| 2 |      1 | /*
 | 
|  |      2 | ** 2001 September 15
 | 
|  |      3 | **
 | 
|  |      4 | ** The author disclaims copyright to this source code.  In place of
 | 
|  |      5 | ** a legal notice, here is a blessing:
 | 
|  |      6 | **
 | 
|  |      7 | **    May you do good and not evil.
 | 
|  |      8 | **    May you find forgiveness for yourself and forgive others.
 | 
|  |      9 | **    May you share freely, never taking more than you give.
 | 
|  |     10 | **
 | 
|  |     11 | *************************************************************************
 | 
|  |     12 | ** This module contains C code that generates VDBE code used to process
 | 
|  |     13 | ** the WHERE clause of SQL statements.  This module is reponsible for
 | 
|  |     14 | ** generating the code that loops through a table looking for applicable
 | 
|  |     15 | ** rows.  Indices are selected and used to speed the search when doing
 | 
|  |     16 | ** so is applicable.  Because this module is responsible for selecting
 | 
|  |     17 | ** indices, you might also think of this module as the "query optimizer".
 | 
|  |     18 | **
 | 
|  |     19 | ** $Id: where.cpp 1282 2008-11-13 09:31:33Z LarsPson $
 | 
|  |     20 | */
 | 
|  |     21 | #include "sqliteInt.h"
 | 
|  |     22 | 
 | 
|  |     23 | /*
 | 
|  |     24 | ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
 | 
|  |     25 | */
 | 
|  |     26 | #define BMS  (sizeof(Bitmask)*8)
 | 
|  |     27 | 
 | 
|  |     28 | /*
 | 
|  |     29 | ** Trace output macros
 | 
|  |     30 | */
 | 
|  |     31 | #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
 | 
|  |     32 | int sqlite3_where_trace = 0;
 | 
|  |     33 | # define WHERETRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
 | 
|  |     34 | #else
 | 
|  |     35 | # define WHERETRACE(X)
 | 
|  |     36 | #endif
 | 
|  |     37 | 
 | 
|  |     38 | /* Forward reference
 | 
|  |     39 | */
 | 
|  |     40 | typedef struct WhereClause WhereClause;
 | 
|  |     41 | typedef struct ExprMaskSet ExprMaskSet;
 | 
|  |     42 | 
 | 
|  |     43 | /*
 | 
|  |     44 | ** The query generator uses an array of instances of this structure to
 | 
|  |     45 | ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
 | 
|  |     46 | ** clause subexpression is separated from the others by an AND operator.
 | 
|  |     47 | **
 | 
|  |     48 | ** All WhereTerms are collected into a single WhereClause structure.  
 | 
|  |     49 | ** The following identity holds:
 | 
|  |     50 | **
 | 
|  |     51 | **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
 | 
|  |     52 | **
 | 
|  |     53 | ** When a term is of the form:
 | 
|  |     54 | **
 | 
|  |     55 | **              X <op> <expr>
 | 
|  |     56 | **
 | 
|  |     57 | ** where X is a column name and <op> is one of certain operators,
 | 
|  |     58 | ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
 | 
|  |     59 | ** cursor number and column number for X.  WhereTerm.operator records
 | 
|  |     60 | ** the <op> using a bitmask encoding defined by WO_xxx below.  The
 | 
|  |     61 | ** use of a bitmask encoding for the operator allows us to search
 | 
|  |     62 | ** quickly for terms that match any of several different operators.
 | 
|  |     63 | **
 | 
|  |     64 | ** prereqRight and prereqAll record sets of cursor numbers,
 | 
|  |     65 | ** but they do so indirectly.  A single ExprMaskSet structure translates
 | 
|  |     66 | ** cursor number into bits and the translated bit is stored in the prereq
 | 
|  |     67 | ** fields.  The translation is used in order to maximize the number of
 | 
|  |     68 | ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
 | 
|  |     69 | ** spread out over the non-negative integers.  For example, the cursor
 | 
|  |     70 | ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
 | 
|  |     71 | ** translates these sparse cursor numbers into consecutive integers
 | 
|  |     72 | ** beginning with 0 in order to make the best possible use of the available
 | 
|  |     73 | ** bits in the Bitmask.  So, in the example above, the cursor numbers
 | 
|  |     74 | ** would be mapped into integers 0 through 7.
 | 
|  |     75 | */
 | 
|  |     76 | typedef struct WhereTerm WhereTerm;
 | 
|  |     77 | struct WhereTerm {
 | 
|  |     78 |   Expr *pExpr;            /* Pointer to the subexpression */
 | 
|  |     79 |   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
 | 
|  |     80 |   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
 | 
|  |     81 |   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
 | 
|  |     82 |   u16 eOperator;          /* A WO_xx value describing <op> */
 | 
|  |     83 |   u8 flags;               /* Bit flags.  See below */
 | 
|  |     84 |   u8 nChild;              /* Number of children that must disable us */
 | 
|  |     85 |   WhereClause *pWC;       /* The clause this term is part of */
 | 
|  |     86 |   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
 | 
|  |     87 |   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
 | 
|  |     88 | };
 | 
|  |     89 | 
 | 
|  |     90 | /*
 | 
|  |     91 | ** Allowed values of WhereTerm.flags
 | 
|  |     92 | */
 | 
|  |     93 | #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
 | 
|  |     94 | #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
 | 
|  |     95 | #define TERM_CODED      0x04   /* This term is already coded */
 | 
|  |     96 | #define TERM_COPIED     0x08   /* Has a child */
 | 
|  |     97 | #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
 | 
|  |     98 | 
 | 
|  |     99 | /*
 | 
|  |    100 | ** An instance of the following structure holds all information about a
 | 
|  |    101 | ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
 | 
|  |    102 | */
 | 
|  |    103 | struct WhereClause {
 | 
|  |    104 |   Parse *pParse;           /* The parser context */
 | 
|  |    105 |   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
 | 
|  |    106 |   int nTerm;               /* Number of terms */
 | 
|  |    107 |   int nSlot;               /* Number of entries in a[] */
 | 
|  |    108 |   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
 | 
|  |    109 |   WhereTerm aStatic[10];   /* Initial static space for a[] */
 | 
|  |    110 | };
 | 
|  |    111 | 
 | 
|  |    112 | /*
 | 
|  |    113 | ** An instance of the following structure keeps track of a mapping
 | 
|  |    114 | ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
 | 
|  |    115 | **
 | 
|  |    116 | ** The VDBE cursor numbers are small integers contained in 
 | 
|  |    117 | ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
 | 
|  |    118 | ** clause, the cursor numbers might not begin with 0 and they might
 | 
|  |    119 | ** contain gaps in the numbering sequence.  But we want to make maximum
 | 
|  |    120 | ** use of the bits in our bitmasks.  This structure provides a mapping
 | 
|  |    121 | ** from the sparse cursor numbers into consecutive integers beginning
 | 
|  |    122 | ** with 0.
 | 
|  |    123 | **
 | 
|  |    124 | ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
 | 
|  |    125 | ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
 | 
|  |    126 | **
 | 
|  |    127 | ** For example, if the WHERE clause expression used these VDBE
 | 
|  |    128 | ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
 | 
|  |    129 | ** would map those cursor numbers into bits 0 through 5.
 | 
|  |    130 | **
 | 
|  |    131 | ** Note that the mapping is not necessarily ordered.  In the example
 | 
|  |    132 | ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
 | 
|  |    133 | ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
 | 
|  |    134 | ** does not really matter.  What is important is that sparse cursor
 | 
|  |    135 | ** numbers all get mapped into bit numbers that begin with 0 and contain
 | 
|  |    136 | ** no gaps.
 | 
|  |    137 | */
 | 
|  |    138 | struct ExprMaskSet {
 | 
|  |    139 |   int n;                        /* Number of assigned cursor values */
 | 
|  |    140 |   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
 | 
|  |    141 | };
 | 
|  |    142 | 
 | 
|  |    143 | 
 | 
|  |    144 | /*
 | 
|  |    145 | ** Bitmasks for the operators that indices are able to exploit.  An
 | 
|  |    146 | ** OR-ed combination of these values can be used when searching for
 | 
|  |    147 | ** terms in the where clause.
 | 
|  |    148 | */
 | 
|  |    149 | #define WO_IN     1
 | 
|  |    150 | #define WO_EQ     2
 | 
|  |    151 | #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
 | 
|  |    152 | #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
 | 
|  |    153 | #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
 | 
|  |    154 | #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
 | 
|  |    155 | #define WO_MATCH  64
 | 
|  |    156 | #define WO_ISNULL 128
 | 
|  |    157 | 
 | 
|  |    158 | /*
 | 
|  |    159 | ** Value for flags returned by bestIndex().  
 | 
|  |    160 | **
 | 
|  |    161 | ** The least significant byte is reserved as a mask for WO_ values above.
 | 
|  |    162 | ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
 | 
|  |    163 | ** But if the table is the right table of a left join, WhereLevel.flags
 | 
|  |    164 | ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
 | 
|  |    165 | ** the "op" parameter to findTerm when we are resolving equality constraints.
 | 
|  |    166 | ** ISNULL constraints will then not be used on the right table of a left
 | 
|  |    167 | ** join.  Tickets #2177 and #2189.
 | 
|  |    168 | */
 | 
|  |    169 | #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
 | 
|  |    170 | #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
 | 
|  |    171 | #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
 | 
|  |    172 | #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
 | 
|  |    173 | #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
 | 
|  |    174 | #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
 | 
|  |    175 | #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
 | 
|  |    176 | #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
 | 
|  |    177 | #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
 | 
|  |    178 | #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
 | 
|  |    179 | #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
 | 
|  |    180 | #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
 | 
|  |    181 | 
 | 
|  |    182 | /*
 | 
|  |    183 | ** Initialize a preallocated WhereClause structure.
 | 
|  |    184 | */
 | 
|  |    185 | static void whereClauseInit(
 | 
|  |    186 |   WhereClause *pWC,        /* The WhereClause to be initialized */
 | 
|  |    187 |   Parse *pParse,           /* The parsing context */
 | 
|  |    188 |   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
 | 
|  |    189 | ){
 | 
|  |    190 |   pWC->pParse = pParse;
 | 
|  |    191 |   pWC->pMaskSet = pMaskSet;
 | 
|  |    192 |   pWC->nTerm = 0;
 | 
|  |    193 |   pWC->nSlot = ArraySize(pWC->aStatic);
 | 
|  |    194 |   pWC->a = pWC->aStatic;
 | 
|  |    195 | }
 | 
|  |    196 | 
 | 
|  |    197 | /*
 | 
|  |    198 | ** Deallocate a WhereClause structure.  The WhereClause structure
 | 
|  |    199 | ** itself is not freed.  This routine is the inverse of whereClauseInit().
