any FROM clause or the LIMIT
 | 
|  |    831 | ** or OFFSET expressions..
 | 
|  |    832 | */
 | 
|  |    833 | static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
 | 
|  |    834 |   walkExprList(p->pEList, xFunc, pArg);
 | 
|  |    835 |   walkExprTree(p->pWhere, xFunc, pArg);
 | 
|  |    836 |   walkExprList(p->pGroupBy, xFunc, pArg);
 | 
|  |    837 |   walkExprTree(p->pHaving, xFunc, pArg);
 | 
|  |    838 |   walkExprList(p->pOrderBy, xFunc, pArg);
 | 
|  |    839 |   if( p->pPrior ){
 | 
|  |    840 |     walkSelectExpr(p->pPrior, xFunc, pArg);
 | 
|  |    841 |   }
 | 
|  |    842 |   return 0;
 | 
|  |    843 | }
 | 
|  |    844 | 
 | 
|  |    845 | 
 | 
|  |    846 | /*
 | 
|  |    847 | ** This routine is designed as an xFunc for walkExprTree().
 | 
|  |    848 | **
 | 
|  |    849 | ** pArg is really a pointer to an integer.  If we can tell by looking
 | 
|  |    850 | ** at pExpr that the expression that contains pExpr is not a constant
 | 
|  |    851 | ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
 | 
|  |    852 | ** If pExpr does does not disqualify the expression from being a constant
 | 
|  |    853 | ** then do nothing.
 | 
|  |    854 | **
 | 
|  |    855 | ** After walking the whole tree, if no nodes are found that disqualify
 | 
|  |    856 | ** the expression as constant, then we assume the whole expression
 | 
|  |    857 | ** is constant.  See sqlite3ExprIsConstant() for additional information.
 | 
|  |    858 | */
 | 
|  |    859 | static int exprNodeIsConstant(void *pArg, Expr *pExpr){
 | 
|  |    860 |   int *pN = (int*)pArg;
 | 
|  |    861 | 
 | 
|  |    862 |   /* If *pArg is 3 then any term of the expression that comes from
 | 
|  |    863 |   ** the ON or USING clauses of a join disqualifies the expression
 | 
|  |    864 |   ** from being considered constant. */
 | 
|  |    865 |   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
 | 
|  |    866 |     *pN = 0;
 | 
|  |    867 |     return 2;
 | 
|  |    868 |   }
 | 
|  |    869 | 
 | 
|  |    870 |   switch( pExpr->op ){
 | 
|  |    871 |     /* Consider functions to be constant if all their arguments are constant
 | 
|  |    872 |     ** and *pArg==2 */
 | 
|  |    873 |     case TK_FUNCTION:
 | 
|  |    874 |       if( (*pN)==2 ) return 0;
 | 
|  |    875 |       /* Fall through */
 | 
|  |    876 |     case TK_ID:
 | 
|  |    877 |     case TK_COLUMN:
 | 
|  |    878 |     case TK_DOT:
 | 
|  |    879 |     case TK_AGG_FUNCTION:
 | 
|  |    880 |     case TK_AGG_COLUMN:
 | 
|  |    881 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |    882 |     case TK_SELECT:
 | 
|  |    883 |     case TK_EXISTS:
 | 
|  |    884 | #endif
 | 
|  |    885 |       *pN = 0;
 | 
|  |    886 |       return 2;
 | 
|  |    887 |     case TK_IN:
 | 
|  |    888 |       if( pExpr->pSelect ){
 | 
|  |    889 |         *pN = 0;
 | 
|  |    890 |         return 2;
 | 
|  |    891 |       }
 | 
|  |    892 |     default:
 | 
|  |    893 |       return 0;
 | 
|  |    894 |   }
 | 
|  |    895 | }
 | 
|  |    896 | 
 | 
|  |    897 | /*
 | 
|  |    898 | ** Walk an expression tree.  Return 1 if the expression is constant
 | 
|  |    899 | ** and 0 if it involves variables or function calls.
 | 
|  |    900 | **
 | 
|  |    901 | ** For the purposes of this function, a double-quoted string (ex: "abc")
 | 
|  |    902 | ** is considered a variable but a single-quoted string (ex: 'abc') is
 | 
|  |    903 | ** a constant.
 | 
|  |    904 | */
 | 
|  |    905 | int sqlite3ExprIsConstant(Expr *p){
 | 
|  |    906 |   int isConst = 1;
 | 
|  |    907 |   walkExprTree(p, exprNodeIsConstant, &isConst);
 | 
|  |    908 |   return isConst;
 | 
|  |    909 | }
 | 
|  |    910 | 
 | 
|  |    911 | /*
 | 
|  |    912 | ** Walk an expression tree.  Return 1 if the expression is constant
 | 
|  |    913 | ** that does no originate from the ON or USING clauses of a join.
 | 
|  |    914 | ** Return 0 if it involves variables or function calls or terms from
 | 
|  |    915 | ** an ON or USING clause.
 | 
|  |    916 | */
 | 
|  |    917 | int sqlite3ExprIsConstantNotJoin(Expr *p){
 | 
|  |    918 |   int isConst = 3;
 | 
|  |    919 |   walkExprTree(p, exprNodeIsConstant, &isConst);
 | 
|  |    920 |   return isConst!=0;
 | 
|  |    921 | }
 | 
|  |    922 | 
 | 
|  |    923 | /*
 | 
|  |    924 | ** Walk an expression tree.  Return 1 if the expression is constant
 | 
|  |    925 | ** or a function call with constant arguments.  Return and 0 if there
 | 
|  |    926 | ** are any variables.
 | 
|  |    927 | **
 | 
|  |    928 | ** For the purposes of this function, a double-quoted string (ex: "abc")
 | 
|  |    929 | ** is considered a variable but a single-quoted string (ex: 'abc') is
 | 
|  |    930 | ** a constant.
 | 
|  |    931 | */
 | 
|  |    932 | int sqlite3ExprIsConstantOrFunction(Expr *p){
 | 
|  |    933 |   int isConst = 2;
 | 
|  |    934 |   walkExprTree(p, exprNodeIsConstant, &isConst);
 | 
|  |    935 |   return isConst!=0;
 | 
|  |    936 | }
 | 
|  |    937 | 
 | 
|  |    938 | /*
 | 
|  |    939 | ** If the expression p codes a constant integer that is small enough
 | 
|  |    940 | ** to fit in a 32-bit integer, return 1 and put the value of the integer
 | 
|  |    941 | ** in *pValue.  If the expression is not an integer or if it is too big
 | 
|  |    942 | ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
 | 
|  |    943 | */
 | 
|  |    944 | int sqlite3ExprIsInteger(Expr *p, int *pValue){
 | 
|  |    945 |   switch( p->op ){
 | 
|  |    946 |     case TK_INTEGER: {
 | 
|  |    947 |       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
 | 
|  |    948 |         return 1;
 | 
|  |    949 |       }
 | 
|  |    950 |       break;
 | 
|  |    951 |     }
 | 
|  |    952 |     case TK_UPLUS: {
 | 
|  |    953 |       return sqlite3ExprIsInteger(p->pLeft, pValue);
 | 
|  |    954 |     }
 | 
|  |    955 |     case TK_UMINUS: {
 | 
|  |    956 |       int v;
 | 
|  |    957 |       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
 | 
|  |    958 |         *pValue = -v;
 | 
|  |    959 |         return 1;
 | 
|  |    960 |       }
 | 
|  |    961 |       break;
 | 
|  |    962 |     }
 | 
|  |    963 |     default: break;
 | 
|  |    964 |   }
 | 
|  |    965 |   return 0;
 | 
|  |    966 | }
 | 
|  |    967 | 
 | 
|  |    968 | /*
 | 
|  |    969 | ** Return TRUE if the given string is a row-id column name.
 | 
|  |    970 | */
 | 
|  |    971 | int sqlite3IsRowid(const char *z){
 | 
|  |    972 |   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
 | 
|  |    973 |   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
 | 
|  |    974 |   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
 | 
|  |    975 |   return 0;
 | 
|  |    976 | }
 | 
|  |    977 | 
 | 
|  |    978 | /*
 | 
|  |    979 | ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
 | 
|  |    980 | ** that name in the set of source tables in pSrcList and make the pExpr 
 | 
|  |    981 | ** expression node refer back to that source column.  The following changes
 | 
|  |    982 | ** are made to pExpr:
 | 
|  |    983 | **
 | 
|  |    984 | **    pExpr->iDb           Set the index in db->aDb[] of the database holding
 | 
|  |    985 | **                         the table.
 | 
|  |    986 | **    pExpr->iTable        Set to the cursor number for the table obtained
 | 
|  |    987 | **                         from pSrcList.
 | 
|  |    988 | **    pExpr->iColumn       Set to the column number within the table.
 | 
|  |    989 | **    pExpr->op            Set to TK_COLUMN.
 | 
|  |    990 | **    pExpr->pLeft         Any expression this points to is deleted
 | 
|  |    991 | **    pExpr->pRight        Any expression this points to is deleted.
 | 
|  |    992 | **
 | 
|  |    993 | ** The pDbToken is the name of the database (the "X").  This value may be
 | 
|  |    994 | ** NULL meaning that name is of the form Y.Z or Z.  Any available database
 | 
|  |    995 | ** can be used.  The pTableToken is the name of the table (the "Y").  This
 | 
|  |    996 | ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
 | 
|  |    997 | ** means that the form of the name is Z and that columns from any table
 | 
|  |    998 | ** can be used.
 | 
|  |    999 | **
 | 
|  |   1000 | ** If the name cannot be resolved unambiguously, leave an error message
 | 
|  |   1001 | ** in pParse and return non-zero.  Return zero on success.
 | 
|  |   1002 | */
 | 
|  |   1003 | static int lookupName(
 | 
|  |   1004 |   Parse *pParse,       /* The parsing context */
 | 
|  |   1005 |   Token *pDbToken,     /* Name of the database containing table, or NULL */
 | 
|  |   1006 |   Token *pTableToken,  /* Name of table containing column, or NULL */
 | 
|  |   1007 |   Token *pColumnToken, /* Name of the column. */
 | 
|  |   1008 |   NameContext *pNC,    /* The name context used to resolve the name */
 | 
|  |   1009 |   Expr *pExpr          /* Make this EXPR node point to the selected column */
 | 
|  |   1010 | ){
 | 
|  |   1011 |   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
 | 
|  |   1012 |   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
 | 
|  |   1013 |   char *zCol = 0;      /* Name of the column.  The "Z" */
 | 
|  |   1014 |   int i, j;            /* Loop counters */
 | 
|  |   1015 |   int cnt = 0;         /* Number of matching column names */
 | 
|  |   1016 |   int cntTab = 0;      /* Number of matching table names */
 | 
|  |   1017 |   sqlite3 *db = pParse->db;  /* The database */
 | 
|  |   1018 |   SrcList::SrcList_item *pItem;       /* Use for looping over pSrcList items */
 | 
|  |   1019 |   SrcList::SrcList_item *pMatch = 0;  /* The matching pSrcList item */
 | 
|  |   1020 |   NameContext *pTopNC = pNC;        /* First namecontext in the list */
 | 
|  |   1021 |   Schema *pSchema = 0;              /* Schema of the expression */
 | 
|  |   1022 | 
 | 
|  |   1023 |   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
 | 
|  |   1024 |   zDb = sqlite3NameFromToken(db, pDbToken);
 | 
|  |   1025 |   zTab = sqlite3NameFromToken(db, pTableToken);
 | 
|  |   1026 |   zCol = sqlite3NameFromToken(db, pColumnToken);
 | 
|  |   1027 |   if( db->mallocFailed ){
 | 
|  |   1028 |     goto lookupname_end;
 | 
|  |   1029 |   }
 | 
|  |   1030 | 
 | 
|  |   1031 |   pExpr->iTable = -1;
 | 
|  |   1032 |   while( pNC && cnt==0 ){
 | 
|  |   1033 |     ExprList *pEList;
 | 
|  |   1034 |     SrcList *pSrcList = pNC->pSrcList;
 | 
|  |   1035 | 
 | 
|  |   1036 |     if( pSrcList ){
 | 
|  |   1037 |       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
 | 
|  |   1038 |         Table *pTab;
 | 
|  |   1039 |         int iDb;
 | 
|  |   1040 |         Column *pCol;
 | 
|  |   1041 |   
 | 
|  |   1042 |         pTab = pItem->pTab;
 | 
|  |   1043 |         assert( pTab!=0 );
 | 
|  |   1044 |         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | 
|  |   1045 |         assert( pTab->nCol>0 );
 | 
|  |   1046 |         if( zTab ){
 | 
|  |   1047 |           if( pItem->zAlias ){
 | 
|  |   1048 |             char *zTabName = pItem->zAlias;
 | 
|  |   1049 |             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
 | 
|  |   1050 |           }else{
 | 
|  |   1051 |             char *zTabName = pTab->zName;
 | 
|  |   1052 |             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
 | 
|  |   1053 |             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
 | 
|  |   1054 |               continue;
 | 
|  |   1055 |             }
 | 
|  |   1056 |           }
 | 
|  |   1057 |         }
 | 
|  |   1058 |         if( 0==(cntTab++) ){
 | 
|  |   1059 |           pExpr->iTable = pItem->iCursor;
 | 
|  |   1060 |           pSchema = pTab->pSchema;
 | 
|  |   1061 |           pMatch = pItem;
 | 
|  |   1062 |         }
 | 
|  |   1063 |         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
 | 
|  |   1064 |           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
 | 
|  |   1065 |             const char *zColl = pTab->aCol[j].zColl;
 | 
|  |   1066 |             IdList *pUsing;
 | 
|  |   1067 |             cnt++;
 | 
|  |   1068 |             pExpr->iTable = pItem->iCursor;
 | 
|  |   1069 |             pMatch = pItem;
 | 
|  |   1070 |             pSchema = pTab->pSchema;
 | 
|  |   1071 |             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
 | 
|  |   1072 |             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
 | 
|  |   1073 |             pExpr->affinity = pTab->aCol[j].affinity;