 | 
|  |    200 | */
 | 
|  |    201 | static void whereClauseClear(WhereClause *pWC){
 | 
|  |    202 |   int i;
 | 
|  |    203 |   WhereTerm *a;
 | 
|  |    204 |   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
 | 
|  |    205 |     if( a->flags & TERM_DYNAMIC ){
 | 
|  |    206 |       sqlite3ExprDelete(a->pExpr);
 | 
|  |    207 |     }
 | 
|  |    208 |   }
 | 
|  |    209 |   if( pWC->a!=pWC->aStatic ){
 | 
|  |    210 |     sqlite3_free(pWC->a);
 | 
|  |    211 |   }
 | 
|  |    212 | }
 | 
|  |    213 | 
 | 
|  |    214 | /*
 | 
|  |    215 | ** Add a new entries to the WhereClause structure.  Increase the allocated
 | 
|  |    216 | ** space as necessary.
 | 
|  |    217 | **
 | 
|  |    218 | ** If the flags argument includes TERM_DYNAMIC, then responsibility
 | 
|  |    219 | ** for freeing the expression p is assumed by the WhereClause object.
 | 
|  |    220 | **
 | 
|  |    221 | ** WARNING:  This routine might reallocate the space used to store
 | 
|  |    222 | ** WhereTerms.  All pointers to WhereTerms should be invalided after
 | 
|  |    223 | ** calling this routine.  Such pointers may be reinitialized by referencing
 | 
|  |    224 | ** the pWC->a[] array.
 | 
|  |    225 | */
 | 
|  |    226 | static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
 | 
|  |    227 |   WhereTerm *pTerm;
 | 
|  |    228 |   int idx;
 | 
|  |    229 |   if( pWC->nTerm>=pWC->nSlot ){
 | 
|  |    230 |     WhereTerm *pOld = pWC->a;
 | 
|  |    231 |     pWC->a = (WhereTerm*)sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
 | 
|  |    232 |     if( pWC->a==0 ){
 | 
|  |    233 |       pWC->pParse->db->mallocFailed = 1;
 | 
|  |    234 |       if( flags & TERM_DYNAMIC ){
 | 
|  |    235 |         sqlite3ExprDelete(p);
 | 
|  |    236 |       }
 | 
|  |    237 |       pWC->a = pOld;
 | 
|  |    238 |       return 0;
 | 
|  |    239 |     }
 | 
|  |    240 |     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
 | 
|  |    241 |     if( pOld!=pWC->aStatic ){
 | 
|  |    242 |       sqlite3_free(pOld);
 | 
|  |    243 |     }
 | 
|  |    244 |     pWC->nSlot *= 2;
 | 
|  |    245 |   }
 | 
|  |    246 |   pTerm = &pWC->a[idx = pWC->nTerm];
 | 
|  |    247 |   pWC->nTerm++;
 | 
|  |    248 |   pTerm->pExpr = p;
 | 
|  |    249 |   pTerm->flags = flags;
 | 
|  |    250 |   pTerm->pWC = pWC;
 | 
|  |    251 |   pTerm->iParent = -1;
 | 
|  |    252 |   return idx;
 | 
|  |    253 | }
 | 
|  |    254 | 
 | 
|  |    255 | /*
 | 
|  |    256 | ** This routine identifies subexpressions in the WHERE clause where
 | 
|  |    257 | ** each subexpression is separated by the AND operator or some other
 | 
|  |    258 | ** operator specified in the op parameter.  The WhereClause structure
 | 
|  |    259 | ** is filled with pointers to subexpressions.  For example:
 | 
|  |    260 | **
 | 
|  |    261 | **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
 | 
|  |    262 | **           \________/     \_______________/     \________________/
 | 
|  |    263 | **            slot[0]            slot[1]               slot[2]
 | 
|  |    264 | **
 | 
|  |    265 | ** The original WHERE clause in pExpr is unaltered.  All this routine
 | 
|  |    266 | ** does is make slot[] entries point to substructure within pExpr.
 | 
|  |    267 | **
 | 
|  |    268 | ** In the previous sentence and in the diagram, "slot[]" refers to
 | 
|  |    269 | ** the WhereClause.a[] array.  This array grows as needed to contain
 | 
|  |    270 | ** all terms of the WHERE clause.
 | 
|  |    271 | */
 | 
|  |    272 | static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
 | 
|  |    273 |   if( pExpr==0 ) return;
 | 
|  |    274 |   if( pExpr->op!=op ){
 | 
|  |    275 |     whereClauseInsert(pWC, pExpr, 0);
 | 
|  |    276 |   }else{
 | 
|  |    277 |     whereSplit(pWC, pExpr->pLeft, op);
 | 
|  |    278 |     whereSplit(pWC, pExpr->pRight, op);
 | 
|  |    279 |   }
 | 
|  |    280 | }
 | 
|  |    281 | 
 | 
|  |    282 | /*
 | 
|  |    283 | ** Initialize an expression mask set
 | 
|  |    284 | */
 | 
|  |    285 | #define initMaskSet(P)  memset(P, 0, sizeof(*P))
 | 
|  |    286 | 
 | 
|  |    287 | /*
 | 
|  |    288 | ** Return the bitmask for the given cursor number.  Return 0 if
 | 
|  |    289 | ** iCursor is not in the set.
 | 
|  |    290 | */
 | 
|  |    291 | static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
 | 
|  |    292 |   int i;
 | 
|  |    293 |   for(i=0; i<pMaskSet->n; i++){
 | 
|  |    294 |     if( pMaskSet->ix[i]==iCursor ){
 | 
|  |    295 |       return ((Bitmask)1)<<i;
 | 
|  |    296 |     }
 | 
|  |    297 |   }
 | 
|  |    298 |   return 0;
 | 
|  |    299 | }
 | 
|  |    300 | 
 | 
|  |    301 | /*
 | 
|  |    302 | ** Create a new mask for cursor iCursor.
 | 
|  |    303 | **
 | 
|  |    304 | ** There is one cursor per table in the FROM clause.  The number of
 | 
|  |    305 | ** tables in the FROM clause is limited by a test early in the
 | 
|  |    306 | ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
 | 
|  |    307 | ** array will never overflow.
 | 
|  |    308 | */
 | 
|  |    309 | static void createMask(ExprMaskSet *pMaskSet, int iCursor){
 | 
|  |    310 |   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
 | 
|  |    311 |   pMaskSet->ix[pMaskSet->n++] = iCursor;
 | 
|  |    312 | }
 | 
|  |    313 | 
 | 
|  |    314 | /*
 | 
|  |    315 | ** This routine walks (recursively) an expression tree and generates
 | 
|  |    316 | ** a bitmask indicating which tables are used in that expression
 | 
|  |    317 | ** tree.
 | 
|  |    318 | **
 | 
|  |    319 | ** In order for this routine to work, the calling function must have
 | 
|  |    320 | ** previously invoked sqlite3ExprResolveNames() on the expression.  See
 | 
|  |    321 | ** the header comment on that routine for additional information.
 | 
|  |    322 | ** The sqlite3ExprResolveNames() routines looks for column names and
 | 
|  |    323 | ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
 | 
|  |    324 | ** the VDBE cursor number of the table.  This routine just has to
 | 
|  |    325 | ** translate the cursor numbers into bitmask values and OR all
 | 
|  |    326 | ** the bitmasks together.
 | 
|  |    327 | */
 | 
|  |    328 | static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
 | 
|  |    329 | static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
 | 
|  |    330 | static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
 | 
|  |    331 |   Bitmask mask = 0;
 | 
|  |    332 |   if( p==0 ) return 0;
 | 
|  |    333 |   if( p->op==TK_COLUMN ){
 | 
|  |    334 |     mask = getMask(pMaskSet, p->iTable);
 | 
|  |    335 |     return mask;
 | 
|  |    336 |   }
 | 
|  |    337 |   mask = exprTableUsage(pMaskSet, p->pRight);
 | 
|  |    338 |   mask |= exprTableUsage(pMaskSet, p->pLeft);
 | 
|  |    339 |   mask |= exprListTableUsage(pMaskSet, p->pList);
 | 
|  |    340 |   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
 | 
|  |    341 |   return mask;
 | 
|  |    342 | }
 | 
|  |    343 | static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
 | 
|  |    344 |   int i;
 | 
|  |    345 |   Bitmask mask = 0;
 | 
|  |    346 |   if( pList ){
 | 
|  |    347 |     for(i=0; i<pList->nExpr; i++){
 | 
|  |    348 |       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
 | 
|  |    349 |     }
 | 
|  |    350 |   }
 | 
|  |    351 |   return mask;
 | 
|  |    352 | }
 | 
|  |    353 | static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
 | 
|  |    354 |   Bitmask mask = 0;
 | 
|  |    355 |   while( pS ){
 | 
|  |    356 |     mask |= exprListTableUsage(pMaskSet, pS->pEList);
 | 
|  |    357 |     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
 | 
|  |    358 |     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
 | 
|  |    359 |     mask |= exprTableUsage(pMaskSet, pS->pWhere);
 | 
|  |    360 |     mask |= exprTableUsage(pMaskSet, pS->pHaving);
 | 
|  |    361 |     pS = pS->pPrior;
 | 
|  |    362 |   }
 | 
|  |    363 |   return mask;
 | 
|  |    364 | }
 | 
|  |    365 | 
 | 
|  |    366 | /*
 | 
|  |    367 | ** Return TRUE if the given operator is one of the operators that is
 | 
|  |    368 | ** allowed for an indexable WHERE clause term.  The allowed operators are
 | 
|  |    369 | ** "=", "<", ">", "<=", ">=", and "IN".
 | 
|  |    370 | */
 | 
|  |    371 | static int allowedOp(int op){
 | 
|  |    372 |   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
 | 
|  |    373 |   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
 | 
|  |    374 |   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
 | 
|  |    375 |   assert( TK_GE==TK_EQ+4 );
 | 
|  |    376 |   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
 | 
|  |    377 | }
 | 
|  |    378 | 
 | 
|  |    379 | /*
 | 
|  |    380 | ** Swap two objects of type T.
 | 
|  |    381 | */
 | 
|  |    382 | #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
 | 
|  |    383 | 
 | 
|  |    384 | /*
 | 
|  |    385 | ** Commute a comparision operator.  Expressions of the form "X op Y"
 | 
|  |    386 | ** are converted into "Y op X".
 | 
|  |    387 | **
 | 
|  |    388 | ** If a collation sequence is associated with either the left or right
 | 
|  |    389 | ** side of the comparison, it remains associated with the same side after
 | 
|  |    390 | ** the commutation. So "Y collate NOCASE op X" becomes 
 | 
|  |    391 | ** "X collate NOCASE op Y". This is because any collation sequence on
 | 
|  |    392 | ** the left hand side of a comparison overrides any collation sequence 
 | 
|  |    393 | ** attached to the right. For the same reason the EP_ExpCollate flag
 | 
|  |    394 | ** is not commuted.
 | 
|  |    395 | */
 | 
|  |    396 | static void exprCommute(Expr *pExpr){
 | 
|  |    397 |   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
 | 
|  |    398 |   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
 | 
|  |    399 |   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
 | 
|  |    400 |   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
 | 
|  |    401 |   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
 | 
|  |    402 |   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
 | 
|  |    403 |   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
 | 
|  |    404 |   if( pExpr->op>=TK_GT ){
 | 
|  |    405 |     assert( TK_LT==TK_GT+2 );
 | 
|  |    406 |     assert( TK_GE==TK_LE+2 );
 | 
|  |    407 |     assert( TK_GT>TK_EQ );
 | 
|  |    408 |     assert( TK_GT<TK_LE );
 | 
|  |    409 |     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
 | 
|  |    410 |     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
 | 
|  |    411 |   }
 | 
|  |    412 | }
 | 
|  |    413 | 
 | 
|  |    414 | /*
 | 
|  |    415 | ** Translate from TK_xx operator to WO_xx bitmask.
 | 
|  |    416 | */
 | 
|  |    417 | static int operatorMask(int op){
 | 
|  |    418 |   int c;
 | 
|  |    419 |   assert( allowedOp(op) );
 | 
|  |    420 |   if( op==TK_IN ){
 | 
|  |    421 |     c = WO_IN;
 | 
|  |    422 |   }else if( op==TK_ISNULL ){
 | 
|  |    423 |     c = WO_ISNULL;
 | 
|  |    424 |   }else{
 | 
|  |    425 |     c = WO_EQ<<(op-TK_EQ);
 | 
|  |    426 |   }
 | 
|  |    427 |   assert( op!=TK_ISNULL || c==WO_ISNULL );
 | 
|  |    428 |   assert( op!=TK_IN || c==WO_IN );
 | 
|  |    429 |   assert( op!=TK_EQ || c==WO_EQ );
 | 
|  |    430 |   assert( op!=TK_LT || c==WO_LT );
 | 
|  |    431 |   assert( op!=TK_LE || c==WO_LE );
 | 
|  |    432 |   assert( op!=TK_GT || c==WO_GT );
 | 
|  |    433 |   assert( op!=TK_GE || c==WO_GE );
 | 
|  |    434 |   return c;
 | 
|  |    435 | }
 | 
|  |    436 | 
 | 
|  |    437 | /*
 | 
|  |    438 | ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
 | 
|  |    439 | ** where X is a reference to the iColumn of table iCur and <op> is one of
 | 
|  |    440 | ** the WO_xx operator codes specified by the op parameter.
 | 
|  |    441 | ** Return a pointer to the term.  Return 0 if not found.
 | 
|  |    442 | */
 | 
|  |    443 | static WhereTerm *findTerm(
 | 
|  |    444 |   WhereClause *pWC,     /* The WHERE clause to be searched */
 | 
|  |    445 |   int iCur,             /* Cursor number of LHS */
 | 
|  |    446 |   int iColumn,          /* Column number of LHS */
 | 
|  |    447 |   Bitmask notReady,     /* RHS must not overlap with this mask */
 | 
|  |    448 |   u16 op,               /* Mask of WO_xx values describing operator */
 | 
|  |    449 |   Index *pIdx           /* Must be compatible with this index, if not NULL */
 | 
|  |    450 | ){
 | 
|  |    451 |   WhereTerm *pTerm;
 | 
|  |    452 |   int k;
 | 
|  |    453 |   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
 | 
|  |    454 |     if( pTerm->leftCursor==iCur
 | 
|  |    455 |        && (pTerm->prereqRight & notReady)==0
 | 
|  |    456 |        && pTerm->leftColumn==iColumn
 | 
|  |    457 |        && (pTerm->eOperator & op)!=0
 | 
|  |    458 |     ){
 | 
|  |    459 |       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
 | 
|  |    460 |         Expr *pX = pTerm->pExpr;
 | 
|  |    461 |         CollSeq *pColl;
 | 
|  |    462 |         char idxaff;
 | 
|  |    463 |         int j;
 | 
|  |    464 |         Parse *pParse = pWC->pParse;
 | 
|  |    465 | 
 | 
|  |    466 |         idxaff = pIdx->pTable->aCol[iColumn].affinity;
 | 
|  |    467 |         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
 | 
|  |    468 | 
 | 
|  |    469 |         /* Figure out the collation sequence required from an index for
 | 
|  |    470 |         ** it to be useful for optimising expression pX. Store this
 | 
|  |    471 |         ** value in variable pColl.
 | 
|  |    472 |         */
 | 
|  |    473 |         assert(pX->pLeft);
 | 
|  |    474 |         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
 | 
|  |    475 |         if( !pColl ){
 | 
|  |    476 |           pColl = pParse->db->pDfltColl;
 | 
|  |    477 |         }
 | 
|  |    478 | 
 | 
|  |    479 |         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
 | 
|  |    480 |         assert( j<pIdx->nColumn );
 | 
|  |    481 |         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
 | 
|  |    482 |       }
 | 
|  |    483 |       return pTerm;
 | 
|  |    484 |     }
 | 
|  |    485 |   }
 | 
|  |    486 |   return 0;
 | 
|  |    487 | }
 | 
|  |    488 | 
 | 
|  |    489 | /* Forward reference */
 | 
|  |    490 | static void exprAnalyze(SrcList*, WhereClause*, int);
 | 
|  |    491 | 
 | 
|  |    492 | /*
 | 
|  |    493 | ** Call exprAnalyze on all terms in a WHERE clause.  
 | 
|  |    494 | **
 | 
|  |    495 | **
 | 
|  |    496 | */
 | 
|  |    497 | static void exprAnalyzeAll(
 | 
|  |    498 |   SrcList *pTabList,       /* the FROM clause */
 | 
|  |    499 |   WhereClause *pWC         /* the WHERE clause to be analyzed */
 | 
|  |    500 | ){
 | 
|  |    501 |   int i;
 | 
|  |    502 |   for(i=pWC->nTerm-1; i>=0; i--){
 | 
|  |    503 |     exprAnalyze(pTabList, pWC, i);
 | 
|  |    504 |   }
 | 
|  |    505 | }
 | 
|  |    506 | 
 | 
|  |    507 | #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | 
|  |    508 | /*
 | 
|  |    509 | ** Check to see if the given expression is a LIKE or GLOB operator that
 | 
|  |    510 | ** can be optimized using inequality constraints.  Return TRUE if it is
 | 
|  |    511 | ** so and false if not.
 | 
|  |    512 | **
 | 
|  |    513 | ** In order for the operator to be optimizible, the RHS must be a string
 | 
|  |    514 | ** literal that does not begin with a wildcard.  
 | 
|  |    515 | */
 | 
|  |    516 | static int isLikeOrGlob(
 | 
|  |    517 |   sqlite3 *db,      /* The database */
 | 
|  |    518 |   Expr *pExpr,      /* Test this expression */
 | 
|  |    519 |   int *pnPattern,   /* Number of non-wildcard prefix characters */
 | 
|  |    520 |   int *pisComplete  /* True if the only wildcard is % in the last character */
 | 
|  |    521 | ){
 | 
|  |    522 |   const char *z;
 | 
|  |    523 |   Expr *pRight, *pLeft;
 | 
|  |    524 |   ExprList *pList;
 | 
|  |    525 |   int c, cnt;
 | 
|  |    526 |   int noCase;
 | 
|  |    527 |   char wc[3];
 | 
|  |    528 |   CollSeq *pColl;
 | 
|  |    529 | 
 | 
|  |    530 |   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
 | 
|  |    531 |     return 0;
 | 
|  |    532 |   }
 | 
|  |    533 |   pList = pExpr->pList;
 | 
|  |    534 |   pRight = pList->a[0].pExpr;
 | 
|  |    535 |   if( pRight->op!=TK_STRING ){
 | 
|  |    536 |     return 0;
 | 
|  |    537 |   }
 | 
|  |    538 |   pLeft = pList->a[1].pExpr;
 | 
|  |    539 |   if( pLeft->op!=TK_COLUMN ){
 | 
|  |    540 |     return 0;
 | 
|  |    541 |   }
 | 
|  |    542 |   pColl = pLeft->pColl;
 | 
|  |    543 |   if( pColl==0 ){
 | 
|  |    544 |     /* TODO: Coverage testing doesn't get this case. Is it actually possible
 | 
|  |    545 |     ** for an expression of type TK_COLUMN to not have an assigned collation 
 | 
|  |    546 |     ** sequence at this point?
 | 
|  |    547 |     */
 | 
|  |    548 |     pColl = db->pDfltColl;
 | 
|  |    549 |   }
 | 
|  |    550 |   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
 | 
|  |    551 |       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
 | 
|  |    552 |     return 0;
 | 
|  |    553 |   }
 | 
|  |    554 |   sqlite3DequoteExpr(db, pRight);
 | 
|  |    555 |   z = (char *)pRight->token.z;
 | 
|  |    556 |   cnt = 0;
 | 
|  |    557 |   if( z ){
 | 
|  |    558 |     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
 | 
|  |    559 |   }
 | 
|  |    560 |   if( cnt==0 || 255==(u8)z[cnt] ){
 | 
|  |    561 |     return 0;
 | 
|  |    562 |   }
 | 
|  |    563 |   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
 | 
|  |    564 |   *pnPattern = cnt;
 | 
|  |    565 |   return 1;
 | 
|  |    566 | }
 | 
|  |    567 | #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | 
|  |    568 | 
 | 
|  |    569 | 
 | 
|  |    570 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    571 | /*
 | 
|  |    572 | ** Check to see if the given expression is of the form
 | 
|  |    573 | **
 | 
|  |    574 | **         column MATCH expr
 | 
|  |    575 | **
 | 
|  |    576 | ** If it is then return TRUE.  If not, return FALSE.