 | 
|  |   1074 |             if( (pExpr->flags & EP_ExpCollate)==0 ){
 | 
|  |   1075 |               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
 | 
|  |   1076 |             }
 | 
|  |   1077 |             if( i<pSrcList->nSrc-1 ){
 | 
|  |   1078 |               if( pItem[1].jointype & JT_NATURAL ){
 | 
|  |   1079 |                 /* If this match occurred in the left table of a natural join,
 | 
|  |   1080 |                 ** then skip the right table to avoid a duplicate match */
 | 
|  |   1081 |                 pItem++;
 | 
|  |   1082 |                 i++;
 | 
|  |   1083 |               }else if( (pUsing = pItem[1].pUsing)!=0 ){
 | 
|  |   1084 |                 /* If this match occurs on a column that is in the USING clause
 | 
|  |   1085 |                 ** of a join, skip the search of the right table of the join
 | 
|  |   1086 |                 ** to avoid a duplicate match there. */
 | 
|  |   1087 |                 int k;
 | 
|  |   1088 |                 for(k=0; k<pUsing->nId; k++){
 | 
|  |   1089 |                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
 | 
|  |   1090 |                     pItem++;
 | 
|  |   1091 |                     i++;
 | 
|  |   1092 |                     break;
 | 
|  |   1093 |                   }
 | 
|  |   1094 |                 }
 | 
|  |   1095 |               }
 | 
|  |   1096 |             }
 | 
|  |   1097 |             break;
 | 
|  |   1098 |           }
 | 
|  |   1099 |         }
 | 
|  |   1100 |       }
 | 
|  |   1101 |     }
 | 
|  |   1102 | 
 | 
|  |   1103 | #ifndef SQLITE_OMIT_TRIGGER
 | 
|  |   1104 |     /* If we have not already resolved the name, then maybe 
 | 
|  |   1105 |     ** it is a new.* or old.* trigger argument reference
 | 
|  |   1106 |     */
 | 
|  |   1107 |     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
 | 
|  |   1108 |       TriggerStack *pTriggerStack = pParse->trigStack;
 | 
|  |   1109 |       Table *pTab = 0;
 | 
|  |   1110 |       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
 | 
|  |   1111 |         pExpr->iTable = pTriggerStack->newIdx;
 | 
|  |   1112 |         assert( pTriggerStack->pTab );
 | 
|  |   1113 |         pTab = pTriggerStack->pTab;
 | 
|  |   1114 |       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
 | 
|  |   1115 |         pExpr->iTable = pTriggerStack->oldIdx;
 | 
|  |   1116 |         assert( pTriggerStack->pTab );
 | 
|  |   1117 |         pTab = pTriggerStack->pTab;
 | 
|  |   1118 |       }
 | 
|  |   1119 | 
 | 
|  |   1120 |       if( pTab ){ 
 | 
|  |   1121 |         int iCol;
 | 
|  |   1122 |         Column *pCol = pTab->aCol;
 | 
|  |   1123 | 
 | 
|  |   1124 |         pSchema = pTab->pSchema;
 | 
|  |   1125 |         cntTab++;
 | 
|  |   1126 |         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
 | 
|  |   1127 |           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
 | 
|  |   1128 |             const char *zColl = pTab->aCol[iCol].zColl;
 | 
|  |   1129 |             cnt++;
 | 
|  |   1130 |             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
 | 
|  |   1131 |             pExpr->affinity = pTab->aCol[iCol].affinity;
 | 
|  |   1132 |             if( (pExpr->flags & EP_ExpCollate)==0 ){
 | 
|  |   1133 |               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
 | 
|  |   1134 |             }
 | 
|  |   1135 |             pExpr->pTab = pTab;
 | 
|  |   1136 |             break;
 | 
|  |   1137 |           }
 | 
|  |   1138 |         }
 | 
|  |   1139 |       }
 | 
|  |   1140 |     }
 | 
|  |   1141 | #endif /* !defined(SQLITE_OMIT_TRIGGER) */
 | 
|  |   1142 | 
 | 
|  |   1143 |     /*
 | 
|  |   1144 |     ** Perhaps the name is a reference to the ROWID
 | 
|  |   1145 |     */
 | 
|  |   1146 |     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
 | 
|  |   1147 |       cnt = 1;
 | 
|  |   1148 |       pExpr->iColumn = -1;
 | 
|  |   1149 |       pExpr->affinity = SQLITE_AFF_INTEGER;
 | 
|  |   1150 |     }
 | 
|  |   1151 | 
 | 
|  |   1152 |     /*
 | 
|  |   1153 |     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
 | 
|  |   1154 |     ** might refer to an result-set alias.  This happens, for example, when
 | 
|  |   1155 |     ** we are resolving names in the WHERE clause of the following command:
 | 
|  |   1156 |     **
 | 
|  |   1157 |     **     SELECT a+b AS x FROM table WHERE x<10;
 | 
|  |   1158 |     **
 | 
|  |   1159 |     ** In cases like this, replace pExpr with a copy of the expression that
 | 
|  |   1160 |     ** forms the result set entry ("a+b" in the example) and return immediately.
 | 
|  |   1161 |     ** Note that the expression in the result set should have already been
 | 
|  |   1162 |     ** resolved by the time the WHERE clause is resolved.
 | 
|  |   1163 |     */
 | 
|  |   1164 |     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
 | 
|  |   1165 |       for(j=0; j<pEList->nExpr; j++){
 | 
|  |   1166 |         char *zAs = pEList->a[j].zName;
 | 
|  |   1167 |         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
 | 
|  |   1168 |           Expr *pDup, *pOrig;
 | 
|  |   1169 |           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
 | 
|  |   1170 |           assert( pExpr->pList==0 );
 | 
|  |   1171 |           assert( pExpr->pSelect==0 );
 | 
|  |   1172 |           pOrig = pEList->a[j].pExpr;
 | 
|  |   1173 |           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
 | 
|  |   1174 |             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
 | 
|  |   1175 |             sqlite3_free(zCol);
 | 
|  |   1176 |             return 2;
 | 
|  |   1177 |           }
 | 
|  |   1178 |           pDup = sqlite3ExprDup(db, pOrig);
 | 
|  |   1179 |           if( pExpr->flags & EP_ExpCollate ){
 | 
|  |   1180 |             pDup->pColl = pExpr->pColl;
 | 
|  |   1181 |             pDup->flags |= EP_ExpCollate;
 | 
|  |   1182 |           }
 | 
|  |   1183 |           if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
 | 
|  |   1184 |           if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
 | 
|  |   1185 |           memcpy(pExpr, pDup, sizeof(*pExpr));
 | 
|  |   1186 |           sqlite3_free(pDup);
 | 
|  |   1187 |           cnt = 1;
 | 
|  |   1188 |           pMatch = 0;
 | 
|  |   1189 |           assert( zTab==0 && zDb==0 );
 | 
|  |   1190 |           goto lookupname_end_2;
 | 
|  |   1191 |         }
 | 
|  |   1192 |       } 
 | 
|  |   1193 |     }
 | 
|  |   1194 | 
 | 
|  |   1195 |     /* Advance to the next name context.  The loop will exit when either
 | 
|  |   1196 |     ** we have a match (cnt>0) or when we run out of name contexts.
 | 
|  |   1197 |     */
 | 
|  |   1198 |     if( cnt==0 ){
 | 
|  |   1199 |       pNC = pNC->pNext;
 | 
|  |   1200 |     }
 | 
|  |   1201 |   }
 | 
|  |   1202 | 
 | 
|  |   1203 |   /*
 | 
|  |   1204 |   ** If X and Y are NULL (in other words if only the column name Z is
 | 
|  |   1205 |   ** supplied) and the value of Z is enclosed in double-quotes, then
 | 
|  |   1206 |   ** Z is a string literal if it doesn't match any column names.  In that
 | 
|  |   1207 |   ** case, we need to return right away and not make any changes to
 | 
|  |   1208 |   ** pExpr.
 | 
|  |   1209 |   **
 | 
|  |   1210 |   ** Because no reference was made to outer contexts, the pNC->nRef
 | 
|  |   1211 |   ** fields are not changed in any context.
 | 
|  |   1212 |   */
 | 
|  |   1213 |   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
 | 
|  |   1214 |     sqlite3_free(zCol);
 | 
|  |   1215 |     return 0;
 | 
|  |   1216 |   }
 | 
|  |   1217 | 
 | 
|  |   1218 |   /*
 | 
|  |   1219 |   ** cnt==0 means there was not match.  cnt>1 means there were two or
 | 
|  |   1220 |   ** more matches.  Either way, we have an error.
 | 
|  |   1221 |   */
 | 
|  |   1222 |   if( cnt!=1 ){
 | 
|  |   1223 |     char *z = 0;
 | 
|  |   1224 |     char *zErr;
 | 
|  |   1225 |     zErr = (char*)(cnt==0 ? "no such column: %s" : "ambiguous column name: %s");
 | 
|  |   1226 |     if( zDb ){
 | 
|  |   1227 |       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
 | 
|  |   1228 |     }else if( zTab ){
 | 
|  |   1229 |       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
 | 
|  |   1230 |     }else{
 | 
|  |   1231 |       z = sqlite3StrDup(zCol);
 | 
|  |   1232 |     }
 | 
|  |   1233 |     if( z ){
 | 
|  |   1234 |       sqlite3ErrorMsg(pParse, zErr, z);
 | 
|  |   1235 |       sqlite3_free(z);
 | 
|  |   1236 |       pTopNC->nErr++;
 | 
|  |   1237 |     }else{
 | 
|  |   1238 |       db->mallocFailed = 1;
 | 
|  |   1239 |     }
 | 
|  |   1240 |   }
 | 
|  |   1241 | 
 | 
|  |   1242 |   /* If a column from a table in pSrcList is referenced, then record
 | 
|  |   1243 |   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
 | 
|  |   1244 |   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
 | 
|  |   1245 |   ** column number is greater than the number of bits in the bitmask
 | 
|  |   1246 |   ** then set the high-order bit of the bitmask.
 | 
|  |   1247 |   */
 | 
|  |   1248 |   if( pExpr->iColumn>=0 && pMatch!=0 ){
 | 
|  |   1249 |     int n = pExpr->iColumn;
 | 
|  |   1250 |     if( n>=sizeof(Bitmask)*8 ){
 | 
|  |   1251 |       n = sizeof(Bitmask)*8-1;
 | 
|  |   1252 |     }
 | 
|  |   1253 |     assert( pMatch->iCursor==pExpr->iTable );
 | 
|  |   1254 |     pMatch->colUsed |= ((Bitmask)1)<<n;
 | 
|  |   1255 |   }
 | 
|  |   1256 | 
 | 
|  |   1257 | lookupname_end:
 | 
|  |   1258 |   /* Clean up and return
 | 
|  |   1259 |   */
 | 
|  |   1260 |   sqlite3_free(zDb);
 | 
|  |   1261 |   sqlite3_free(zTab);
 | 
|  |   1262 |   sqlite3ExprDelete(pExpr->pLeft);
 | 
|  |   1263 |   pExpr->pLeft = 0;
 | 
|  |   1264 |   sqlite3ExprDelete(pExpr->pRight);
 | 
|  |   1265 |   pExpr->pRight = 0;
 | 
|  |   1266 |   pExpr->op = TK_COLUMN;
 | 
|  |   1267 | lookupname_end_2:
 | 
|  |   1268 |   sqlite3_free(zCol);
 | 
|  |   1269 |   if( cnt==1 ){
 | 
|  |   1270 |     assert( pNC!=0 );
 | 
|  |   1271 |     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
 | 
|  |   1272 |     if( pMatch && !pMatch->pSelect ){
 | 
|  |   1273 |       pExpr->pTab = pMatch->pTab;
 | 
|  |   1274 |     }
 | 
|  |   1275 |     /* Increment the nRef value on all name contexts from TopNC up to
 | 
|  |   1276 |     ** the point where the name matched. */
 | 
|  |   1277 |     for(;;){
 | 
|  |   1278 |       assert( pTopNC!=0 );
 | 
|  |   1279 |       pTopNC->nRef++;
 | 
|  |   1280 |       if( pTopNC==pNC ) break;
 | 
|  |   1281 |       pTopNC = pTopNC->pNext;
 | 
|  |   1282 |     }
 | 
|  |   1283 |     return 0;
 | 
|  |   1284 |   } else {
 | 
|  |   1285 |     return 1;
 | 
|  |   1286 |   }
 | 
|  |   1287 | }
 | 
|  |   1288 | 
 | 
|  |   1289 | /*
 | 
|  |   1290 | ** This routine is designed as an xFunc for walkExprTree().
 | 
|  |   1291 | **
 | 
|  |   1292 | ** Resolve symbolic names into TK_COLUMN operators for the current
 | 
|  |   1293 | ** node in the expression tree.  Return 0 to continue the search down
 | 
|  |   1294 | ** the tree or 2 to abort the tree walk.
 | 
|  |   1295 | **
 | 
|  |   1296 | ** This routine also does error checking and name resolution for
 | 
|  |   1297 | ** function names.  The operator for aggregate functions is changed
 | 
|  |   1298 | ** to TK_AGG_FUNCTION.
 | 
|  |   1299 | */
 | 
|  |   1300 | static int nameResolverStep(void *pArg, Expr *pExpr){
 | 
|  |   1301 |   NameContext *pNC = (NameContext*)pArg;
 | 
|  |   1302 |   Parse *pParse;
 | 
|  |   1303 | 
 | 
|  |   1304 |   if( pExpr==0 ) return 1;
 | 
|  |   1305 |   assert( pNC!=0 );
 | 
|  |   1306 |   pParse = pNC->pParse;
 | 
|  |   1307 | 
 | 
|  |   1308 |   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
 | 
|  |   1309 |   ExprSetProperty(pExpr, EP_Resolved);
 | 
|  |   1310 | #ifndef NDEBUG
 | 
|  |   1311 |   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
 | 
|  |   1312 |     SrcList *pSrcList = pNC->pSrcList;
 | 
|  |   1313 |     int i;
 | 
|  |   1314 |     for(i=0; i<pNC->pSrcList->nSrc; i++){
 | 
|  |   1315 |       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
 | 
|  |   1316 |     }
 | 
|  |   1317 |   }
 | 
|  |   1318 | #endif
 | 
|  |   1319 |   switch( pExpr->op ){
 | 
|  |   1320 |     /* Double-quoted strings (ex: "abc") are used as identifiers if
 | 
|  |   1321 |     ** possible.  Otherwise they remain as strings.  Single-quoted
 | 
|  |   1322 |     ** strings (ex: 'abc') are always string literals.