 | 
|  |    577 | */
 | 
|  |    578 | static int isMatchOfColumn(
 | 
|  |    579 |   Expr *pExpr      /* Test this expression */
 | 
|  |    580 | ){
 | 
|  |    581 |   ExprList *pList;
 | 
|  |    582 | 
 | 
|  |    583 |   if( pExpr->op!=TK_FUNCTION ){
 | 
|  |    584 |     return 0;
 | 
|  |    585 |   }
 | 
|  |    586 |   if( pExpr->token.n!=5 ||
 | 
|  |    587 |        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
 | 
|  |    588 |     return 0;
 | 
|  |    589 |   }
 | 
|  |    590 |   pList = pExpr->pList;
 | 
|  |    591 |   if( pList->nExpr!=2 ){
 | 
|  |    592 |     return 0;
 | 
|  |    593 |   }
 | 
|  |    594 |   if( pList->a[1].pExpr->op != TK_COLUMN ){
 | 
|  |    595 |     return 0;
 | 
|  |    596 |   }
 | 
|  |    597 |   return 1;
 | 
|  |    598 | }
 | 
|  |    599 | #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
|  |    600 | 
 | 
|  |    601 | /*
 | 
|  |    602 | ** If the pBase expression originated in the ON or USING clause of
 | 
|  |    603 | ** a join, then transfer the appropriate markings over to derived.
 | 
|  |    604 | */
 | 
|  |    605 | static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
 | 
|  |    606 |   pDerived->flags |= pBase->flags & EP_FromJoin;
 | 
|  |    607 |   pDerived->iRightJoinTable = pBase->iRightJoinTable;
 | 
|  |    608 | }
 | 
|  |    609 | 
 | 
|  |    610 | #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 | 
|  |    611 | /*
 | 
|  |    612 | ** Return TRUE if the given term of an OR clause can be converted
 | 
|  |    613 | ** into an IN clause.  The iCursor and iColumn define the left-hand
 | 
|  |    614 | ** side of the IN clause.
 | 
|  |    615 | **
 | 
|  |    616 | ** The context is that we have multiple OR-connected equality terms
 | 
|  |    617 | ** like this:
 | 
|  |    618 | **
 | 
|  |    619 | **           a=<expr1> OR  a=<expr2> OR b=<expr3>  OR ...
 | 
|  |    620 | **
 | 
|  |    621 | ** The pOrTerm input to this routine corresponds to a single term of
 | 
|  |    622 | ** this OR clause.  In order for the term to be a condidate for
 | 
|  |    623 | ** conversion to an IN operator, the following must be true:
 | 
|  |    624 | **
 | 
|  |    625 | **     *  The left-hand side of the term must be the column which
 | 
|  |    626 | **        is identified by iCursor and iColumn.
 | 
|  |    627 | **
 | 
|  |    628 | **     *  If the right-hand side is also a column, then the affinities
 | 
|  |    629 | **        of both right and left sides must be such that no type
 | 
|  |    630 | **        conversions are required on the right.  (Ticket #2249)
 | 
|  |    631 | **
 | 
|  |    632 | ** If both of these conditions are true, then return true.  Otherwise
 | 
|  |    633 | ** return false.
 | 
|  |    634 | */
 | 
|  |    635 | static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
 | 
|  |    636 |   int affLeft, affRight;
 | 
|  |    637 |   assert( pOrTerm->eOperator==WO_EQ );
 | 
|  |    638 |   if( pOrTerm->leftCursor!=iCursor ){
 | 
|  |    639 |     return 0;
 | 
|  |    640 |   }
 | 
|  |    641 |   if( pOrTerm->leftColumn!=iColumn ){
 | 
|  |    642 |     return 0;
 | 
|  |    643 |   }
 | 
|  |    644 |   affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
 | 
|  |    645 |   if( affRight==0 ){
 | 
|  |    646 |     return 1;
 | 
|  |    647 |   }
 | 
|  |    648 |   affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
 | 
|  |    649 |   if( affRight!=affLeft ){
 | 
|  |    650 |     return 0;
 | 
|  |    651 |   }
 | 
|  |    652 |   return 1;
 | 
|  |    653 | }
 | 
|  |    654 | 
 | 
|  |    655 | /*
 | 
|  |    656 | ** Return true if the given term of an OR clause can be ignored during
 | 
|  |    657 | ** a check to make sure all OR terms are candidates for optimization.
 | 
|  |    658 | ** In other words, return true if a call to the orTermIsOptCandidate()
 | 
|  |    659 | ** above returned false but it is not necessary to disqualify the
 | 
|  |    660 | ** optimization.
 | 
|  |    661 | **
 | 
|  |    662 | ** Suppose the original OR phrase was this:
 | 
|  |    663 | **
 | 
|  |    664 | **           a=4  OR  a=11  OR  a=b
 | 
|  |    665 | **
 | 
|  |    666 | ** During analysis, the third term gets flipped around and duplicate
 | 
|  |    667 | ** so that we are left with this:
 | 
|  |    668 | **
 | 
|  |    669 | **           a=4  OR  a=11  OR  a=b  OR  b=a
 | 
|  |    670 | **
 | 
|  |    671 | ** Since the last two terms are duplicates, only one of them
 | 
|  |    672 | ** has to qualify in order for the whole phrase to qualify.  When
 | 
|  |    673 | ** this routine is called, we know that pOrTerm did not qualify.
 | 
|  |    674 | ** This routine merely checks to see if pOrTerm has a duplicate that
 | 
|  |    675 | ** might qualify.  If there is a duplicate that has not yet been
 | 
|  |    676 | ** disqualified, then return true.  If there are no duplicates, or
 | 
|  |    677 | ** the duplicate has also been disqualifed, return false.
 | 
|  |    678 | */
 | 
|  |    679 | static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
 | 
|  |    680 |   if( pOrTerm->flags & TERM_COPIED ){
 | 
|  |    681 |     /* This is the original term.  The duplicate is to the left had
 | 
|  |    682 |     ** has not yet been analyzed and thus has not yet been disqualified. */
 | 
|  |    683 |     return 1;
 | 
|  |    684 |   }
 | 
|  |    685 |   if( (pOrTerm->flags & TERM_VIRTUAL)!=0
 | 
|  |    686 |      && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
 | 
|  |    687 |     /* This is a duplicate term.  The original qualified so this one
 | 
|  |    688 |     ** does not have to. */
 | 
|  |    689 |     return 1;
 | 
|  |    690 |   }
 | 
|  |    691 |   /* This is either a singleton term or else it is a duplicate for
 | 
|  |    692 |   ** which the original did not qualify.  Either way we are done for. */
 | 
|  |    693 |   return 0;
 | 
|  |    694 | }
 | 
|  |    695 | #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
 | 
|  |    696 | 
 | 
|  |    697 | /*
 | 
|  |    698 | ** The input to this routine is an WhereTerm structure with only the
 | 
|  |    699 | ** "pExpr" field filled in.  The job of this routine is to analyze the
 | 
|  |    700 | ** subexpression and populate all the other fields of the WhereTerm
 | 
|  |    701 | ** structure.
 | 
|  |    702 | **
 | 
|  |    703 | ** If the expression is of the form "<expr> <op> X" it gets commuted
 | 
|  |    704 | ** to the standard form of "X <op> <expr>".  If the expression is of
 | 
|  |    705 | ** the form "X <op> Y" where both X and Y are columns, then the original
 | 
|  |    706 | ** expression is unchanged and a new virtual expression of the form
 | 
|  |    707 | ** "Y <op> X" is added to the WHERE clause and analyzed separately.
 | 
|  |    708 | */
 | 
|  |    709 | static void exprAnalyze(
 | 
|  |    710 |   SrcList *pSrc,            /* the FROM clause */
 | 
|  |    711 |   WhereClause *pWC,         /* the WHERE clause */
 | 
|  |    712 |   int idxTerm               /* Index of the term to be analyzed */
 | 
|  |    713 | ){
 | 
|  |    714 |   WhereTerm *pTerm;
 | 
|  |    715 |   ExprMaskSet *pMaskSet;
 | 
|  |    716 |   Expr *pExpr;
 | 
|  |    717 |   Bitmask prereqLeft;
 | 
|  |    718 |   Bitmask prereqAll;
 | 
|  |    719 |   int nPattern;
 | 
|  |    720 |   int isComplete;
 | 
|  |    721 |   int op;
 | 
|  |    722 |   Parse *pParse = pWC->pParse;
 | 
|  |    723 |   sqlite3 *db = pParse->db;
 | 
|  |    724 | 
 | 
|  |    725 |   if( db->mallocFailed ){
 | 
|  |    726 |     return;
 | 
|  |    727 |   }
 | 
|  |    728 |   pTerm = &pWC->a[idxTerm];
 | 
|  |    729 |   pMaskSet = pWC->pMaskSet;
 | 
|  |    730 |   pExpr = pTerm->pExpr;
 | 
|  |    731 |   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
 | 
|  |    732 |   op = pExpr->op;
 | 
|  |    733 |   if( op==TK_IN ){
 | 
|  |    734 |     assert( pExpr->pRight==0 );
 | 
|  |    735 |     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
 | 
|  |    736 |                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
 | 
|  |    737 |   }else if( op==TK_ISNULL ){
 | 
|  |    738 |     pTerm->prereqRight = 0;
 | 
|  |    739 |   }else{
 | 
|  |    740 |     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
 | 
|  |    741 |   }
 | 
|  |    742 |   prereqAll = exprTableUsage(pMaskSet, pExpr);
 | 
|  |    743 |   if( ExprHasProperty(pExpr, EP_FromJoin) ){
 | 
|  |    744 |     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
 | 
|  |    745 |   }
 | 
|  |    746 |   pTerm->prereqAll = prereqAll;
 | 
|  |    747 |   pTerm->leftCursor = -1;
 | 
|  |    748 |   pTerm->iParent = -1;
 | 
|  |    749 |   pTerm->eOperator = 0;
 | 
|  |    750 |   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
 | 
|  |    751 |     Expr *pLeft = pExpr->pLeft;
 | 
|  |    752 |     Expr *pRight = pExpr->pRight;
 | 
|  |    753 |     if( pLeft->op==TK_COLUMN ){
 | 
|  |    754 |       pTerm->leftCursor = pLeft->iTable;
 | 
|  |    755 |       pTerm->leftColumn = pLeft->iColumn;
 | 
|  |    756 |       pTerm->eOperator = operatorMask(op);
 | 
|  |    757 |     }
 | 
|  |    758 |     if( pRight && pRight->op==TK_COLUMN ){
 | 
|  |    759 |       WhereTerm *pNew;
 | 
|  |    760 |       Expr *pDup;
 | 
|  |    761 |       if( pTerm->leftCursor>=0 ){
 | 
|  |    762 |         int idxNew;
 | 
|  |    763 |         pDup = sqlite3ExprDup(db, pExpr);
 | 
|  |    764 |         if( db->mallocFailed ){
 | 
|  |    765 |           sqlite3ExprDelete(pDup);
 | 
|  |    766 |           return;
 | 
|  |    767 |         }
 | 
|  |    768 |         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
|  |    769 |         if( idxNew==0 ) return;
 | 
|  |    770 |         pNew = &pWC->a[idxNew];
 | 
|  |    771 |         pNew->iParent = idxTerm;
 | 
|  |    772 |         pTerm = &pWC->a[idxTerm];
 | 
|  |    773 |         pTerm->nChild = 1;
 | 
|  |    774 |         pTerm->flags |= TERM_COPIED;
 | 
|  |    775 |       }else{
 | 
|  |    776 |         pDup = pExpr;
 | 
|  |    777 |         pNew = pTerm;
 | 
|  |    778 |       }
 | 
|  |    779 |       exprCommute(pDup);
 | 
|  |    780 |       pLeft = pDup->pLeft;
 | 
|  |    781 |       pNew->leftCursor = pLeft->iTable;
 | 
|  |    782 |       pNew->leftColumn = pLeft->iColumn;
 | 
|  |    783 |       pNew->prereqRight = prereqLeft;
 | 
|  |    784 |       pNew->prereqAll = prereqAll;
 | 
|  |    785 |       pNew->eOperator = operatorMask(pDup->op);
 | 
|  |    786 |     }
 | 
|  |    787 |   }
 | 
|  |    788 | 
 | 
|  |    789 | #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
 | 
|  |    790 |   /* If a term is the BETWEEN operator, create two new virtual terms
 | 
|  |    791 |   ** that define the range that the BETWEEN implements.
 | 
|  |    792 |   */
 | 
|  |    793 |   else if( pExpr->op==TK_BETWEEN ){
 | 
|  |    794 |     ExprList *pList = pExpr->pList;
 | 
|  |    795 |     int i;
 | 
|  |    796 |     static const u8 ops[] = {TK_GE, TK_LE};
 | 
|  |    797 |     assert( pList!=0 );
 | 
|  |    798 |     assert( pList->nExpr==2 );
 | 
|  |    799 |     for(i=0; i<2; i++){
 | 
|  |    800 |       Expr *pNewExpr;
 | 
|  |    801 |       int idxNew;
 | 
|  |    802 |       pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
 | 
|  |    803 |                              sqlite3ExprDup(db, pList->a[i].pExpr), 0);
 | 
|  |    804 |       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
|  |    805 |       exprAnalyze(pSrc, pWC, idxNew);
 | 
|  |    806 |       pTerm = &pWC->a[idxTerm];
 | 
|  |    807 |       pWC->a[idxNew].iParent = idxTerm;
 | 
|  |    808 |     }
 | 
|  |    809 |     pTerm->nChild = 2;
 | 
|  |    810 |   }
 | 
|  |    811 | #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
 | 
|  |    812 | 
 | 
|  |    813 | #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 | 
|  |    814 |   /* Attempt to convert OR-connected terms into an IN operator so that
 | 
|  |    815 |   ** they can make use of indices.  Example:
 | 
|  |    816 |   **
 | 
|  |    817 |   **      x = expr1  OR  expr2 = x  OR  x = expr3
 | 
|  |    818 |   **
 | 
|  |    819 |   ** is converted into
 | 
|  |    820 |   **
 | 
|  |    821 |   **      x IN (expr1,expr2,expr3)
 | 
|  |    822 |   **
 | 
|  |    823 |   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
 | 
|  |    824 |   ** the compiler for the the IN operator is part of sub-queries.
 | 
|  |    825 |   */
 | 
|  |    826 |   else if( pExpr->op==TK_OR ){
 | 
|  |    827 |     int ok;
 | 
|  |    828 |     int i, j;
 | 
|  |    829 |     int iColumn, iCursor;
 | 
|  |    830 |     WhereClause sOr;
 | 
|  |    831 |     WhereTerm *pOrTerm;
 | 
|  |    832 | 
 | 
|  |    833 |     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
 | 
|  |    834 |     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
 | 
|  |    835 |     whereSplit(&sOr, pExpr, TK_OR);
 | 
|  |    836 |     exprAnalyzeAll(pSrc, &sOr);
 | 
|  |    837 |     assert( sOr.nTerm>=2 );
 | 
|  |    838 |     j = 0;
 | 
|  |    839 |     do{
 | 
|  |    840 |       assert( j<sOr.nTerm );
 | 
|  |    841 |       iColumn = sOr.a[j].leftColumn;
 | 
|  |    842 |       iCursor = sOr.a[j].leftCursor;
 | 
|  |    843 |       ok = iCursor>=0;
 | 
|  |    844 |       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | 
|  |    845 |         if( pOrTerm->eOperator!=WO_EQ ){
 | 
|  |    846 |           goto or_not_possible;
 | 
|  |    847 |         }
 | 
|  |    848 |         if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
 | 
|  |    849 |           pOrTerm->flags |= TERM_OR_OK;
 | 
|  |    850 |         }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
 | 
|  |    851 |           pOrTerm->flags &= ~TERM_OR_OK;
 | 
|  |    852 |         }else{
 | 
|  |    853 |           ok = 0;
 | 
|  |    854 |         }
 | 
|  |    855 |       }
 | 
|  |    856 |     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
 | 
|  |    857 |     if( ok ){
 | 
|  |    858 |       ExprList *pList = 0;
 | 
|  |    859 |       Expr *pNew, *pDup;
 | 
|  |    860 |       Expr *pLeft = 0;
 | 
|  |    861 |       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | 
|  |    862 |         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
 | 
|  |    863 |         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
 | 
|  |    864 |         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
 | 
|  |    865 |         pLeft = pOrTerm->pExpr->pLeft;
 | 
|  |    866 |       }
 | 
|  |    867 |       assert( pLeft!=0 );
 | 
|  |    868 |       pDup = sqlite3ExprDup(db, pLeft);
 | 
|  |    869 |       pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
 | 
|  |    870 |       if( pNew ){
 | 
|  |    871 |         int idxNew;
 | 
|  |    872 |         transferJoinMarkings(pNew, pExpr);
 | 
|  |    873 |         pNew->pList = pList;
 | 
|  |    874 |         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
|  |    875 |         exprAnalyze(pSrc, pWC, idxNew);
 | 
|  |    876 |         pTerm = &pWC->a[idxTerm];
 | 
|  |    877 |         pWC->a[idxNew].iParent = idxTerm;
 | 
|  |    878 |         pTerm->nChild = 1;
 | 
|  |    879 |       }else{
 | 
|  |    880 |         sqlite3ExprListDelete(pList);
 | 
|  |    881 |       }
 | 
|  |    882 |     }
 | 
|  |    883 | or_not_possible:
 | 
|  |    884 |     whereClauseClear(&sOr);
 | 
|  |    885 |   }
 | 
|  |    886 | #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
 | 
|  |    887 | 
 | 
|  |    888 | #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | 
|  |    889 |   /* Add constraints to reduce the search space on a LIKE or GLOB
 | 
|  |    890 |   ** operator.
 | 
|  |    891 |   */
 | 
|  |    892 |   if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){
 | 
|  |    893 |     Expr *pLeft, *pRight;
 | 
|  |    894 |     Expr *pStr1, *pStr2;
 | 
|  |    895 |     Expr *pNewExpr1, *pNewExpr2;
 | 
|  |    896 |     int idxNew1, idxNew2;
 | 
|  |    897 | 
 | 
|  |    898 |     pLeft = pExpr->pList->a[1].pExpr;
 | 
|  |    899 |     pRight = pExpr->pList->a[0].pExpr;
 | 
|  |    900 |     pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
 | 
|  |    901 |     if( pStr1 ){
 | 
|  |    902 |       sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
 | 
|  |    903 |       pStr1->token.n = nPattern;
 | 
|  |    904 |       pStr1->flags = EP_Dequoted;
 | 
|  |    905 |     }
 | 
|  |    906 |     pStr2 = sqlite3ExprDup(db, pStr1);
 | 
|  |    907 |     if( !db->mallocFailed ){
 | 
|  |    908 |       assert( pStr2->token.dyn );
 | 
|  |    909 |       ++*(u8*)&pStr2->token.z[nPattern-1];
 | 
|  |    910 |     }
 | 
|  |    911 |     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
 | 
|  |    912 |     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
|  |    913 |     exprAnalyze(pSrc, pWC, idxNew1);
 | 
|  |    914 |     pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
 | 
|  |    915 |     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
|  |    916 |     exprAnalyze(pSrc, pWC, idxNew2);
 | 
|  |    917 |     pTerm = &pWC->a[idxTerm];
 | 
|  |    918 |     if( isComplete ){
 | 
|  |    919 |       pWC->a[idxNew1].iParent = idxTerm;
 | 
|  |    920 |       pWC->a[idxNew2].iParent = idxTerm;
 | 
|  |    921 |       pTerm->nChild = 2;
 | 
|  |    922 |     }
 | 
|  |    923 |   }
 | 
|  |    924 | #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | 
|  |    925 | 
 | 
|  |    926 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    927 |   /* Add a WO_MATCH auxiliary term to the constraint set if the
 | 
|  |    928 |   ** current expression is of the form:  column MATCH expr.
 | 
|  |    929 |   ** This information is used by the xBestIndex methods of
 | 
|  |    930 |   ** virtual tables.  The native query optimizer does not attempt
 | 
|  |    931 |   ** to do anything with MATCH functions.
 | 
|  |    932 |   */
 | 
|  |    933 |   if( isMatchOfColumn(pExpr) ){
 | 
|  |    934 |     int idxNew;
 | 
|  |    935 |     Expr *pRight, *pLeft;
 | 
|  |    936 |     WhereTerm *pNewTerm;
 | 
|  |    937 |     Bitmask prereqColumn, prereqExpr;
 | 
|  |    938 | 
 | 
|  |    939 |     pRight = pExpr->pList->a[0].pExpr;
 | 
|  |    940 |     pLeft = pExpr->pList->a[1].pExpr;
 | 
|  |    941 |     prereqExpr = exprTableUsage(pMaskSet, pRight);
 | 
|  |    942 |     prereqColumn = exprTableUsage(pMaskSet, pLeft);
 | 
|  |    943 |     if( (prereqExpr & prereqColumn)==0 ){
 | 
|  |    944 |       Expr *pNewExpr;
 | 
|  |    945 |       pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
 | 
|  |    946 |       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 | 
|  |    947 |       pNewTerm = &pWC->a[idxNew];
 | 
|  |    948 |       pNewTerm->prereqRight = prereqExpr;
 | 
|  |    949 |       pNewTerm->leftCursor = pLeft->iTable;
 | 
|  |    950 |       pNewTerm->leftColumn = pLeft->iColumn;
 | 
|  |    951 |       pNewTerm->eOperator = WO_MATCH;
 | 
|  |    952 |       pNewTerm->iParent = idxTerm;
 | 
|  |    953 |       pTerm = &pWC->a[idxTerm];
 | 
|  |    954 |       pTerm->nChild = 1;
 | 
|  |    955 |       pTerm->flags |= TERM_COPIED;
 | 
|  |    956 |       pNewTerm->prereqAll = pTerm->prereqAll;
 | 
|  |    957 |     }
 | 
|  |    958 |   }
 | 
|  |    959 | #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
|  |    960 | }
 | 
|  |    961 | 
 | 
|  |    962 | /*
 | 
|  |    963 | ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
 | 
|  |    964 | ** a reference to any table other than the iBase table.