 | 
|  |   1323 |     */
 | 
|  |   1324 |     case TK_STRING: {
 | 
|  |   1325 |       if( pExpr->token.z[0]=='\'' ) break;
 | 
|  |   1326 |       /* Fall thru into the TK_ID case if this is a double-quoted string */
 | 
|  |   1327 |     }
 | 
|  |   1328 |     /* A lone identifier is the name of a column.
 | 
|  |   1329 |     */
 | 
|  |   1330 |     case TK_ID: {
 | 
|  |   1331 |       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
 | 
|  |   1332 |       return 1;
 | 
|  |   1333 |     }
 | 
|  |   1334 |   
 | 
|  |   1335 |     /* A table name and column name:     ID.ID
 | 
|  |   1336 |     ** Or a database, table and column:  ID.ID.ID
 | 
|  |   1337 |     */
 | 
|  |   1338 |     case TK_DOT: {
 | 
|  |   1339 |       Token *pColumn;
 | 
|  |   1340 |       Token *pTable;
 | 
|  |   1341 |       Token *pDb;
 | 
|  |   1342 |       Expr *pRight;
 | 
|  |   1343 | 
 | 
|  |   1344 |       /* if( pSrcList==0 ) break; */
 | 
|  |   1345 |       pRight = pExpr->pRight;
 | 
|  |   1346 |       if( pRight->op==TK_ID ){
 | 
|  |   1347 |         pDb = 0;
 | 
|  |   1348 |         pTable = &pExpr->pLeft->token;
 | 
|  |   1349 |         pColumn = &pRight->token;
 | 
|  |   1350 |       }else{
 | 
|  |   1351 |         assert( pRight->op==TK_DOT );
 | 
|  |   1352 |         pDb = &pExpr->pLeft->token;
 | 
|  |   1353 |         pTable = &pRight->pLeft->token;
 | 
|  |   1354 |         pColumn = &pRight->pRight->token;
 | 
|  |   1355 |       }
 | 
|  |   1356 |       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
 | 
|  |   1357 |       return 1;
 | 
|  |   1358 |     }
 | 
|  |   1359 | 
 | 
|  |   1360 |     /* Resolve function names
 | 
|  |   1361 |     */
 | 
|  |   1362 |     case TK_CONST_FUNC:
 | 
|  |   1363 |     case TK_FUNCTION: {
 | 
|  |   1364 |       ExprList *pList = pExpr->pList;    /* The argument list */
 | 
|  |   1365 |       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
 | 
|  |   1366 |       int no_such_func = 0;       /* True if no such function exists */
 | 
|  |   1367 |       int wrong_num_args = 0;     /* True if wrong number of arguments */
 | 
|  |   1368 |       int is_agg = 0;             /* True if is an aggregate function */
 | 
|  |   1369 |       int i;
 | 
|  |   1370 |       int auth;                   /* Authorization to use the function */
 | 
|  |   1371 |       int nId;                    /* Number of characters in function name */
 | 
|  |   1372 |       const char *zId;            /* The function name. */
 | 
|  |   1373 |       FuncDef *pDef;              /* Information about the function */
 | 
|  |   1374 |       int enc = ENC(pParse->db);  /* The database encoding */
 | 
|  |   1375 | 
 | 
|  |   1376 |       zId = (char*)pExpr->token.z;
 | 
|  |   1377 |       nId = pExpr->token.n;
 | 
|  |   1378 |       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
 | 
|  |   1379 |       if( pDef==0 ){
 | 
|  |   1380 |         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
 | 
|  |   1381 |         if( pDef==0 ){
 | 
|  |   1382 |           no_such_func = 1;
 | 
|  |   1383 |         }else{
 | 
|  |   1384 |           wrong_num_args = 1;
 | 
|  |   1385 |         }
 | 
|  |   1386 |       }else{
 | 
|  |   1387 |         is_agg = pDef->xFunc==0;
 | 
|  |   1388 |       }
 | 
|  |   1389 | #ifndef SQLITE_OMIT_AUTHORIZATION
 | 
|  |   1390 |       if( pDef ){
 | 
|  |   1391 |         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
 | 
|  |   1392 |         if( auth!=SQLITE_OK ){
 | 
|  |   1393 |           if( auth==SQLITE_DENY ){
 | 
|  |   1394 |             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
 | 
|  |   1395 |                                     pDef->zName);
 | 
|  |   1396 |             pNC->nErr++;
 | 
|  |   1397 |           }
 | 
|  |   1398 |           pExpr->op = TK_NULL;
 | 
|  |   1399 |           return 1;
 | 
|  |   1400 |         }
 | 
|  |   1401 |       }
 | 
|  |   1402 | #endif
 | 
|  |   1403 |       if( is_agg && !pNC->allowAgg ){
 | 
|  |   1404 |         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
 | 
|  |   1405 |         pNC->nErr++;
 | 
|  |   1406 |         is_agg = 0;
 | 
|  |   1407 |       }else if( no_such_func ){
 | 
|  |   1408 |         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
 | 
|  |   1409 |         pNC->nErr++;
 | 
|  |   1410 |       }else if( wrong_num_args ){
 | 
|  |   1411 |         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
 | 
|  |   1412 |              nId, zId);
 | 
|  |   1413 |         pNC->nErr++;
 | 
|  |   1414 |       }
 | 
|  |   1415 |       if( is_agg ){
 | 
|  |   1416 |         pExpr->op = TK_AGG_FUNCTION;
 | 
|  |   1417 |         pNC->hasAgg = 1;
 | 
|  |   1418 |       }
 | 
|  |   1419 |       if( is_agg ) pNC->allowAgg = 0;
 | 
|  |   1420 |       for(i=0; pNC->nErr==0 && i<n; i++){
 | 
|  |   1421 |         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
 | 
|  |   1422 |       }
 | 
|  |   1423 |       if( is_agg ) pNC->allowAgg = 1;
 | 
|  |   1424 |       /* FIX ME:  Compute pExpr->affinity based on the expected return
 | 
|  |   1425 |       ** type of the function 
 | 
|  |   1426 |       */
 | 
|  |   1427 |       return is_agg;
 | 
|  |   1428 |     }
 | 
|  |   1429 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   1430 |     case TK_SELECT:
 | 
|  |   1431 |     case TK_EXISTS:
 | 
|  |   1432 | #endif
 | 
|  |   1433 |     case TK_IN: {
 | 
|  |   1434 |       if( pExpr->pSelect ){
 | 
|  |   1435 |         int nRef = pNC->nRef;
 | 
|  |   1436 | #ifndef SQLITE_OMIT_CHECK
 | 
|  |   1437 |         if( pNC->isCheck ){
 | 
|  |   1438 |           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
 | 
|  |   1439 |         }
 | 
|  |   1440 | #endif
 | 
|  |   1441 |         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
 | 
|  |   1442 |         assert( pNC->nRef>=nRef );
 | 
|  |   1443 |         if( nRef!=pNC->nRef ){
 | 
|  |   1444 |           ExprSetProperty(pExpr, EP_VarSelect);
 | 
|  |   1445 |         }
 | 
|  |   1446 |       }
 | 
|  |   1447 |       break;
 | 
|  |   1448 |     }
 | 
|  |   1449 | #ifndef SQLITE_OMIT_CHECK
 | 
|  |   1450 |     case TK_VARIABLE: {
 | 
|  |   1451 |       if( pNC->isCheck ){
 | 
|  |   1452 |         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
 | 
|  |   1453 |       }
 | 
|  |   1454 |       break;
 | 
|  |   1455 |     }
 | 
|  |   1456 | #endif
 | 
|  |   1457 |   }
 | 
|  |   1458 |   return 0;
 | 
|  |   1459 | }
 | 
|  |   1460 | 
 | 
|  |   1461 | /*
 | 
|  |   1462 | ** This routine walks an expression tree and resolves references to
 | 
|  |   1463 | ** table columns.  Nodes of the form ID.ID or ID resolve into an
 | 
|  |   1464 | ** index to the table in the table list and a column offset.  The 
 | 
|  |   1465 | ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
 | 
|  |   1466 | ** value is changed to the index of the referenced table in pTabList
 | 
|  |   1467 | ** plus the "base" value.  The base value will ultimately become the
 | 
|  |   1468 | ** VDBE cursor number for a cursor that is pointing into the referenced
 | 
|  |   1469 | ** table.  The Expr.iColumn value is changed to the index of the column 
 | 
|  |   1470 | ** of the referenced table.  The Expr.iColumn value for the special
 | 
|  |   1471 | ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
 | 
|  |   1472 | ** alias for ROWID.
 | 
|  |   1473 | **
 | 
|  |   1474 | ** Also resolve function names and check the functions for proper
 | 
|  |   1475 | ** usage.  Make sure all function names are recognized and all functions
 | 
|  |   1476 | ** have the correct number of arguments.  Leave an error message
 | 
|  |   1477 | ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
 | 
|  |   1478 | **
 | 
|  |   1479 | ** If the expression contains aggregate functions then set the EP_Agg
 | 
|  |   1480 | ** property on the expression.
 | 
|  |   1481 | */
 | 
|  |   1482 | int sqlite3ExprResolveNames( 
 | 
|  |   1483 |   NameContext *pNC,       /* Namespace to resolve expressions in. */
 | 
|  |   1484 |   Expr *pExpr             /* The expression to be analyzed. */
 | 
|  |   1485 | ){
 | 
|  |   1486 |   int savedHasAgg;
 | 
|  |   1487 |   if( pExpr==0 ) return 0;
 | 
|  |   1488 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | 
|  |   1489 |   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
 | 
|  |   1490 |     sqlite3ErrorMsg(pNC->pParse, 
 | 
|  |   1491 |        "Expression tree is too large (maximum depth %d)",
 | 
|  |   1492 |        SQLITE_MAX_EXPR_DEPTH
 | 
|  |   1493 |     );
 | 
|  |   1494 |     return 1;
 | 
|  |   1495 |   }
 | 
|  |   1496 |   pNC->pParse->nHeight += pExpr->nHeight;
 | 
|  |   1497 | #endif
 | 
|  |   1498 |   savedHasAgg = pNC->hasAgg;
 | 
|  |   1499 |   pNC->hasAgg = 0;
 | 
|  |   1500 |   walkExprTree(pExpr, nameResolverStep, pNC);
 | 
|  |   1501 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | 
|  |   1502 |   pNC->pParse->nHeight -= pExpr->nHeight;
 | 
|  |   1503 | #endif
 | 
|  |   1504 |   if( pNC->nErr>0 ){
 | 
|  |   1505 |     ExprSetProperty(pExpr, EP_Error);
 | 
|  |   1506 |   }
 | 
|  |   1507 |   if( pNC->hasAgg ){
 | 
|  |   1508 |     ExprSetProperty(pExpr, EP_Agg);
 | 
|  |   1509 |   }else if( savedHasAgg ){
 | 
|  |   1510 |     pNC->hasAgg = 1;
 | 
|  |   1511 |   }
 | 
|  |   1512 |   return ExprHasProperty(pExpr, EP_Error);
 | 
|  |   1513 | }
 | 
|  |   1514 | 
 | 
|  |   1515 | /*
 | 
|  |   1516 | ** A pointer instance of this structure is used to pass information
 | 
|  |   1517 | ** through walkExprTree into codeSubqueryStep().
 | 
|  |   1518 | */
 | 
|  |   1519 | typedef struct QueryCoder QueryCoder;
 | 
|  |   1520 | struct QueryCoder {
 | 
|  |   1521 |   Parse *pParse;       /* The parsing context */
 | 
|  |   1522 |   NameContext *pNC;    /* Namespace of first enclosing query */
 | 
|  |   1523 | };
 | 
|  |   1524 | 
 | 
|  |   1525 | #ifdef SQLITE_TEST
 | 
|  |   1526 |   int sqlite3_enable_in_opt = 1;
 | 
|  |   1527 | #else
 | 
|  |   1528 |   #define sqlite3_enable_in_opt 1
 | 
|  |   1529 | #endif
 | 
|  |   1530 | 
 | 
|  |   1531 | /*
 | 
|  |   1532 | ** This function is used by the implementation of the IN (...) operator.
 | 
|  |   1533 | ** It's job is to find or create a b-tree structure that may be used
 | 
|  |   1534 | ** either to test for membership of the (...) set or to iterate through
 | 
|  |   1535 | ** its members, skipping duplicates.
 | 
|  |   1536 | **
 | 
|  |   1537 | ** The cursor opened on the structure (database table, database index 
 | 
|  |   1538 | ** or ephermal table) is stored in pX->iTable before this function returns.
 | 
|  |   1539 | ** The returned value indicates the structure type, as follows:
 | 
|  |   1540 | **
 | 
|  |   1541 | **   IN_INDEX_ROWID - The cursor was opened on a database table.
 | 
|  |   1542 | **   IN_INDEX_INDEX - The cursor was opened on a database indec.
 | 
|  |   1543 | **   IN_INDEX_EPH -   The cursor was opened on a specially created and
 | 
|  |   1544 | **                    populated epheremal table.
 | 
|  |   1545 | **
 | 
|  |   1546 | ** An existing structure may only be used if the SELECT is of the simple
 | 
|  |   1547 | ** form:
 | 
|  |   1548 | **
 | 
|  |   1549 | **     SELECT <column> FROM <table>
 | 
|  |   1550 | **
 | 
|  |   1551 | ** If the mustBeUnique parameter is false, the structure will be used 
 | 
|  |   1552 | ** for fast set membership tests. In this case an epheremal table must 
 | 
|  |   1553 | ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
 | 
|  |   1554 | ** be found with <column> as its left-most column.
 | 
|  |   1555 | **
 | 
|  |   1556 | ** If mustBeUnique is true, then the structure will be used to iterate
 | 
|  |   1557 | ** through the set members, skipping any duplicates. In this case an
 | 
|  |   1558 | ** epheremal table must be used unless the selected <column> is guaranteed
 | 
|  |   1559 | ** to be unique - either because it is an INTEGER PRIMARY KEY or it
 | 
|  |   1560 | ** is unique by virtue of a constraint or implicit index.