 | 
|  |    965 | */
 | 
|  |    966 | static int referencesOtherTables(
 | 
|  |    967 |   ExprList *pList,          /* Search expressions in ths list */
 | 
|  |    968 |   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
 | 
|  |    969 |   int iFirst,               /* Be searching with the iFirst-th expression */
 | 
|  |    970 |   int iBase                 /* Ignore references to this table */
 | 
|  |    971 | ){
 | 
|  |    972 |   Bitmask allowed = ~getMask(pMaskSet, iBase);
 | 
|  |    973 |   while( iFirst<pList->nExpr ){
 | 
|  |    974 |     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
 | 
|  |    975 |       return 1;
 | 
|  |    976 |     }
 | 
|  |    977 |   }
 | 
|  |    978 |   return 0;
 | 
|  |    979 | }
 | 
|  |    980 | 
 | 
|  |    981 | 
 | 
|  |    982 | /*
 | 
|  |    983 | ** This routine decides if pIdx can be used to satisfy the ORDER BY
 | 
|  |    984 | ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
 | 
|  |    985 | ** ORDER BY clause, this routine returns 0.
 | 
|  |    986 | **
 | 
|  |    987 | ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
 | 
|  |    988 | ** left-most table in the FROM clause of that same SELECT statement and
 | 
|  |    989 | ** the table has a cursor number of "base".  pIdx is an index on pTab.
 | 
|  |    990 | **
 | 
|  |    991 | ** nEqCol is the number of columns of pIdx that are used as equality
 | 
|  |    992 | ** constraints.  Any of these columns may be missing from the ORDER BY
 | 
|  |    993 | ** clause and the match can still be a success.
 | 
|  |    994 | **
 | 
|  |    995 | ** All terms of the ORDER BY that match against the index must be either
 | 
|  |    996 | ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
 | 
|  |    997 | ** index do not need to satisfy this constraint.)  The *pbRev value is
 | 
|  |    998 | ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
 | 
|  |    999 | ** the ORDER BY clause is all ASC.
 | 
|  |   1000 | */
 | 
|  |   1001 | static int isSortingIndex(
 | 
|  |   1002 |   Parse *pParse,          /* Parsing context */
 | 
|  |   1003 |   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
 | 
|  |   1004 |   Index *pIdx,            /* The index we are testing */
 | 
|  |   1005 |   int base,               /* Cursor number for the table to be sorted */
 | 
|  |   1006 |   ExprList *pOrderBy,     /* The ORDER BY clause */
 | 
|  |   1007 |   int nEqCol,             /* Number of index columns with == constraints */
 | 
|  |   1008 |   int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | 
|  |   1009 | ){
 | 
|  |   1010 |   int i, j;                       /* Loop counters */
 | 
|  |   1011 |   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
 | 
|  |   1012 |   int nTerm;                      /* Number of ORDER BY terms */
 | 
|  |   1013 |   ExprList::ExprList_item *pTerm;    /* A term of the ORDER BY clause */
 | 
|  |   1014 |   sqlite3 *db = pParse->db;
 | 
|  |   1015 | 
 | 
|  |   1016 |   assert( pOrderBy!=0 );
 | 
|  |   1017 |   nTerm = pOrderBy->nExpr;
 | 
|  |   1018 |   assert( nTerm>0 );
 | 
|  |   1019 | 
 | 
|  |   1020 |   /* Match terms of the ORDER BY clause against columns of
 | 
|  |   1021 |   ** the index.
 | 
|  |   1022 |   **
 | 
|  |   1023 |   ** Note that indices have pIdx->nColumn regular columns plus
 | 
|  |   1024 |   ** one additional column containing the rowid.  The rowid column
 | 
|  |   1025 |   ** of the index is also allowed to match against the ORDER BY
 | 
|  |   1026 |   ** clause.
 | 
|  |   1027 |   */
 | 
|  |   1028 |   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
 | 
|  |   1029 |     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
 | 
|  |   1030 |     CollSeq *pColl;    /* The collating sequence of pExpr */
 | 
|  |   1031 |     int termSortOrder; /* Sort order for this term */
 | 
|  |   1032 |     int iColumn;       /* The i-th column of the index.  -1 for rowid */
 | 
|  |   1033 |     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
 | 
|  |   1034 |     const char *zColl; /* Name of the collating sequence for i-th index term */
 | 
|  |   1035 | 
 | 
|  |   1036 |     pExpr = pTerm->pExpr;
 | 
|  |   1037 |     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
 | 
|  |   1038 |       /* Can not use an index sort on anything that is not a column in the
 | 
|  |   1039 |       ** left-most table of the FROM clause */
 | 
|  |   1040 |       break;
 | 
|  |   1041 |     }
 | 
|  |   1042 |     pColl = sqlite3ExprCollSeq(pParse, pExpr);
 | 
|  |   1043 |     if( !pColl ){
 | 
|  |   1044 |       pColl = db->pDfltColl;
 | 
|  |   1045 |     }
 | 
|  |   1046 |     if( i<pIdx->nColumn ){
 | 
|  |   1047 |       iColumn = pIdx->aiColumn[i];
 | 
|  |   1048 |       if( iColumn==pIdx->pTable->iPKey ){
 | 
|  |   1049 |         iColumn = -1;
 | 
|  |   1050 |       }
 | 
|  |   1051 |       iSortOrder = pIdx->aSortOrder[i];
 | 
|  |   1052 |       zColl = pIdx->azColl[i];
 | 
|  |   1053 |     }else{
 | 
|  |   1054 |       iColumn = -1;
 | 
|  |   1055 |       iSortOrder = 0;
 | 
|  |   1056 |       zColl = pColl->zName;
 | 
|  |   1057 |     }
 | 
|  |   1058 |     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
 | 
|  |   1059 |       /* Term j of the ORDER BY clause does not match column i of the index */
 | 
|  |   1060 |       if( i<nEqCol ){
 | 
|  |   1061 |         /* If an index column that is constrained by == fails to match an
 | 
|  |   1062 |         ** ORDER BY term, that is OK.  Just ignore that column of the index
 | 
|  |   1063 |         */
 | 
|  |   1064 |         continue;
 | 
|  |   1065 |       }else{
 | 
|  |   1066 |         /* If an index column fails to match and is not constrained by ==
 | 
|  |   1067 |         ** then the index cannot satisfy the ORDER BY constraint.
 | 
|  |   1068 |         */
 | 
|  |   1069 |         return 0;
 | 
|  |   1070 |       }
 | 
|  |   1071 |     }
 | 
|  |   1072 |     assert( pIdx->aSortOrder!=0 );
 | 
|  |   1073 |     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
 | 
|  |   1074 |     assert( iSortOrder==0 || iSortOrder==1 );
 | 
|  |   1075 |     termSortOrder = iSortOrder ^ pTerm->sortOrder;
 | 
|  |   1076 |     if( i>nEqCol ){
 | 
|  |   1077 |       if( termSortOrder!=sortOrder ){
 | 
|  |   1078 |         /* Indices can only be used if all ORDER BY terms past the
 | 
|  |   1079 |         ** equality constraints are all either DESC or ASC. */
 | 
|  |   1080 |         return 0;
 | 
|  |   1081 |       }
 | 
|  |   1082 |     }else{
 | 
|  |   1083 |       sortOrder = termSortOrder;
 | 
|  |   1084 |     }
 | 
|  |   1085 |     j++;
 | 
|  |   1086 |     pTerm++;
 | 
|  |   1087 |     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 | 
|  |   1088 |       /* If the indexed column is the primary key and everything matches
 | 
|  |   1089 |       ** so far and none of the ORDER BY terms to the right reference other
 | 
|  |   1090 |       ** tables in the join, then we are assured that the index can be used 
 | 
|  |   1091 |       ** to sort because the primary key is unique and so none of the other
 | 
|  |   1092 |       ** columns will make any difference
 | 
|  |   1093 |       */
 | 
|  |   1094 |       j = nTerm;
 | 
|  |   1095 |     }
 | 
|  |   1096 |   }
 | 
|  |   1097 | 
 | 
|  |   1098 |   *pbRev = sortOrder!=0;
 | 
|  |   1099 |   if( j>=nTerm ){
 | 
|  |   1100 |     /* All terms of the ORDER BY clause are covered by this index so
 | 
|  |   1101 |     ** this index can be used for sorting. */
 | 
|  |   1102 |     return 1;
 | 
|  |   1103 |   }
 | 
|  |   1104 |   if( pIdx->onError!=OE_None && i==pIdx->nColumn
 | 
|  |   1105 |       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 | 
|  |   1106 |     /* All terms of this index match some prefix of the ORDER BY clause
 | 
|  |   1107 |     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
 | 
|  |   1108 |     ** clause reference other tables in a join.  If this is all true then
 | 
|  |   1109 |     ** the order by clause is superfluous. */
 | 
|  |   1110 |     return 1;
 | 
|  |   1111 |   }
 | 
|  |   1112 |   return 0;
 | 
|  |   1113 | }
 | 
|  |   1114 | 
 | 
|  |   1115 | /*
 | 
|  |   1116 | ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
 | 
|  |   1117 | ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
 | 
|  |   1118 | ** true for reverse ROWID and false for forward ROWID order.
 | 
|  |   1119 | */
 | 
|  |   1120 | static int sortableByRowid(
 | 
|  |   1121 |   int base,               /* Cursor number for table to be sorted */
 | 
|  |   1122 |   ExprList *pOrderBy,     /* The ORDER BY clause */
 | 
|  |   1123 |   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
 | 
|  |   1124 |   int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | 
|  |   1125 | ){
 | 
|  |   1126 |   Expr *p;
 | 
|  |   1127 | 
 | 
|  |   1128 |   assert( pOrderBy!=0 );
 | 
|  |   1129 |   assert( pOrderBy->nExpr>0 );
 | 
|  |   1130 |   p = pOrderBy->a[0].pExpr;
 | 
|  |   1131 |   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
 | 
|  |   1132 |     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
 | 
|  |   1133 |     *pbRev = pOrderBy->a[0].sortOrder;
 | 
|  |   1134 |     return 1;
 | 
|  |   1135 |   }
 | 
|  |   1136 |   return 0;
 | 
|  |   1137 | }
 | 
|  |   1138 | 
 | 
|  |   1139 | /*
 | 
|  |   1140 | ** Prepare a crude estimate of the logarithm of the input value.
 | 
|  |   1141 | ** The results need not be exact.  This is only used for estimating
 | 
|  |   1142 | ** the total cost of performing operatings with O(logN) or O(NlogN)
 | 
|  |   1143 | ** complexity.  Because N is just a guess, it is no great tragedy if
 | 
|  |   1144 | ** logN is a little off.
 | 
|  |   1145 | */
 | 
|  |   1146 | static double estLog(double N){
 | 
|  |   1147 |   double logN = 1;
 | 
|  |   1148 |   double x = 10;
 | 
|  |   1149 |   while( N>x ){
 | 
|  |   1150 |     logN += 1;
 | 
|  |   1151 |     x *= 10;
 | 
|  |   1152 |   }
 | 
|  |   1153 |   return logN;
 | 
|  |   1154 | }
 | 
|  |   1155 | 
 | 
|  |   1156 | /*
 | 
|  |   1157 | ** Two routines for printing the content of an sqlite3_index_info
 | 
|  |   1158 | ** structure.  Used for testing and debugging only.  If neither
 | 
|  |   1159 | ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
 | 
|  |   1160 | ** are no-ops.
 | 
|  |   1161 | */
 | 
|  |   1162 | #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
 | 
|  |   1163 | static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
 | 
|  |   1164 |   int i;
 | 
|  |   1165 |   if( !sqlite3_where_trace ) return;
 | 
|  |   1166 |   for(i=0; i<p->nConstraint; i++){
 | 
|  |   1167 |     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
 | 
|  |   1168 |        i,
 | 
|  |   1169 |        p->aConstraint[i].iColumn,
 | 
|  |   1170 |        p->aConstraint[i].iTermOffset,
 | 
|  |   1171 |        p->aConstraint[i].op,
 | 
|  |   1172 |        p->aConstraint[i].usable);
 | 
|  |   1173 |   }
 | 
|  |   1174 |   for(i=0; i<p->nOrderBy; i++){
 | 
|  |   1175 |     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
 | 
|  |   1176 |        i,
 | 
|  |   1177 |        p->aOrderBy[i].iColumn,
 | 
|  |   1178 |        p->aOrderBy[i].desc);
 | 
|  |   1179 |   }
 | 
|  |   1180 | }
 | 
|  |   1181 | static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
 | 
|  |   1182 |   int i;
 | 
|  |   1183 |   if( !sqlite3_where_trace ) return;
 | 
|  |   1184 |   for(i=0; i<p->nConstraint; i++){
 | 
|  |   1185 |     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
 | 
|  |   1186 |        i,
 | 
|  |   1187 |        p->aConstraintUsage[i].argvIndex,
 | 
|  |   1188 |        p->aConstraintUsage[i].omit);
 | 
|  |   1189 |   }
 | 
|  |   1190 |   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
 | 
|  |   1191 |   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
 | 
|  |   1192 |   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
 | 
|  |   1193 |   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
 | 
|  |   1194 | }
 | 
|  |   1195 | #else
 | 
|  |   1196 | #define TRACE_IDX_INPUTS(A)
 | 
|  |   1197 | #define TRACE_IDX_OUTPUTS(A)
 | 
|  |   1198 | #endif
 | 
|  |   1199 | 
 | 
|  |   1200 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   1201 | /*
 | 
|  |   1202 | ** Compute the best index for a virtual table.
 | 
|  |   1203 | **
 | 
|  |   1204 | ** The best index is computed by the xBestIndex method of the virtual
 | 
|  |   1205 | ** table module.  This routine is really just a wrapper that sets up
 | 
|  |   1206 | ** the sqlite3_index_info structure that is used to communicate with
 | 
|  |   1207 | ** xBestIndex.
 | 
|  |   1208 | **
 | 
|  |   1209 | ** In a join, this routine might be called multiple times for the
 | 
|  |   1210 | ** same virtual table.  The sqlite3_index_info structure is created
 | 
|  |   1211 | ** and initialized on the first invocation and reused on all subsequent
 | 
|  |   1212 | ** invocations.  The sqlite3_index_info structure is also used when
 | 
|  |   1213 | ** code is generated to access the virtual table.  The whereInfoDelete() 
 | 
|  |   1214 | ** routine takes care of freeing the sqlite3_index_info structure after
 | 
|  |   1215 | ** everybody has finished with it.
 | 
|  |   1216 | */
 | 
|  |   1217 | static double bestVirtualIndex(
 | 
|  |   1218 |   Parse *pParse,                 /* The parsing context */
 | 
|  |   1219 |   WhereClause *pWC,              /* The WHERE clause */
 | 
|  |   1220 |   SrcList::SrcList_item *pSrc,     /* The FROM clause term to search */
 | 
|  |   1221 |   Bitmask notReady,              /* Mask of cursors that are not available */
 | 
|  |   1222 |   ExprList *pOrderBy,            /* The order by clause */
 | 
|  |   1223 |   int orderByUsable,             /* True if we can potential sort */
 | 
|  |   1224 |   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
 | 
|  |   1225 | ){
 | 
|  |   1226 |   Table *pTab = pSrc->pTab;
 | 
|  |   1227 |   sqlite3_index_info *pIdxInfo;
 | 
|  |   1228 |   sqlite3_index_info::sqlite3_index_constraint *pIdxCons;
 | 
|  |   1229 |   sqlite3_index_info::sqlite3_index_orderby *pIdxOrderBy;
 | 
|  |   1230 |   sqlite3_index_info::sqlite3_index_constraint_usage *pUsage;
 | 
|  |   1231 |   WhereTerm *pTerm;
 | 
|  |   1232 |   int i, j;
 | 
|  |   1233 |   int nOrderBy;
 | 
|  |   1234 |   int rc;
 | 
|  |   1235 | 
 | 
|  |   1236 |   /* If the sqlite3_index_info structure has not been previously
 | 
|  |   1237 |   ** allocated and initialized for this virtual table, then allocate
 | 
|  |   1238 |   ** and initialize it now
 | 
|  |   1239 |   */
 | 
|  |   1240 |   pIdxInfo = *ppIdxInfo;
 | 
|  |   1241 |   if( pIdxInfo==0 ){
 | 
|  |   1242 |     WhereTerm *pTerm;
 | 
|  |   1243 |     int nTerm;
 | 
|  |   1244 |     WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
 | 
|  |   1245 | 
 | 
|  |   1246 |     /* Count the number of possible WHERE clause constraints referring
 | 
|  |   1247 |     ** to this virtual table */
 | 
|  |   1248 |     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 | 
|  |   1249 |       if( pTerm->leftCursor != pSrc->iCursor ) continue;
 | 
|  |   1250 |       if( pTerm->eOperator==WO_IN ) continue;
 | 
|  |   1251 |       if( pTerm->eOperator==WO_ISNULL ) continue;
 | 
|  |   1252 |       nTerm++;
 | 
|  |   1253 |     }
 | 
|  |   1254 | 
 | 
|  |   1255 |     /* If the ORDER BY clause contains only columns in the current 
 | 
|  |   1256 |     ** virtual table then allocate space for the aOrderBy part of
 | 
|  |   1257 |     ** the sqlite3_index_info structure.
 | 
|  |   1258 |     */
 | 
|  |   1259 |     nOrderBy = 0;
 | 
|  |   1260 |     if( pOrderBy ){
 | 
|  |   1261 |       for(i=0; i<pOrderBy->nExpr; i++){
 | 
|  |   1262 |         Expr *pExpr = pOrderBy->a[i].pExpr;
 | 
|  |   1263 |         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
 | 
|  |   1264 |       }
 | 
|  |   1265 |       if( i==pOrderBy->nExpr ){
 | 
|  |   1266 |         nOrderBy = pOrderBy->nExpr;
 | 
|  |   1267 |       }
 | 
|  |   1268 |     }
 | 
|  |   1269 | 
 | 
|  |   1270 |     /* Allocate the sqlite3_index_info structure
 | 
|  |   1271 |     */
 | 
|  |   1272 |     pIdxInfo = (sqlite3_index_info*)sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
 | 
|  |   1273 |                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
 | 
|  |   1274 |                              + sizeof(*pIdxOrderBy)*nOrderBy );
 | 
|  |   1275 |     if( pIdxInfo==0 ){
 | 
|  |   1276 |       sqlite3ErrorMsg(pParse, "out of memory");
 | 
|  |   1277 |       return 0.0;
 | 
|  |   1278 |     }
 | 
|  |   1279 |     *ppIdxInfo = pIdxInfo;
 | 
|  |   1280 | 
 | 
|  |   1281 |     /* Initialize the structure.  The sqlite3_index_info structure contains
 | 
|  |   1282 |     ** many fields that are declared "const" to prevent xBestIndex from
 | 
|  |   1283 |     ** changing them.  We have to do some funky casting in order to
 | 
|  |   1284 |     ** initialize those fields.