 | 
|  |   1561 | */
 | 
|  |   1562 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   1563 | int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
 | 
|  |   1564 |   Select *p;
 | 
|  |   1565 |   int eType = 0;
 | 
|  |   1566 |   int iTab = pParse->nTab++;
 | 
|  |   1567 | 
 | 
|  |   1568 |   /* The follwing if(...) expression is true if the SELECT is of the 
 | 
|  |   1569 |   ** simple form:
 | 
|  |   1570 |   **
 | 
|  |   1571 |   **     SELECT <column> FROM <table>
 | 
|  |   1572 |   **
 | 
|  |   1573 |   ** If this is the case, it may be possible to use an existing table
 | 
|  |   1574 |   ** or index instead of generating an epheremal table.
 | 
|  |   1575 |   */
 | 
|  |   1576 |   if( sqlite3_enable_in_opt
 | 
|  |   1577 |    && (p=pX->pSelect) && !p->pPrior
 | 
|  |   1578 |    && !p->isDistinct && !p->isAgg && !p->pGroupBy
 | 
|  |   1579 |    && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect
 | 
|  |   1580 |    && !p->pSrc->a[0].pTab->pSelect                                  
 | 
|  |   1581 |    && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN
 | 
|  |   1582 |    && !p->pLimit && !p->pOffset && !p->pWhere
 | 
|  |   1583 |   ){
 | 
|  |   1584 |     sqlite3 *db = pParse->db;
 | 
|  |   1585 |     Index *pIdx;
 | 
|  |   1586 |     Expr *pExpr = p->pEList->a[0].pExpr;
 | 
|  |   1587 |     int iCol = pExpr->iColumn;
 | 
|  |   1588 |     Vdbe *v = sqlite3GetVdbe(pParse);
 | 
|  |   1589 | 
 | 
|  |   1590 |     /* This function is only called from two places. In both cases the vdbe
 | 
|  |   1591 |     ** has already been allocated. So assume sqlite3GetVdbe() is always
 | 
|  |   1592 |     ** successful here.
 | 
|  |   1593 |     */
 | 
|  |   1594 |     assert(v);
 | 
|  |   1595 |     if( iCol<0 ){
 | 
|  |   1596 |       int iMem = pParse->nMem++;
 | 
|  |   1597 |       int iAddr;
 | 
|  |   1598 |       Table *pTab = p->pSrc->a[0].pTab;
 | 
|  |   1599 |       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | 
|  |   1600 |       sqlite3VdbeUsesBtree(v, iDb);
 | 
|  |   1601 | 
 | 
|  |   1602 |       sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
 | 
|  |   1603 |       iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
 | 
|  |   1604 |       sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);
 | 
|  |   1605 | 
 | 
|  |   1606 |       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
 | 
|  |   1607 |       eType = IN_INDEX_ROWID;
 | 
|  |   1608 | 
 | 
|  |   1609 |       sqlite3VdbeJumpHere(v, iAddr);
 | 
|  |   1610 |     }else{
 | 
|  |   1611 |       /* The collation sequence used by the comparison. If an index is to 
 | 
|  |   1612 |       ** be used in place of a temp-table, it must be ordered according
 | 
|  |   1613 |       ** to this collation sequence.
 | 
|  |   1614 |       */
 | 
|  |   1615 |       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
 | 
|  |   1616 | 
 | 
|  |   1617 |       /* Check that the affinity that will be used to perform the 
 | 
|  |   1618 |       ** comparison is the same as the affinity of the column. If
 | 
|  |   1619 |       ** it is not, it is not possible to use any index.
 | 
|  |   1620 |       */
 | 
|  |   1621 |       Table *pTab = p->pSrc->a[0].pTab;
 | 
|  |   1622 |       char aff = comparisonAffinity(pX);
 | 
|  |   1623 |       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
 | 
|  |   1624 | 
 | 
|  |   1625 |       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
 | 
|  |   1626 |         if( (pIdx->aiColumn[0]==iCol)
 | 
|  |   1627 |          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
 | 
|  |   1628 |          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
 | 
|  |   1629 |         ){
 | 
|  |   1630 |           int iDb;
 | 
|  |   1631 |           int iMem = pParse->nMem++;
 | 
|  |   1632 |           int iAddr;
 | 
|  |   1633 |           char *pKey;
 | 
|  |   1634 |   
 | 
|  |   1635 |           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
 | 
|  |   1636 |           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
 | 
|  |   1637 |           sqlite3VdbeUsesBtree(v, iDb);
 | 
|  |   1638 | 
 | 
|  |   1639 |           sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
 | 
|  |   1640 |           iAddr = sqlite3VdbeAddOp(v, OP_If, 0, iMem);
 | 
|  |   1641 |           sqlite3VdbeAddOp(v, OP_MemInt, 1, iMem);
 | 
|  |   1642 |   
 | 
|  |   1643 |           sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
|  |   1644 |           VdbeComment((v, "# %s", pIdx->zName));
 | 
|  |   1645 |           sqlite3VdbeOp3(v,OP_OpenRead,iTab,pIdx->tnum,pKey,P3_KEYINFO_HANDOFF);
 | 
|  |   1646 |           eType = IN_INDEX_INDEX;
 | 
|  |   1647 |           sqlite3VdbeAddOp(v, OP_SetNumColumns, iTab, pIdx->nColumn);
 | 
|  |   1648 | 
 | 
|  |   1649 |           sqlite3VdbeJumpHere(v, iAddr);
 | 
|  |   1650 |         }
 | 
|  |   1651 |       }
 | 
|  |   1652 |     }
 | 
|  |   1653 |   }
 | 
|  |   1654 | 
 | 
|  |   1655 |   if( eType==0 ){
 | 
|  |   1656 |     sqlite3CodeSubselect(pParse, pX);
 | 
|  |   1657 |     eType = IN_INDEX_EPH;
 | 
|  |   1658 |   }else{
 | 
|  |   1659 |     pX->iTable = iTab;
 | 
|  |   1660 |   }
 | 
|  |   1661 |   return eType;
 | 
|  |   1662 | }
 | 
|  |   1663 | #endif
 | 
|  |   1664 | 
 | 
|  |   1665 | /*
 | 
|  |   1666 | ** Generate code for scalar subqueries used as an expression
 | 
|  |   1667 | ** and IN operators.  Examples:
 | 
|  |   1668 | **
 | 
|  |   1669 | **     (SELECT a FROM b)          -- subquery
 | 
|  |   1670 | **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
 | 
|  |   1671 | **     x IN (4,5,11)              -- IN operator with list on right-hand side
 | 
|  |   1672 | **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
 | 
|  |   1673 | **
 | 
|  |   1674 | ** The pExpr parameter describes the expression that contains the IN
 | 
|  |   1675 | ** operator or subquery.
 | 
|  |   1676 | */
 | 
|  |   1677 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   1678 | void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
 | 
|  |   1679 |   int testAddr = 0;                       /* One-time test address */
 | 
|  |   1680 |   Vdbe *v = sqlite3GetVdbe(pParse);
 | 
|  |   1681 |   if( v==0 ) return;
 | 
|  |   1682 | 
 | 
|  |   1683 | 
 | 
|  |   1684 |   /* This code must be run in its entirety every time it is encountered
 | 
|  |   1685 |   ** if any of the following is true:
 | 
|  |   1686 |   **
 | 
|  |   1687 |   **    *  The right-hand side is a correlated subquery
 | 
|  |   1688 |   **    *  The right-hand side is an expression list containing variables
 | 
|  |   1689 |   **    *  We are inside a trigger
 | 
|  |   1690 |   **
 | 
|  |   1691 |   ** If all of the above are false, then we can run this code just once
 | 
|  |   1692 |   ** save the results, and reuse the same result on subsequent invocations.
 | 
|  |   1693 |   */
 | 
|  |   1694 |   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
 | 
|  |   1695 |     int mem = pParse->nMem++;
 | 
|  |   1696 |     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
 | 
|  |   1697 |     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
 | 
|  |   1698 |     assert( testAddr>0 || pParse->db->mallocFailed );
 | 
|  |   1699 |     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
 | 
|  |   1700 |   }
 | 
|  |   1701 | 
 | 
|  |   1702 |   switch( pExpr->op ){
 | 
|  |   1703 |     case TK_IN: {
 | 
|  |   1704 |       char affinity;
 | 
|  |   1705 |       KeyInfo keyInfo;
 | 
|  |   1706 |       int addr;        /* Address of OP_OpenEphemeral instruction */
 | 
|  |   1707 | 
 | 
|  |   1708 |       affinity = sqlite3ExprAffinity(pExpr->pLeft);
 | 
|  |   1709 | 
 | 
|  |   1710 |       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
 | 
|  |   1711 |       ** expression it is handled the same way. A virtual table is 
 | 
|  |   1712 |       ** filled with single-field index keys representing the results
 | 
|  |   1713 |       ** from the SELECT or the <exprlist>.
 | 
|  |   1714 |       **
 | 
|  |   1715 |       ** If the 'x' expression is a column value, or the SELECT...
 | 
|  |   1716 |       ** statement returns a column value, then the affinity of that
 | 
|  |   1717 |       ** column is used to build the index keys. If both 'x' and the
 | 
|  |   1718 |       ** SELECT... statement are columns, then numeric affinity is used
 | 
|  |   1719 |       ** if either column has NUMERIC or INTEGER affinity. If neither
 | 
|  |   1720 |       ** 'x' nor the SELECT... statement are columns, then numeric affinity
 | 
|  |   1721 |       ** is used.
 | 
|  |   1722 |       */
 | 
|  |   1723 |       pExpr->iTable = pParse->nTab++;
 | 
|  |   1724 |       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
 | 
|  |   1725 |       memset(&keyInfo, 0, sizeof(keyInfo));
 | 
|  |   1726 |       keyInfo.nField = 1;
 | 
|  |   1727 |       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
 | 
|  |   1728 | 
 | 
|  |   1729 |       if( pExpr->pSelect ){
 | 
|  |   1730 |         /* Case 1:     expr IN (SELECT ...)
 | 
|  |   1731 |         **
 | 
|  |   1732 |         ** Generate code to write the results of the select into the temporary
 | 
|  |   1733 |         ** table allocated and opened above.
 | 
|  |   1734 |         */
 | 
|  |   1735 |         int iParm = pExpr->iTable +  (((int)affinity)<<16);
 | 
|  |   1736 |         ExprList *pEList;
 | 
|  |   1737 |         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
 | 
|  |   1738 |         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
 | 
|  |   1739 |           return;
 | 
|  |   1740 |         }
 | 
|  |   1741 |         pEList = pExpr->pSelect->pEList;
 | 
|  |   1742 |         if( pEList && pEList->nExpr>0 ){ 
 | 
|  |   1743 |           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
 | 
|  |   1744 |               pEList->a[0].pExpr);
 | 
|  |   1745 |         }
 | 
|  |   1746 |       }else if( pExpr->pList ){
 | 
|  |   1747 |         /* Case 2:     expr IN (exprlist)
 | 
|  |   1748 |         **
 | 
|  |   1749 |         ** For each expression, build an index key from the evaluation and
 | 
|  |   1750 |         ** store it in the temporary table. If <expr> is a column, then use
 | 
|  |   1751 |         ** that columns affinity when building index keys. If <expr> is not
 | 
|  |   1752 |         ** a column, use numeric affinity.
 | 
|  |   1753 |         */
 | 
|  |   1754 |         int i;
 | 
|  |   1755 |         ExprList *pList = pExpr->pList;
 | 
|  |   1756 | 		ExprList::ExprList_item *pItem;
 | 
|  |   1757 | 
 | 
|  |   1758 |         if( !affinity ){
 | 
|  |   1759 |           affinity = SQLITE_AFF_NONE;
 | 
|  |   1760 |         }
 | 
|  |   1761 |         keyInfo.aColl[0] = pExpr->pLeft->pColl;
 | 
|  |   1762 | 
 | 
|  |   1763 |         /* Loop through each expression in <exprlist>. */
 | 
|  |   1764 |         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
 | 
|  |   1765 |           Expr *pE2 = pItem->pExpr;
 | 
|  |   1766 | 
 | 
|  |   1767 |           /* If the expression is not constant then we will need to
 | 
|  |   1768 |           ** disable the test that was generated above that makes sure
 | 
|  |   1769 |           ** this code only executes once.  Because for a non-constant
 | 
|  |   1770 |           ** expression we need to rerun this code each time.
 | 
|  |   1771 |           */
 | 
|  |   1772 |           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
 | 
|  |   1773 |             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
 | 
|  |   1774 |             testAddr = 0;
 | 
|  |   1775 |           }
 | 
|  |   1776 | 
 | 
|  |   1777 |           /* Evaluate the expression and insert it into the temp table */
 | 
|  |   1778 |           sqlite3ExprCode(pParse, pE2);
 | 
|  |   1779 |           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
 | 
|  |   1780 |           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
 | 
|  |   1781 |         }
 | 
|  |   1782 |       }
 | 
|  |   1783 |       sqlite3VdbeChangeP3(v, addr, (const char *)&keyInfo, P3_KEYINFO);
 | 
|  |   1784 |       break;
 | 
|  |   1785 |     }
 | 
|  |   1786 | 
 | 
|  |   1787 |     case TK_EXISTS:
 | 
|  |   1788 |     case TK_SELECT: {
 | 
|  |   1789 |       /* This has to be a scalar SELECT.  Generate code to put the
 | 
|  |   1790 |       ** value of this select in a memory cell and record the number
 | 
|  |   1791 |       ** of the memory cell in iColumn.
 | 
|  |   1792 |       */
 | 
|  |   1793 |       static const Token one = { (u8*)"1", 0, 1 };
 | 
|  |   1794 |       Select *pSel;
 | 
|  |   1795 |       int iMem;
 | 
|  |   1796 |       int sop;
 | 
|  |   1797 | 
 | 
|  |   1798 |       pExpr->iColumn = iMem = pParse->nMem++;
 | 
|  |   1799 |       pSel = pExpr->pSelect;
 | 
|  |   1800 |       if( pExpr->op==TK_SELECT ){
 | 
|  |   1801 |         sop = SRT_Mem;
 | 
|  |   1802 |         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
 | 
|  |   1803 |         VdbeComment((v, "# Init subquery result"));
 | 
|  |   1804 |       }else{
 | 
|  |   1805 |         sop = SRT_Exists;
 | 
|  |   1806 |         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
 | 
|  |   1807 |         VdbeComment((v, "# Init EXISTS result"));
 | 
|  |   1808 |       }
 | 
|  |   1809 |       sqlite3ExprDelete(pSel->pLimit);
 | 
|  |   1810 |       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
 | 
|  |   1811 |       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
 | 
|  |   1812 |         return;
 | 
|  |   1813 |       }
 | 
|  |   1814 |       break;
 | 
|  |   1815 |     }
 | 
|  |   1816 |   }
 | 
|  |   1817 | 
 | 
|  |   1818 |   if( testAddr ){
 | 
|  |   1819 |     sqlite3VdbeJumpHere(v, testAddr);
 | 
|  |   1820 |   }
 | 
|  |   1821 | 
 | 
|  |   1822 |   return;
 | 
|  |   1823 | }
 | 
|  |   1824 | #endif /* SQLITE_OMIT_SUBQUERY */
 | 
|  |   1825 | 
 | 
|  |   1826 | /*
 | 
|  |   1827 | ** Duplicate an 8-byte value
 | 
|  |   1828 | */
 | 
|  |   1829 | static char *dup8bytes(Vdbe *v, const char *in){
 | 
|  |   1830 |   char *out = (char*)sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
 | 
|  |   1831 |   if( out ){
 | 
|  |   1832 |     memcpy(out, in, 8);
 | 
|  |   1833 |   }
 | 
|  |   1834 |   return out;
 | 
|  |   1835 | }
 | 
|  |   1836 | 
 | 
|  |   1837 | /*
 | 
|  |   1838 | ** Generate an instruction that will put the floating point
 | 
|  |   1839 | ** value described by z[0..n-1] on the stack.
 | 
|  |   1840 | **
 | 
|  |   1841 | ** The z[] string will probably not be zero-terminated.  But the 
 | 
|  |   1842 | ** z[n] character is guaranteed to be something that does not look
 | 
|  |   1843 | ** like the continuation of the number.
 | 
|  |   1844 | */
 | 
|  |   1845 | static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){
 | 
|  |   1846 |   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
 | 
|  |   1847 |   if( z ){
 | 
|  |   1848 |     double value;
 | 
|  |   1849 |     char *zV;
 | 
|  |   1850 |     assert( !isdigit(z[n]) );
 | 
|  |   1851 |     sqlite3AtoF(z, &value);
 | 
|  |   1852 |     if( negateFlag ) value = -value;
 | 
|  |   1853 |     zV = dup8bytes(v, (char*)&value);
 | 
|  |   1854 |     sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL);
 | 
|  |   1855 |   }
 | 
|  |   1856 | }
 | 
|  |   1857 | 
 | 
|  |   1858 | 
 | 
|  |   1859 | /*
 | 
|  |   1860 | ** Generate an instruction that will put the integer describe by
 | 
|  |   1861 | ** text z[0..n-1] on the stack.
 | 
|  |   1862 | **
 | 
|  |   1863 | ** The z[] string will probably not be zero-terminated.  But the 
 | 
|  |   1864 | ** z[n] character is guaranteed to be something that does not look
 | 
|  |   1865 | ** like the continuation of the number.
 | 
|  |   1866 | */
 | 
|  |   1867 | static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){
 | 
|  |   1868 |   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
 | 
|  |   1869 |   if( z ){
 | 
|  |   1870 |     int i;
 | 
|  |   1871 |     assert( !isdigit(z[n]) );
 | 
|  |   1872 |     if( sqlite3GetInt32(z, &i) ){
 | 
|  |   1873 |       if( negateFlag ) i = -i;
 | 
|  |   1874 |       sqlite3VdbeAddOp(v, OP_Integer, i, 0);
 | 
|  |   1875 |     }else if( sqlite3FitsIn64Bits(z, negateFlag) ){
 | 
|  |   1876 |       i64 value;
 | 
|  |   1877 |       char *zV;
 | 
|  |   1878 |       sqlite3Atoi64(z, &value);
 | 
|  |   1879 |       if( negateFlag ) value = -value;
 | 
|  |   1880 |       zV = dup8bytes(v, (char*)&value);
 | 
|  |   1881 |       sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64);
 | 
|  |   1882 |     }else{
 | 
|  |   1883 |       codeReal(v, z, n, negateFlag);
 | 
|  |   1884 |     }
 | 
|  |   1885 |   }
 | 
|  |   1886 | }
 | 
|  |   1887 | 
 | 
|  |   1888 | 
 | 
|  |   1889 | /*
 | 
|  |   1890 | ** Generate code that will extract the iColumn-th column from
 | 
|  |   1891 | ** table pTab and push that column value on the stack.  There
 | 
|  |   1892 | ** is an open cursor to pTab in iTable.  If iColumn<0 then
 | 
|  |   1893 | ** code is generated that extracts the rowid.
 | 
|  |   1894 | */
 | 
|  |   1895 | void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
 | 
|  |   1896 |   if( iColumn<0 ){
 | 
|  |   1897 |     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
 | 
|  |   1898 |     sqlite3VdbeAddOp(v, op, iTable, 0);
 | 
|  |   1899 |   }else if( pTab==0 ){
 | 
|  |   1900 |     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
 | 
|  |   1901 |   }else{
 | 
|  |   1902 |     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
 | 
|  |   1903 |     sqlite3VdbeAddOp(v, op, iTable, iColumn);
 | 
|  |   1904 |     sqlite3ColumnDefault(v, pTab, iColumn);
 | 
|  |   1905 | #ifndef SQLITE_OMIT_FLOATING_POINT
 | 
|  |   1906 |     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
 | 
|  |   1907 |       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
 | 
|  |   1908 |     }
 | 
|  |   1909 | #endif
 | 
|  |   1910 |   }
 | 
|  |   1911 | }
 | 
|  |   1912 | 
 | 
|  |   1913 | /*
 | 
|  |   1914 | ** Generate code into the current Vdbe to evaluate the given
 | 
|  |   1915 | ** expression and leave the result on the top of stack.
 | 
|  |   1916 | **
 | 
|  |   1917 | ** This code depends on the fact that certain token values (ex: TK_EQ)
 | 
|  |   1918 | ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
 | 
|  |   1919 | ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
 | 
|  |   1920 | ** the make process cause these values to align.  Assert()s in the code
 | 
|  |   1921 | ** below verify that the numbers are aligned correctly.
 | 
|  |   1922 | */
 | 
|  |   1923 | void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
 | 
|  |   1924 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   1925 |   int op;
 | 
|  |   1926 |   int stackChng = 1;    /* Amount of change to stack depth */
 | 
|  |   1927 | 
 | 
|  |   1928 |   if( v==0 ) return;
 | 
|  |   1929 |   if( pExpr==0 ){
 | 
|  |   1930 |     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |   1931 |     return;
 | 
|  |   1932 |   }
 | 
|  |   1933 |   op = pExpr->op;
 | 
|  |   1934 |   switch( op ){
 | 
|  |   1935 |     case TK_AGG_COLUMN: {
 | 
|  |   1936 |       AggInfo *pAggInfo = pExpr->pAggInfo;
 | 
|  |   1937 | 	  AggInfo::AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
 | 
|  |   1938 |       if( !pAggInfo->directMode ){
 | 
|  |   1939 |         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
 | 
|  |   1940 |         break;
 | 
|  |   1941 |       }else if( pAggInfo->useSortingIdx ){
 | 
|  |   1942 |         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
 | 
|  |   1943 |                               pCol->iSorterColumn);
 | 
|  |   1944 |         break;
 | 
|  |   1945 |       }
 | 
|  |   1946 |       /* Otherwise, fall thru into the TK_COLUMN case */
 | 
|  |   1947 |     }
 | 
|  |   1948 |     case TK_COLUMN: {
 | 
|  |   1949 |       if( pExpr->iTable<0 ){
 | 
|  |   1950 |         /* This only happens when coding check constraints */
 | 
|  |   1951 |         assert( pParse->ckOffset>0 );
 | 
|  |   1952 |         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
 | 
|  |   1953 |       }else{
 | 
|  |   1954 |         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
 | 
|  |   1955 |       }
 | 
|  |   1956 |       break;
 | 
|  |   1957 |     }
 | 
|  |   1958 |     case TK_INTEGER: {
 | 
|  |   1959 |       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0);
 | 
|  |   1960 |       break;
 | 
|  |   1961 |     }
 | 
|  |   1962 |     case TK_FLOAT: {
 | 
|  |   1963 |       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0);
 | 
|  |   1964 |       break;
 | 
|  |   1965 |     }
 | 
|  |   1966 |     case TK_STRING: {
 | 
|  |   1967 |       sqlite3DequoteExpr(pParse->db, pExpr);
 | 
|  |   1968 |       sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
 | 
|  |   1969 |       break;
 | 
|  |   1970 |     }
 | 
|  |   1971 |     case TK_NULL: {
 | 
|  |   1972 |       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |   1973 |       break;
 | 
|  |   1974 |     }
 | 
|  |   1975 | #ifndef SQLITE_OMIT_BLOB_LITERAL
 | 
|  |   1976 |     case TK_BLOB: {
 | 
|  |   1977 |       int n;
 | 
|  |   1978 |       const char *z;
 | 
|  |   1979 |       assert( TK_BLOB==OP_HexBlob );
 | 
|  |   1980 |       n = pExpr->token.n - 3;
 | 
|  |   1981 |       z = (char*)pExpr->token.z + 2;
 | 
|  |   1982 |       assert( n>=0 );
 | 
|  |   1983 |       if( n==0 ){
 | 
|  |   1984 |         z = "";
 | 
|  |   1985 |       }
 | 
|  |   1986 |       sqlite3VdbeOp3(v, op, 0, 0, z, n);
 | 
|  |   1987 |       break;
 | 
|  |   1988 |     }
 | 
|  |   1989 | #endif
 | 
|  |   1990 |     case TK_VARIABLE: {
 | 
|  |   1991 |       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
 | 
|  |   1992 |       if( pExpr->token.n>1 ){
 | 
|  |   1993 |         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
 | 
|  |   1994 |       }
 | 
|  |   1995 |       break;
 | 
|  |   1996 |     }
 | 
|  |   1997 |     case TK_REGISTER: {
 | 
|  |   1998 |       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
 | 
|  |   1999 |       break;
 | 
|  |   2000 |     }
 | 
|  |   2001 | #ifndef SQLITE_OMIT_CAST
 | 
|  |   2002 |     case TK_CAST: {
 | 
|  |   2003 |       /* Expressions of the form:   CAST(pLeft AS token) */
 | 
|  |   2004 |       int aff, to_op;
 | 
|  |   2005 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2006 |       aff = sqlite3AffinityType(&pExpr->token);
 | 
|  |   2007 |       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
 | 
|  |   2008 |       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
 | 
|  |   2009 |       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
 | 
|  |   2010 |       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
 | 
|  |   2011 |       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
 | 
|  |   2012 |       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
 | 
|  |   2013 |       sqlite3VdbeAddOp(v, to_op, 0, 0);
 | 
|  |   2014 |       stackChng = 0;
 | 
|  |   2015 |       break;
 | 
|  |   2016 |     }
 | 
|  |   2017 | #endif /* SQLITE_OMIT_CAST */
 | 
|  |   2018 |     case TK_LT:
 | 
|  |   2019 |     case TK_LE:
 | 
|  |   2020 |     case TK_GT:
 | 
|  |   2021 |     case TK_GE:
 | 
|  |   2022 |     case TK_NE:
 | 
|  |   2023 |     case TK_EQ: {
 | 
|  |   2024 |       assert( TK_LT==OP_Lt );
 | 
|  |   2025 |       assert( TK_LE==OP_Le );
 | 
|  |   2026 |       assert( TK_GT==OP_Gt );
 | 
|  |   2027 |       assert( TK_GE==OP_Ge );
 | 
|  |   2028 |       assert( TK_EQ==OP_Eq );
 | 
|  |   2029 |       assert( TK_NE==OP_Ne );
 | 
|  |   2030 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2031 |       sqlite3ExprCode(pParse, pExpr->pRight);
 | 
|  |   2032 |       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
 | 
|  |   2033 |       stackChng = -1;
 | 
|  |   2034 |       break;
 | 
|  |   2035 |     }
 | 
|  |   2036 |     case TK_AND:
 | 
|  |   2037 |     case TK_OR:
 | 
|  |   2038 |     case TK_PLUS:
 | 
|  |   2039 |     case TK_STAR:
 | 
|  |   2040 |     case TK_MINUS:
 | 
|  |   2041 |     case TK_REM:
 | 
|  |   2042 |     case TK_BITAND:
 | 
|  |   2043 |     case TK_BITOR:
 | 
|  |   2044 |     case TK_SLASH:
 | 
|  |   2045 |     case TK_LSHIFT:
 | 
|  |   2046 |     case TK_RSHIFT: 
 | 
|  |   2047 |     case TK_CONCAT: {
 | 
|  |   2048 |       assert( TK_AND==OP_And );
 | 
|  |   2049 |       assert( TK_OR==OP_Or );
 | 
|  |   2050 |       assert( TK_PLUS==OP_Add );
 | 
|  |   2051 |       assert( TK_MINUS==OP_Subtract );
 | 
|  |   2052 |       assert( TK_REM==OP_Remainder );
 | 
|  |   2053 |       assert( TK_BITAND==OP_BitAnd );
 | 
|  |   2054 |       assert( TK_BITOR==OP_BitOr );
 | 
|  |   2055 |       assert( TK_SLASH==OP_Divide );
 | 
|  |   2056 |       assert( TK_LSHIFT==OP_ShiftLeft );
 | 
|  |   2057 |       assert( TK_RSHIFT==OP_ShiftRight );
 | 
|  |   2058 |       assert( TK_CONCAT==OP_Concat );
 | 
|  |   2059 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2060 |       sqlite3ExprCode(pParse, pExpr->pRight);
 | 
|  |   2061 |       sqlite3VdbeAddOp(v, op, 0, 0);
 | 
|  |   2062 |       stackChng = -1;
 | 
|  |   2063 |       break;
 | 
|  |   2064 |     }
 | 
|  |   2065 |     case TK_UMINUS: {
 | 
|  |   2066 |       Expr *pLeft = pExpr->pLeft;
 | 
|  |   2067 |       assert( pLeft );
 | 
|  |   2068 |       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
 | 
|  |   2069 |         Token *p = &pLeft->token;
 | 
|  |   2070 |         if( pLeft->op==TK_FLOAT ){
 | 
|  |   2071 |           codeReal(v, (char*)p->z, p->n, 1);
 | 
|  |   2072 |         }else{
 | 
|  |   2073 |           codeInteger(v, (char*)p->z, p->n, 1);
 | 
|  |   2074 |         }
 | 
|  |   2075 |         break;
 | 
|  |   2076 |       }
 | 
|  |   2077 |       /* Fall through into TK_NOT */
 | 
|  |   2078 |     }
 | 
|  |   2079 |     case TK_BITNOT:
 | 
|  |   2080 |     case TK_NOT: {
 | 
|  |   2081 |       assert( TK_BITNOT==OP_BitNot );
 | 
|  |   2082 |       assert( TK_NOT==OP_Not );
 | 
|  |   2083 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2084 |       sqlite3VdbeAddOp(v, op, 0, 0);
 | 
|  |   2085 |       stackChng = 0;
 | 
|  |   2086 |       break;
 | 
|  |   2087 |     }
 | 
|  |   2088 |     case TK_ISNULL:
 | 
|  |   2089 |     case TK_NOTNULL: {
 | 
|  |   2090 |       int dest;
 | 
|  |   2091 |       assert( TK_ISNULL==OP_IsNull );
 | 
|  |   2092 |       assert( TK_NOTNULL==OP_NotNull );
 | 
|  |   2093 |       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
 | 
|  |   2094 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2095 |       dest = sqlite3VdbeCurrentAddr(v) + 2;
 | 
|  |   2096 |       sqlite3VdbeAddOp(v, op, 1, dest);
 | 
|  |   2097 |       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
 | 
|  |   2098 |       stackChng = 0;
 | 
|  |   2099 |       break;
 | 
|  |   2100 |     }
 | 
|  |   2101 |     case TK_AGG_FUNCTION: {
 | 
|  |   2102 |       AggInfo *pInfo = pExpr->pAggInfo;
 | 
|  |   2103 |       if( pInfo==0 ){
 | 
|  |   2104 |         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
 | 
|  |   2105 |             &pExpr->span);
 | 
|  |   2106 |       }else{
 | 
|  |   2107 |         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
 | 
|  |   2108 |       }
 | 
|  |   2109 |       break;
 | 
|  |   2110 |     }
 | 
|  |   2111 |     case TK_CONST_FUNC:
 | 
|  |   2112 |     case TK_FUNCTION: {
 | 
|  |   2113 |       ExprList *pList = pExpr->pList;
 | 
|  |   2114 |       int nExpr = pList ? pList->nExpr : 0;
 | 
|  |   2115 |       FuncDef *pDef;
 | 
|  |   2116 |       int nId;
 | 
|  |   2117 |       const char *zId;
 | 
|  |   2118 |       int constMask = 0;
 | 
|  |   2119 |       int i;
 | 
|  |   2120 |       sqlite3 *db = pParse->db;
 | 
|  |   2121 |       u8 enc = ENC(db);
 | 
|  |   2122 |       CollSeq *pColl = 0;
 | 
|  |   2123 | 
 | 
|  |   2124 |       zId = (char*)pExpr->token.z;
 | 
|  |   2125 |       nId = pExpr->token.n;
 | 
|  |   2126 |       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
 | 
|  |   2127 |       assert( pDef!=0 );
 | 
|  |   2128 |       nExpr = sqlite3ExprCodeExprList(pParse, pList);
 | 
|  |   2129 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   2130 |       /* Possibly overload the function if the first argument is
 | 
|  |   2131 |       ** a virtual table column.
 | 
|  |   2132 |       **
 | 
|  |   2133 |       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
 | 
|  |   2134 |       ** second argument, not the first, as the argument to test to
 | 
|  |   2135 |       ** see if it is a column in a virtual table.  This is done because
 | 
|  |   2136 |       ** the left operand of infix functions (the operand we want to
 | 
|  |   2137 |       ** control overloading) ends up as the second argument to the
 | 
|  |   2138 |       ** function.  The expression "A glob B" is equivalent to 
 | 
|  |   2139 |       ** "glob(B,A).  We want to use the A in "A glob B" to test
 | 
|  |   2140 |       ** for function overloading.  But we use the B term in "glob(B,A)".
 | 
|  |   2141 |       */
 | 
|  |   2142 |       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
 | 
|  |   2143 |         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
 | 
|  |   2144 |       }else if( nExpr>0 ){
 | 
|  |   2145 |         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
 | 
|  |   2146 |       }
 | 
|  |   2147 | #endif
 | 
|  |   2148 |       for(i=0; i<nExpr && i<32; i++){
 | 
|  |   2149 |         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
 | 
|  |   2150 |           constMask |= (1<<i);
 | 
|  |   2151 |         }
 | 
|  |   2152 |         if( pDef->needCollSeq && !pColl ){
 | 
|  |   2153 |           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
 | 
|  |   2154 |         }
 | 
|  |   2155 |       }
 | 
|  |   2156 |       if( pDef->needCollSeq ){
 | 
|  |   2157 |         if( !pColl ) pColl = pParse->db->pDfltColl; 
 | 
|  |   2158 |         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
 | 
|  |   2159 |       }
 | 
|  |   2160 |       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
 | 
|  |   2161 |       stackChng = 1-nExpr;
 | 
|  |   2162 |       break;
 | 
|  |   2163 |     }
 | 
|  |   2164 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   2165 |     case TK_EXISTS:
 | 
|  |   2166 |     case TK_SELECT: {
 | 
|  |   2167 |       if( pExpr->iColumn==0 ){
 | 
|  |   2168 |         sqlite3CodeSubselect(pParse, pExpr);
 | 
|  |   2169 |       }
 | 
|  |   2170 |       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
 | 
|  |   2171 |       VdbeComment((v, "# load subquery result"));
 | 
|  |   2172 |       break;
 | 
|  |   2173 |     }
 | 
|  |   2174 |     case TK_IN: {
 | 
|  |   2175 |       int addr;
 | 
|  |   2176 |       char affinity;
 | 
|  |   2177 |       int ckOffset = pParse->ckOffset;
 | 
|  |   2178 |       int eType;
 | 
|  |   2179 |       int iLabel = sqlite3VdbeMakeLabel(v);
 | 
|  |   2180 | 
 | 
|  |   2181 |       eType = sqlite3FindInIndex(pParse, pExpr, 0);
 | 
|  |   2182 | 
 | 
|  |   2183 |       /* Figure out the affinity to use to create a key from the results
 | 
|  |   2184 |       ** of the expression. affinityStr stores a static string suitable for
 | 
|  |   2185 |       ** P3 of OP_MakeRecord.
 | 
|  |   2186 |       */
 | 
|  |   2187 |       affinity = comparisonAffinity(pExpr);
 | 
|  |   2188 | 
 | 
|  |   2189 |       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
 | 
|  |   2190 |       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
 | 
|  |   2191 | 
 | 
|  |   2192 |       /* Code the <expr> from "<expr> IN (...)". The temporary table
 | 
|  |   2193 |       ** pExpr->iTable contains the values that make up the (...) set.
 | 
|  |   2194 |       */
 | 
|  |   2195 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2196 |       addr = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2197 |       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
 | 
|  |   2198 |       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
 | 
|  |   2199 |       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |   2200 |       sqlite3VdbeAddOp(v, OP_Goto, 0, iLabel);
 | 
|  |   2201 |       if( eType==IN_INDEX_ROWID ){
 | 
|  |   2202 |         int iAddr = sqlite3VdbeCurrentAddr(v)+3;
 | 
|  |   2203 |         sqlite3VdbeAddOp(v, OP_MustBeInt, 1, iAddr);
 | 
|  |   2204 |         sqlite3VdbeAddOp(v, OP_NotExists, pExpr->iTable, iAddr);
 | 
|  |   2205 |         sqlite3VdbeAddOp(v, OP_Goto, pExpr->iTable, iLabel);
 | 
|  |   2206 |       }else{
 | 
|  |   2207 |         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
 | 
|  |   2208 |         sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, iLabel);
 | 
|  |   2209 |       }
 | 
|  |   2210 |       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
 | 
|  |   2211 |       sqlite3VdbeResolveLabel(v, iLabel);
 | 
|  |   2212 | 
 | 
|  |   2213 |       break;
 | 
|  |   2214 |     }
 | 
|  |   2215 | #endif
 | 
|  |   2216 |     case TK_BETWEEN: {
 | 
|  |   2217 |       Expr *pLeft = pExpr->pLeft;
 | 
|  |   2218 | 	  ExprList::ExprList_item *pLItem = pExpr->pList->a;
 | 
|  |   2219 |       Expr *pRight = pLItem->pExpr;
 | 
|  |   2220 |       sqlite3ExprCode(pParse, pLeft);
 | 
|  |   2221 |       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | 
|  |   2222 |       sqlite3ExprCode(pParse, pRight);
 | 
|  |   2223 |       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
 | 
|  |   2224 |       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | 
|  |   2225 |       pLItem++;
 | 
|  |   2226 |       pRight = pLItem->pExpr;
 | 
|  |   2227 |       sqlite3ExprCode(pParse, pRight);
 | 
|  |   2228 |       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
 | 
|  |   2229 |       sqlite3VdbeAddOp(v, OP_And, 0, 0);
 | 
|  |   2230 |       break;
 | 
|  |   2231 |     }
 | 
|  |   2232 |     case TK_UPLUS: {
 | 
|  |   2233 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2234 |       stackChng = 0;
 | 
|  |   2235 |       break;
 | 
|  |   2236 |     }
 | 
|  |   2237 |     case TK_CASE: {
 | 
|  |   2238 |       int expr_end_label;
 | 
|  |   2239 |       int jumpInst;
 | 
|  |   2240 |       int nExpr;
 | 
|  |   2241 |       int i;
 | 
|  |   2242 |       ExprList *pEList;
 | 
|  |   2243 | 	  ExprList::ExprList_item *aListelem;
 | 
|  |   2244 | 
 | 
|  |   2245 |       assert(pExpr->pList);
 | 
|  |   2246 |       assert((pExpr->pList->nExpr % 2) == 0);
 | 
|  |   2247 |       assert(pExpr->pList->nExpr > 0);
 | 
|  |   2248 |       pEList = pExpr->pList;
 | 
|  |   2249 |       aListelem = pEList->a;
 | 
|  |   2250 |       nExpr = pEList->nExpr;
 | 
|  |   2251 |       expr_end_label = sqlite3VdbeMakeLabel(v);
 | 
|  |   2252 |       if( pExpr->pLeft ){
 | 
|  |   2253 |         sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2254 |       }
 | 
|  |   2255 |       for(i=0; i<nExpr; i=i+2){
 | 
|  |   2256 |         sqlite3ExprCode(pParse, aListelem[i].pExpr);
 | 
|  |   2257 |         if( pExpr->pLeft ){
 | 
|  |   2258 |           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
 | 
|  |   2259 |           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
 | 
|  |   2260 |                                  OP_Ne, 0, 1);
 | 
|  |   2261 |           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |   2262 |         }else{
 | 
|  |   2263 |           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
 | 
|  |   2264 |         }
 | 
|  |   2265 |         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
 | 
|  |   2266 |         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
 | 
|  |   2267 |         sqlite3VdbeJumpHere(v, jumpInst);
 | 
|  |   2268 |       }
 | 
|  |   2269 |       if( pExpr->pLeft ){
 | 
|  |   2270 |         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |   2271 |       }
 | 
|  |   2272 |       if( pExpr->pRight ){
 | 
|  |   2273 |         sqlite3ExprCode(pParse, pExpr->pRight);
 | 
|  |   2274 |       }else{
 | 
|  |   2275 |         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |   2276 |       }
 | 
|  |   2277 |       sqlite3VdbeResolveLabel(v, expr_end_label);
 | 
|  |   2278 |       break;
 | 
|  |   2279 |     }
 | 
|  |   2280 | #ifndef SQLITE_OMIT_TRIGGER
 | 
|  |   2281 |     case TK_RAISE: {
 | 
|  |   2282 |       if( !pParse->trigStack ){
 | 
|  |   2283 |         sqlite3ErrorMsg(pParse,
 | 
|  |   2284 |                        "RAISE() may only be used within a trigger-program");
 | 
|  |   2285 |         return;
 | 
|  |   2286 |       }
 | 
|  |   2287 |       if( pExpr->iColumn!=OE_Ignore ){
 | 
|  |   2288 |          assert( pExpr->iColumn==OE_Rollback ||
 | 
|  |   2289 |                  pExpr->iColumn == OE_Abort ||
 | 
|  |   2290 |                  pExpr->iColumn == OE_Fail );
 | 
|  |   2291 |          sqlite3DequoteExpr(pParse->db, pExpr);
 | 
|  |   2292 |          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
 | 
|  |   2293 |                         (char*)pExpr->token.z, pExpr->token.n);
 | 
|  |   2294 |       } else {
 | 
|  |   2295 |          assert( pExpr->iColumn == OE_Ignore );
 | 
|  |   2296 |          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
 | 
|  |   2297 |          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
 | 
|  |   2298 |          VdbeComment((v, "# raise(IGNORE)"));
 | 
|  |   2299 |       }
 | 
|  |   2300 |       stackChng = 0;
 | 
|  |   2301 |       break;
 | 
|  |   2302 |     }
 | 
|  |   2303 | #endif
 | 
|  |   2304 |   }
 | 
|  |   2305 | 
 | 
|  |   2306 |   if( pParse->ckOffset ){
 | 
|  |   2307 |     pParse->ckOffset += stackChng;
 | 
|  |   2308 |     assert( pParse->ckOffset );
 | 
|  |   2309 |   }
 | 
|  |   2310 | }
 | 
|  |   2311 | 
 | 
|  |   2312 | #ifndef SQLITE_OMIT_TRIGGER
 | 
|  |   2313 | /*
 | 
|  |   2314 | ** Generate code that evalutes the given expression and leaves the result
 | 
|  |   2315 | ** on the stack.  See also sqlite3ExprCode().
 | 
|  |   2316 | **
 | 
|  |   2317 | ** This routine might also cache the result and modify the pExpr tree
 | 
|  |   2318 | ** so that it will make use of the cached result on subsequent evaluations
 | 
|  |   2319 | ** rather than evaluate the whole expression again.  Trivial expressions are
 | 
|  |   2320 | ** not cached.  If the expression is cached, its result is stored in a 
 | 
|  |   2321 | ** memory location.
 | 
|  |   2322 | */
 | 
|  |   2323 | void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
 | 
|  |   2324 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   2325 |   VdbeOp *pOp;
 | 
|  |   2326 |   int iMem;
 | 
|  |   2327 |   int addr1, addr2;
 | 
|  |   2328 |   if( v==0 ) return;
 | 
|  |   2329 |   addr1 = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2330 |   sqlite3ExprCode(pParse, pExpr);
 | 
|  |   2331 |   addr2 = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2332 |   if( addr2>addr1+1
 | 
|  |   2333 |    || ((pOp = sqlite3VdbeGetOp(v, addr1))!=0 && pOp->opcode==OP_Function) ){
 | 
|  |   2334 |     iMem = pExpr->iTable = pParse->nMem++;
 | 
|  |   2335 |     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
 | 
|  |   2336 |     pExpr->op = TK_REGISTER;
 | 
|  |   2337 |   }
 | 
|  |   2338 | }
 | 
|  |   2339 | #endif
 | 
|  |   2340 | 
 | 
|  |   2341 | /*
 | 
|  |   2342 | ** Generate code that pushes the value of every element of the given
 | 
|  |   2343 | ** expression list onto the stack.
 | 
|  |   2344 | **
 | 
|  |   2345 | ** Return the number of elements pushed onto the stack.
 | 
|  |   2346 | */
 | 
|  |   2347 | int sqlite3ExprCodeExprList(
 | 
|  |   2348 |   Parse *pParse,     /* Parsing context */
 | 
|  |   2349 |   ExprList *pList    /* The expression list to be coded */
 | 
|  |   2350 | ){
 | 
|  |   2351 | 	ExprList::ExprList_item *pItem;
 | 
|  |   2352 |   int i, n;
 | 
|  |   2353 |   if( pList==0 ) return 0;
 | 
|  |   2354 |   n = pList->nExpr;
 | 
|  |   2355 |   for(pItem=pList->a, i=n; i>0; i--, pItem++){
 | 
|  |   2356 |     sqlite3ExprCode(pParse, pItem->pExpr);
 | 
|  |   2357 |   }
 | 
|  |   2358 |   return n;
 | 
|  |   2359 | }
 | 
|  |   2360 | 
 | 
|  |   2361 | /*
 | 
|  |   2362 | ** Generate code for a boolean expression such that a jump is made
 | 
|  |   2363 | ** to the label "dest" if the expression is true but execution
 | 
|  |   2364 | ** continues straight thru if the expression is false.
 | 
|  |   2365 | **
 | 
|  |   2366 | ** If the expression evaluates to NULL (neither true nor false), then
 | 
|  |   2367 | ** take the jump if the jumpIfNull flag is true.
 | 
|  |   2368 | **
 | 
|  |   2369 | ** This code depends on the fact that certain token values (ex: TK_EQ)
 | 
|  |   2370 | ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
 | 
|  |   2371 | ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
 | 
|  |   2372 | ** the make process cause these values to align.  Assert()s in the code
 | 
|  |   2373 | ** below verify that the numbers are aligned correctly.
 | 
|  |   2374 | */
 | 
|  |   2375 | void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | 
|  |   2376 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   2377 |   int op = 0;
 | 
|  |   2378 |   int ckOffset = pParse->ckOffset;
 | 
|  |   2379 |   if( v==0 || pExpr==0 ) return;
 | 
|  |   2380 |   op = pExpr->op;
 | 
|  |   2381 |   switch( op ){
 | 
|  |   2382 |     case TK_AND: {
 | 
|  |   2383 |       int d2 = sqlite3VdbeMakeLabel(v);
 | 
|  |   2384 |       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | 
|  |   2385 |       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
|  |   2386 |       sqlite3VdbeResolveLabel(v, d2);
 | 
|  |   2387 |       break;
 | 
|  |   2388 |     }
 | 
|  |   2389 |     case TK_OR: {
 | 
|  |   2390 |       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
|  |   2391 |       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
|  |   2392 |       break;
 | 
|  |   2393 |     }
 | 
|  |   2394 |     case TK_NOT: {
 | 
|  |   2395 |       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
|  |   2396 |       break;
 | 
|  |   2397 |     }
 | 
|  |   2398 |     case TK_LT:
 | 
|  |   2399 |     case TK_LE:
 | 
|  |   2400 |     case TK_GT:
 | 
|  |   2401 |     case TK_GE:
 | 
|  |   2402 |     case TK_NE:
 | 
|  |   2403 |     case TK_EQ: {
 | 
|  |   2404 |       assert( TK_LT==OP_Lt );
 | 
|  |   2405 |       assert( TK_LE==OP_Le );
 | 
|  |   2406 |       assert( TK_GT==OP_Gt );
 | 
|  |   2407 |       assert( TK_GE==OP_Ge );
 | 
|  |   2408 |       assert( TK_EQ==OP_Eq );
 | 
|  |   2409 |       assert( TK_NE==OP_Ne );
 | 
|  |   2410 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2411 |       sqlite3ExprCode(pParse, pExpr->pRight);
 | 
|  |   2412 |       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
 | 
|  |   2413 |       break;
 | 
|  |   2414 |     }
 | 
|  |   2415 |     case TK_ISNULL:
 | 
|  |   2416 |     case TK_NOTNULL: {
 | 
|  |   2417 |       assert( TK_ISNULL==OP_IsNull );
 | 
|  |   2418 |       assert( TK_NOTNULL==OP_NotNull );
 | 
|  |   2419 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2420 |       sqlite3VdbeAddOp(v, op, 1, dest);
 | 
|  |   2421 |       break;
 | 
|  |   2422 |     }
 | 
|  |   2423 |     case TK_BETWEEN: {
 | 
|  |   2424 |       /* The expression "x BETWEEN y AND z" is implemented as:
 | 
|  |   2425 |       **
 | 
|  |   2426 |       ** 1 IF (x < y) GOTO 3
 | 
|  |   2427 |       ** 2 IF (x <= z) GOTO <dest>
 | 
|  |   2428 |       ** 3 ...
 | 
|  |   2429 |       */
 | 
|  |   2430 |       int addr;
 | 
|  |   2431 |       Expr *pLeft = pExpr->pLeft;
 | 
|  |   2432 |       Expr *pRight = pExpr->pList->a[0].pExpr;
 | 
|  |   2433 |       sqlite3ExprCode(pParse, pLeft);
 | 
|  |   2434 |       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | 
|  |   2435 |       sqlite3ExprCode(pParse, pRight);
 | 
|  |   2436 |       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
 | 
|  |   2437 | 
 | 
|  |   2438 |       pRight = pExpr->pList->a[1].pExpr;
 | 
|  |   2439 |       sqlite3ExprCode(pParse, pRight);
 | 
|  |   2440 |       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
 | 
|  |   2441 | 
 | 
|  |   2442 |       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
 | 
|  |   2443 |       sqlite3VdbeJumpHere(v, addr);
 | 
|  |   2444 |       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |   2445 |       break;
 | 
|  |   2446 |     }
 | 
|  |   2447 |     default: {
 | 
|  |   2448 |       sqlite3ExprCode(pParse, pExpr);
 | 
|  |   2449 |       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
 | 
|  |   2450 |       break;
 | 
|  |   2451 |     }
 | 
|  |   2452 |   }
 | 
|  |   2453 |   pParse->ckOffset = ckOffset;
 | 
|  |   2454 | }
 | 
|  |   2455 | 
 | 
|  |   2456 | /*
 | 
|  |   2457 | ** Generate code for a boolean expression such that a jump is made
 | 
|  |   2458 | ** to the label "dest" if the expression is false but execution
 | 
|  |   2459 | ** continues straight thru if the expression is true.
 | 
|  |   2460 | **
 | 
|  |   2461 | ** If the expression evaluates to NULL (neither true nor false) then
 | 
|  |   2462 | ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
 | 
|  |   2463 | */
 | 
|  |   2464 | void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | 
|  |   2465 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   2466 |   int op = 0;
 | 
|  |   2467 |   int ckOffset = pParse->ckOffset;
 | 
|  |   2468 |   if( v==0 || pExpr==0 ) return;
 | 
|  |   2469 | 
 | 
|  |   2470 |   /* The value of pExpr->op and op are related as follows:
 | 
|  |   2471 |   **
 | 
|  |   2472 |   **       pExpr->op            op
 | 
|  |   2473 |   **       ---------          ----------
 | 
|  |   2474 |   **       TK_ISNULL          OP_NotNull
 | 
|  |   2475 |   **       TK_NOTNULL         OP_IsNull
 | 
|  |   2476 |   **       TK_NE              OP_Eq
 | 
|  |   2477 |   **       TK_EQ              OP_Ne
 | 
|  |   2478 |   **       TK_GT              OP_Le
 | 
|  |   2479 |   **       TK_LE              OP_Gt
 | 
|  |   2480 |   **       TK_GE              OP_Lt
 | 
|  |   2481 |   **       TK_LT              OP_Ge
 | 
|  |   2482 |   **
 | 
|  |   2483 |   ** For other values of pExpr->op, op is undefined and unused.
 | 
|  |   2484 |   ** The value of TK_ and OP_ constants are arranged such that we
 | 
|  |   2485 |   ** can compute the mapping above using the following expression.
 | 
|  |   2486 |   ** Assert()s verify that the computation is correct.
 | 
|  |   2487 |   */
 | 
|  |   2488 |   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
 | 
|  |   2489 | 
 | 
|  |   2490 |   /* Verify correct alignment of TK_ and OP_ constants
 | 
|  |   2491 |   */
 | 
|  |   2492 |   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
 | 
|  |   2493 |   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
 | 
|  |   2494 |   assert( pExpr->op!=TK_NE || op==OP_Eq );
 | 
|  |   2495 |   assert( pExpr->op!=TK_EQ || op==OP_Ne );
 | 
|  |   2496 |   assert( pExpr->op!=TK_LT || op==OP_Ge );
 | 
|  |   2497 |   assert( pExpr->op!=TK_LE || op==OP_Gt );
 | 
|  |   2498 |   assert( pExpr->op!=TK_GT || op==OP_Le );
 | 
|  |   2499 |   assert( pExpr->op!=TK_GE || op==OP_Lt );
 | 
|  |   2500 | 
 | 
|  |   2501 |   switch( pExpr->op ){
 | 
|  |   2502 |     case TK_AND: {
 | 
|  |   2503 |       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
|  |   2504 |       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
|  |   2505 |       break;
 | 
|  |   2506 |     }
 | 
|  |   2507 |     case TK_OR: {
 | 
|  |   2508 |       int d2 = sqlite3VdbeMakeLabel(v);
 | 
|  |   2509 |       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
 | 
|  |   2510 |       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | 
|  |   2511 |       sqlite3VdbeResolveLabel(v, d2);
 | 
|  |   2512 |       break;
 | 
|  |   2513 |     }
 | 
|  |   2514 |     case TK_NOT: {
 | 
|  |   2515 |       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | 
|  |   2516 |       break;
 | 
|  |   2517 |     }
 | 
|  |   2518 |     case TK_LT:
 | 
|  |   2519 |     case TK_LE:
 | 
|  |   2520 |     case TK_GT:
 | 
|  |   2521 |     case TK_GE:
 | 
|  |   2522 |     case TK_NE:
 | 
|  |   2523 |     case TK_EQ: {
 | 
|  |   2524 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2525 |       sqlite3ExprCode(pParse, pExpr->pRight);
 | 
|  |   2526 |       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
 | 
|  |   2527 |       break;
 | 
|  |   2528 |     }
 | 
|  |   2529 |     case TK_ISNULL:
 | 
|  |   2530 |     case TK_NOTNULL: {
 | 
|  |   2531 |       sqlite3ExprCode(pParse, pExpr->pLeft);
 | 
|  |   2532 |       sqlite3VdbeAddOp(v, op, 1, dest);
 | 
|  |   2533 |       break;
 | 
|  |   2534 |     }
 | 
|  |   2535 |     case TK_BETWEEN: {
 | 
|  |   2536 |       /* The expression is "x BETWEEN y AND z". It is implemented as:
 | 
|  |   2537 |       **
 | 
|  |   2538 |       ** 1 IF (x >= y) GOTO 3
 | 
|  |   2539 |       ** 2 GOTO <dest>
 | 
|  |   2540 |       ** 3 IF (x > z) GOTO <dest>
 | 
|  |   2541 |       */
 | 
|  |   2542 |       int addr;
 | 
|  |   2543 |       Expr *pLeft = pExpr->pLeft;
 | 
|  |   2544 |       Expr *pRight = pExpr->pList->a[0].pExpr;
 | 
|  |   2545 |       sqlite3ExprCode(pParse, pLeft);
 | 
|  |   2546 |       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | 
|  |   2547 |       sqlite3ExprCode(pParse, pRight);
 | 
|  |   2548 |       addr = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2549 |       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
 | 
|  |   2550 | 
 | 
|  |   2551 |       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |   2552 |       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
 | 
|  |   2553 |       pRight = pExpr->pList->a[1].pExpr;
 | 
|  |   2554 |       sqlite3ExprCode(pParse, pRight);
 | 
|  |   2555 |       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
 | 
|  |   2556 |       break;
 | 
|  |   2557 |     }
 | 
|  |   2558 |     default: {
 | 
|  |   2559 |       sqlite3ExprCode(pParse, pExpr);
 | 
|  |   2560 |       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
 | 
|  |   2561 |       break;
 | 
|  |   2562 |     }
 | 
|  |   2563 |   }
 | 
|  |   2564 |   pParse->ckOffset = ckOffset;
 | 
|  |   2565 | }
 | 
|  |   2566 | 
 | 
|  |   2567 | /*
 | 
|  |   2568 | ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
 | 
|  |   2569 | ** if they are identical and return FALSE if they differ in any way.
 | 
|  |   2570 | **
 | 
|  |   2571 | ** Sometimes this routine will return FALSE even if the two expressions
 | 
|  |   2572 | ** really are equivalent.  If we cannot prove that the expressions are
 | 
|  |   2573 | ** identical, we return FALSE just to be safe.  So if this routine
 | 
|  |   2574 | ** returns false, then you do not really know for certain if the two
 | 
|  |   2575 | ** expressions are the same.  But if you get a TRUE return, then you
 | 
|  |   2576 | ** can be sure the expressions are the same.  In the places where
 | 
|  |   2577 | ** this routine is used, it does not hurt to get an extra FALSE - that
 | 
|  |   2578 | ** just might result in some slightly slower code.  But returning
 | 
|  |   2579 | ** an incorrect TRUE could lead to a malfunction.
 | 
|  |   2580 | */
 | 
|  |   2581 | int sqlite3ExprCompare(Expr *pA, Expr *pB){
 | 
|  |   2582 |   int i;
 | 
|  |   2583 |   if( pA==0||pB==0 ){
 | 
|  |   2584 |     return pB==pA;
 | 
|  |   2585 |   }
 | 
|  |   2586 |   if( pA->op!=pB->op ) return 0;
 | 
|  |   2587 |   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
 | 
|  |   2588 |   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
 | 
|  |   2589 |   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
 | 
|  |   2590 |   if( pA->pList ){
 | 
|  |   2591 |     if( pB->pList==0 ) return 0;
 | 
|  |   2592 |     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
 | 
|  |   2593 |     for(i=0; i<pA->pList->nExpr; i++){
 | 
|  |   2594 |       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
 | 
|  |   2595 |         return 0;
 | 
|  |   2596 |       }
 | 
|  |   2597 |     }
 | 
|  |   2598 |   }else if( pB->pList ){
 | 
|  |   2599 |     return 0;
 | 
|  |   2600 |   }
 | 
|  |   2601 |   if( pA->pSelect || pB->pSelect ) return 0;
 | 
|  |   2602 |   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
 | 
|  |   2603 |   if( pA->op!=TK_COLUMN && pA->token.z ){
 | 
|  |   2604 |     if( pB->token.z==0 ) return 0;
 | 
|  |   2605 |     if( pB->token.n!=pA->token.n ) return 0;
 | 
|  |   2606 |     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
 | 
|  |   2607 |       return 0;
 | 
|  |   2608 |     }
 | 
|  |   2609 |   }
 | 
|  |   2610 |   return 1;
 | 
|  |   2611 | }
 | 
|  |   2612 | 
 | 
|  |   2613 | 
 | 
|  |   2614 | /*
 | 
|  |   2615 | ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
 | 
|  |   2616 | ** the new element.  Return a negative number if malloc fails.
 | 
|  |   2617 | */
 | 
|  |   2618 | static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
 | 
|  |   2619 |   int i;
 | 
|  |   2620 |   pInfo->aCol = (AggInfo::AggInfo_col*)sqlite3ArrayAllocate(
 | 
|  |   2621 |        db,
 | 
|  |   2622 |        pInfo->aCol,
 | 
|  |   2623 |        sizeof(pInfo->aCol[0]),
 | 
|  |   2624 |        3,
 | 
|  |   2625 |        &pInfo->nColumn,
 | 
|  |   2626 |        &pInfo->nColumnAlloc,
 | 
|  |   2627 |        &i
 | 
|  |   2628 |   );
 | 
|  |   2629 |   return i;
 | 
|  |   2630 | }    
 | 
|  |   2631 | 
 | 
|  |   2632 | /*
 | 
|  |   2633 | ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
 | 
|  |   2634 | ** the new element.  Return a negative number if malloc fails.
 | 
|  |   2635 | */
 | 
|  |   2636 | static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
 | 
|  |   2637 |   int i;
 | 
|  |   2638 |   pInfo->aFunc = (AggInfo::AggInfo_func*)sqlite3ArrayAllocate(
 | 
|  |   2639 |        db, 
 | 
|  |   2640 |        pInfo->aFunc,
 | 
|  |   2641 |        sizeof(pInfo->aFunc[0]),
 | 
|  |   2642 |        3,
 | 
|  |   2643 |        &pInfo->nFunc,
 | 
|  |   2644 |        &pInfo->nFuncAlloc,
 | 
|  |   2645 |        &i
 | 
|  |   2646 |   );
 | 
|  |   2647 |   return i;
 | 
|  |   2648 | }    
 | 
|  |   2649 | 
 | 
|  |   2650 | /*
 | 
|  |   2651 | ** This is an xFunc for walkExprTree() used to implement 
 | 
|  |   2652 | ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
 | 
|  |   2653 | ** for additional information.
 | 
|  |   2654 | **
 | 
|  |   2655 | ** This routine analyzes the aggregate function at pExpr.
 | 
|  |   2656 | */
 | 
|  |   2657 | static int analyzeAggregate(void *pArg, Expr *pExpr){
 | 
|  |   2658 |   int i;
 | 
|  |   2659 |   NameContext *pNC = (NameContext *)pArg;
 | 
|  |   2660 |   Parse *pParse = pNC->pParse;
 | 
|  |   2661 |   SrcList *pSrcList = pNC->pSrcList;
 | 
|  |   2662 |   AggInfo *pAggInfo = pNC->pAggInfo;
 | 
|  |   2663 | 
 | 
|  |   2664 |   switch( pExpr->op ){
 | 
|  |   2665 |     case TK_AGG_COLUMN:
 | 
|  |   2666 |     case TK_COLUMN: {
 | 
|  |   2667 |       /* Check to see if the column is in one of the tables in the FROM
 | 
|  |   2668 |       ** clause of the aggregate query */
 | 
|  |   2669 |       if( pSrcList ){
 | 
|  |   2670 | 		  SrcList::SrcList_item *pItem = pSrcList->a;
 | 
|  |   2671 |         for(i=0; i<pSrcList->nSrc; i++, pItem++){
 | 
|  |   2672 | 			AggInfo::AggInfo_col *pCol;
 | 
|  |   2673 |           if( pExpr->iTable==pItem->iCursor ){
 | 
|  |   2674 |             /* If we reach this point, it means that pExpr refers to a table
 | 
|  |   2675 |             ** that is in the FROM clause of the aggregate query.  
 | 
|  |   2676 |             **
 | 
|  |   2677 |             ** Make an entry for the column in pAggInfo->aCol[] if there
 | 
|  |   2678 |             ** is not an entry there already.
 | 
|  |   2679 |             */
 | 
|  |   2680 | 			  int k=0;
 | 
|  |   2681 |             pCol = pAggInfo->aCol;
 | 
|  |   2682 |             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
 | 
|  |   2683 |               if( pCol->iTable==pExpr->iTable &&
 | 
|  |   2684 |                   pCol->iColumn==pExpr->iColumn ){
 | 
|  |   2685 |                 break;
 | 
|  |   2686 |               }
 | 
|  |   2687 |             }
 | 
|  |   2688 |             if( (k>=pAggInfo->nColumn)
 | 
|  |   2689 |              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
 | 
|  |   2690 |             ){
 | 
|  |   2691 |               pCol = &pAggInfo->aCol[k];
 | 
|  |   2692 |               pCol->pTab = pExpr->pTab;
 | 
|  |   2693 |               pCol->iTable = pExpr->iTable;
 | 
|  |   2694 |               pCol->iColumn = pExpr->iColumn;
 | 
|  |   2695 |               pCol->iMem = pParse->nMem++;
 | 
|  |   2696 |               pCol->iSorterColumn = -1;
 | 
|  |   2697 |               pCol->pExpr = pExpr;
 | 
|  |   2698 |               if( pAggInfo->pGroupBy ){
 | 
|  |   2699 |                 int j, n;
 | 
|  |   2700 |                 ExprList *pGB = pAggInfo->pGroupBy;
 | 
|  |   2701 | 				ExprList::ExprList_item *pTerm = pGB->a;
 | 
|  |   2702 |                 n = pGB->nExpr;
 | 
|  |   2703 |                 for(j=0; j<n; j++, pTerm++){
 | 
|  |   2704 |                   Expr *pE = pTerm->pExpr;
 | 
|  |   2705 |                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
 | 
|  |   2706 |                       pE->iColumn==pExpr->iColumn ){
 | 
|  |   2707 |                     pCol->iSorterColumn = j;
 | 
|  |   2708 |                     break;
 | 
|  |   2709 |                   }
 | 
|  |   2710 |                 }
 | 
|  |   2711 |               }
 | 
|  |   2712 |               if( pCol->iSorterColumn<0 ){
 | 
|  |   2713 |                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
 | 
|  |   2714 |               }
 | 
|  |   2715 |             }
 | 
|  |   2716 |             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
 | 
|  |   2717 |             ** because it was there before or because we just created it).
 | 
|  |   2718 |             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
 | 
|  |   2719 |             ** pAggInfo->aCol[] entry.
 | 
|  |   2720 |             */
 | 
|  |   2721 |             pExpr->pAggInfo = pAggInfo;
 | 
|  |   2722 |             pExpr->op = TK_AGG_COLUMN;
 | 
|  |   2723 |             pExpr->iAgg = k;
 | 
|  |   2724 |             break;
 | 
|  |   2725 |           } /* endif pExpr->iTable==pItem->iCursor */
 | 
|  |   2726 |         } /* end loop over pSrcList */
 | 
|  |   2727 |       }
 | 
|  |   2728 |       return 1;
 | 
|  |   2729 |     }
 | 
|  |   2730 |     case TK_AGG_FUNCTION: {
 | 
|  |   2731 |       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
 | 
|  |   2732 |       ** to be ignored */
 | 
|  |   2733 |       if( pNC->nDepth==0 ){
 | 
|  |   2734 |         /* Check to see if pExpr is a duplicate of another aggregate 
 | 
|  |   2735 |         ** function that is already in the pAggInfo structure
 | 
|  |   2736 |         */
 | 
|  |   2737 | 		  AggInfo::AggInfo_func *pItem = pAggInfo->aFunc;
 | 
|  |   2738 |         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
 | 
|  |   2739 |           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
 | 
|  |   2740 |             break;
 | 
|  |   2741 |           }
 | 
|  |   2742 |         }
 | 
|  |   2743 |         if( i>=pAggInfo->nFunc ){
 | 
|  |   2744 |           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
 | 
|  |   2745 |           */
 | 
|  |   2746 |           u8 enc = ENC(pParse->db);
 | 
|  |   2747 |           i = addAggInfoFunc(pParse->db, pAggInfo);
 | 
|  |   2748 |           if( i>=0 ){
 | 
|  |   2749 |             pItem = &pAggInfo->aFunc[i];
 | 
|  |   2750 |             pItem->pExpr = pExpr;
 | 
|  |   2751 |             pItem->iMem = pParse->nMem++;
 | 
|  |   2752 |             pItem->pFunc = sqlite3FindFunction(pParse->db,
 | 
|  |   2753 |                    (char*)pExpr->token.z, pExpr->token.n,
 | 
|  |   2754 |                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
 | 
|  |   2755 |             if( pExpr->flags & EP_Distinct ){
 | 
|  |   2756 |               pItem->iDistinct = pParse->nTab++;
 | 
|  |   2757 |             }else{
 | 
|  |   2758 |               pItem->iDistinct = -1;
 | 
|  |   2759 |             }
 | 
|  |   2760 |           }
 | 
|  |   2761 |         }
 | 
|  |   2762 |         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
 | 
|  |   2763 |         */
 | 
|  |   2764 |         pExpr->iAgg = i;
 | 
|  |   2765 |         pExpr->pAggInfo = pAggInfo;
 | 
|  |   2766 |         return 1;
 | 
|  |   2767 |       }
 | 
|  |   2768 |     }
 | 
|  |   2769 |   }
 | 
|  |   2770 | 
 | 
|  |   2771 |   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
 | 
|  |   2772 |   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
 | 
|  |   2773 |   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
 | 
|  |   2774 |   */
 | 
|  |   2775 |   if( pExpr->pSelect ){
 | 
|  |   2776 |     pNC->nDepth++;
 | 
|  |   2777 |     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
 | 
|  |   2778 |     pNC->nDepth--;
 | 
|  |   2779 |   }
 | 
|  |   2780 |   return 0;
 | 
|  |   2781 | }
 | 
|  |   2782 | 
 | 
|  |   2783 | /*
 | 
|  |   2784 | ** Analyze the given expression looking for aggregate functions and
 | 
|  |   2785 | ** for variables that need to be added to the pParse->aAgg[] array.
 | 
|  |   2786 | ** Make additional entries to the pParse->aAgg[] array as necessary.
 | 
|  |   2787 | **
 | 
|  |   2788 | ** This routine should only be called after the expression has been
 | 
|  |   2789 | ** analyzed by sqlite3ExprResolveNames().
 | 
|  |   2790 | **
 | 
|  |   2791 | ** If errors are seen, leave an error message in zErrMsg and return
 | 
|  |   2792 | ** the number of errors.
 | 
|  |   2793 | */
 | 
|  |   2794 | int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
 | 
|  |   2795 |   int nErr = pNC->pParse->nErr;
 | 
|  |   2796 |   walkExprTree(pExpr, analyzeAggregate, pNC);
 | 
|  |   2797 |   return pNC->pParse->nErr - nErr;
 | 
|  |   2798 | }
 | 
|  |   2799 | 
 | 
|  |   2800 | /*
 | 
|  |   2801 | ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
 | 
|  |   2802 | ** expression list.  Return the number of errors.
 | 
|  |   2803 | **
 | 
|  |   2804 | ** If an error is found, the analysis is cut short.
 | 
|  |   2805 | */
 | 
|  |   2806 | int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
 | 
|  |   2807 | 	ExprList::ExprList_item *pItem;
 | 
|  |   2808 |   int i;
 | 
|  |   2809 |   int nErr = 0;
 | 
|  |   2810 |   if( pList ){
 | 
|  |   2811 |     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
 | 
|  |   2812 |       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
 | 
|  |   2813 |     }
 | 
|  |   2814 |   }
 | 
|  |   2815 |   return nErr;
 | 
|  |   2816 | }
 |