 | 
|  |   1285 |     */
 | 
|  |   1286 | 	pIdxCons = (sqlite3_index_info::sqlite3_index_constraint*)&pIdxInfo[1];
 | 
|  |   1287 | 	pIdxOrderBy = (sqlite3_index_info::sqlite3_index_orderby*)&pIdxCons[nTerm];
 | 
|  |   1288 | 	pUsage = (sqlite3_index_info::sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
 | 
|  |   1289 |     *(int*)&pIdxInfo->nConstraint = nTerm;
 | 
|  |   1290 |     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
 | 
|  |   1291 | 	*(sqlite3_index_info::sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
 | 
|  |   1292 | 	*(sqlite3_index_info::sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
 | 
|  |   1293 | 	*(sqlite3_index_info::sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
 | 
|  |   1294 |                                                                      pUsage;
 | 
|  |   1295 | 
 | 
|  |   1296 |     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 | 
|  |   1297 |       if( pTerm->leftCursor != pSrc->iCursor ) continue;
 | 
|  |   1298 |       if( pTerm->eOperator==WO_IN ) continue;
 | 
|  |   1299 |       if( pTerm->eOperator==WO_ISNULL ) continue;
 | 
|  |   1300 |       pIdxCons[j].iColumn = pTerm->leftColumn;
 | 
|  |   1301 |       pIdxCons[j].iTermOffset = i;
 | 
|  |   1302 |       pIdxCons[j].op = pTerm->eOperator;
 | 
|  |   1303 |       /* The direct assignment in the previous line is possible only because
 | 
|  |   1304 |       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
 | 
|  |   1305 |       ** following asserts verify this fact. */
 | 
|  |   1306 |       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
 | 
|  |   1307 |       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
 | 
|  |   1308 |       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
 | 
|  |   1309 |       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
 | 
|  |   1310 |       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
 | 
|  |   1311 |       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
 | 
|  |   1312 |       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
 | 
|  |   1313 |       j++;
 | 
|  |   1314 |     }
 | 
|  |   1315 |     for(i=0; i<nOrderBy; i++){
 | 
|  |   1316 |       Expr *pExpr = pOrderBy->a[i].pExpr;
 | 
|  |   1317 |       pIdxOrderBy[i].iColumn = pExpr->iColumn;
 | 
|  |   1318 |       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
 | 
|  |   1319 |     }
 | 
|  |   1320 |   }
 | 
|  |   1321 | 
 | 
|  |   1322 |   /* At this point, the sqlite3_index_info structure that pIdxInfo points
 | 
|  |   1323 |   ** to will have been initialized, either during the current invocation or
 | 
|  |   1324 |   ** during some prior invocation.  Now we just have to customize the
 | 
|  |   1325 |   ** details of pIdxInfo for the current invocation and pass it to
 | 
|  |   1326 |   ** xBestIndex.
 | 
|  |   1327 |   */
 | 
|  |   1328 | 
 | 
|  |   1329 |   /* The module name must be defined. Also, by this point there must
 | 
|  |   1330 |   ** be a pointer to an sqlite3_vtab structure. Otherwise
 | 
|  |   1331 |   ** sqlite3ViewGetColumnNames() would have picked up the error. 
 | 
|  |   1332 |   */
 | 
|  |   1333 |   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
 | 
|  |   1334 |   assert( pTab->pVtab );
 | 
|  |   1335 | #if 0
 | 
|  |   1336 |   if( pTab->pVtab==0 ){
 | 
|  |   1337 |     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
 | 
|  |   1338 |         pTab->azModuleArg[0], pTab->zName);
 | 
|  |   1339 |     return 0.0;
 | 
|  |   1340 |   }
 | 
|  |   1341 | #endif
 | 
|  |   1342 | 
 | 
|  |   1343 |   /* Set the aConstraint[].usable fields and initialize all 
 | 
|  |   1344 |   ** output variables to zero.
 | 
|  |   1345 |   **
 | 
|  |   1346 |   ** aConstraint[].usable is true for constraints where the right-hand
 | 
|  |   1347 |   ** side contains only references to tables to the left of the current
 | 
|  |   1348 |   ** table.  In other words, if the constraint is of the form:
 | 
|  |   1349 |   **
 | 
|  |   1350 |   **           column = expr
 | 
|  |   1351 |   **
 | 
|  |   1352 |   ** and we are evaluating a join, then the constraint on column is 
 | 
|  |   1353 |   ** only valid if all tables referenced in expr occur to the left
 | 
|  |   1354 |   ** of the table containing column.
 | 
|  |   1355 |   **
 | 
|  |   1356 |   ** The aConstraints[] array contains entries for all constraints
 | 
|  |   1357 |   ** on the current table.  That way we only have to compute it once
 | 
|  |   1358 |   ** even though we might try to pick the best index multiple times.
 | 
|  |   1359 |   ** For each attempt at picking an index, the order of tables in the
 | 
|  |   1360 |   ** join might be different so we have to recompute the usable flag
 | 
|  |   1361 |   ** each time.
 | 
|  |   1362 |   */
 | 
|  |   1363 |   pIdxCons = *(sqlite3_index_info::sqlite3_index_constraint**)&pIdxInfo->aConstraint;
 | 
|  |   1364 |   pUsage = pIdxInfo->aConstraintUsage;
 | 
|  |   1365 |   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
 | 
|  |   1366 |     j = pIdxCons->iTermOffset;
 | 
|  |   1367 |     pTerm = &pWC->a[j];
 | 
|  |   1368 |     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
 | 
|  |   1369 |   }
 | 
|  |   1370 |   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
 | 
|  |   1371 |   if( pIdxInfo->needToFreeIdxStr ){
 | 
|  |   1372 |     sqlite3_free(pIdxInfo->idxStr);
 | 
|  |   1373 |   }
 | 
|  |   1374 |   pIdxInfo->idxStr = 0;
 | 
|  |   1375 |   pIdxInfo->idxNum = 0;
 | 
|  |   1376 |   pIdxInfo->needToFreeIdxStr = 0;
 | 
|  |   1377 |   pIdxInfo->orderByConsumed = 0;
 | 
|  |   1378 |   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
 | 
|  |   1379 |   nOrderBy = pIdxInfo->nOrderBy;
 | 
|  |   1380 |   if( pIdxInfo->nOrderBy && !orderByUsable ){
 | 
|  |   1381 |     *(int*)&pIdxInfo->nOrderBy = 0;
 | 
|  |   1382 |   }
 | 
|  |   1383 | 
 | 
|  |   1384 |   sqlite3SafetyOff(pParse->db);
 | 
|  |   1385 |   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
 | 
|  |   1386 |   TRACE_IDX_INPUTS(pIdxInfo);
 | 
|  |   1387 |   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
 | 
|  |   1388 |   TRACE_IDX_OUTPUTS(pIdxInfo);
 | 
|  |   1389 |   if( rc!=SQLITE_OK ){
 | 
|  |   1390 |     if( rc==SQLITE_NOMEM ){
 | 
|  |   1391 |       pParse->db->mallocFailed = 1;
 | 
|  |   1392 |     }else {
 | 
|  |   1393 |       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
 | 
|  |   1394 |     }
 | 
|  |   1395 |     sqlite3SafetyOn(pParse->db);
 | 
|  |   1396 |   }else{
 | 
|  |   1397 |     rc = sqlite3SafetyOn(pParse->db);
 | 
|  |   1398 |   }
 | 
|  |   1399 |   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
 | 
|  |   1400 | 
 | 
|  |   1401 |   return pIdxInfo->estimatedCost;
 | 
|  |   1402 | }
 | 
|  |   1403 | #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
|  |   1404 | 
 | 
|  |   1405 | /*
 | 
|  |   1406 | ** Find the best index for accessing a particular table.  Return a pointer
 | 
|  |   1407 | ** to the index, flags that describe how the index should be used, the
 | 
|  |   1408 | ** number of equality constraints, and the "cost" for this index.
 | 
|  |   1409 | **
 | 
|  |   1410 | ** The lowest cost index wins.  The cost is an estimate of the amount of
 | 
|  |   1411 | ** CPU and disk I/O need to process the request using the selected index.
 | 
|  |   1412 | ** Factors that influence cost include:
 | 
|  |   1413 | **
 | 
|  |   1414 | **    *  The estimated number of rows that will be retrieved.  (The
 | 
|  |   1415 | **       fewer the better.)
 | 
|  |   1416 | **
 | 
|  |   1417 | **    *  Whether or not sorting must occur.
 | 
|  |   1418 | **
 | 
|  |   1419 | **    *  Whether or not there must be separate lookups in the
 | 
|  |   1420 | **       index and in the main table.
 | 
|  |   1421 | **
 | 
|  |   1422 | */
 | 
|  |   1423 | static double bestIndex(
 | 
|  |   1424 |   Parse *pParse,              /* The parsing context */
 | 
|  |   1425 |   WhereClause *pWC,           /* The WHERE clause */
 | 
|  |   1426 |   SrcList::SrcList_item *pSrc,  /* The FROM clause term to search */
 | 
|  |   1427 |   Bitmask notReady,           /* Mask of cursors that are not available */
 | 
|  |   1428 |   ExprList *pOrderBy,         /* The order by clause */
 | 
|  |   1429 |   Index **ppIndex,            /* Make *ppIndex point to the best index */
 | 
|  |   1430 |   int *pFlags,                /* Put flags describing this choice in *pFlags */
 | 
|  |   1431 |   int *pnEq                   /* Put the number of == or IN constraints here */
 | 
|  |   1432 | ){
 | 
|  |   1433 |   WhereTerm *pTerm;
 | 
|  |   1434 |   Index *bestIdx = 0;         /* Index that gives the lowest cost */
 | 
|  |   1435 |   double lowestCost;          /* The cost of using bestIdx */
 | 
|  |   1436 |   int bestFlags = 0;          /* Flags associated with bestIdx */
 | 
|  |   1437 |   int bestNEq = 0;            /* Best value for nEq */
 | 
|  |   1438 |   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
 | 
|  |   1439 |   Index *pProbe;              /* An index we are evaluating */
 | 
|  |   1440 |   int rev;                    /* True to scan in reverse order */
 | 
|  |   1441 |   int flags;                  /* Flags associated with pProbe */
 | 
|  |   1442 |   int nEq;                    /* Number of == or IN constraints */
 | 
|  |   1443 |   int eqTermMask;             /* Mask of valid equality operators */
 | 
|  |   1444 |   double cost;                /* Cost of using pProbe */
 | 
|  |   1445 | 
 | 
|  |   1446 |   WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
 | 
|  |   1447 |   lowestCost = SQLITE_BIG_DBL;
 | 
|  |   1448 |   pProbe = pSrc->pTab->pIndex;
 | 
|  |   1449 | 
 | 
|  |   1450 |   /* If the table has no indices and there are no terms in the where
 | 
|  |   1451 |   ** clause that refer to the ROWID, then we will never be able to do
 | 
|  |   1452 |   ** anything other than a full table scan on this table.  We might as
 | 
|  |   1453 |   ** well put it first in the join order.  That way, perhaps it can be
 | 
|  |   1454 |   ** referenced by other tables in the join.
 | 
|  |   1455 |   */
 | 
|  |   1456 |   if( pProbe==0 &&
 | 
|  |   1457 |      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
 | 
|  |   1458 |      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
 | 
|  |   1459 |     *pFlags = 0;
 | 
|  |   1460 |     *ppIndex = 0;
 | 
|  |   1461 |     *pnEq = 0;
 | 
|  |   1462 |     return 0.0;
 | 
|  |   1463 |   }
 | 
|  |   1464 | 
 | 
|  |   1465 |   /* Check for a rowid=EXPR or rowid IN (...) constraints
 | 
|  |   1466 |   */
 | 
|  |   1467 |   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | 
|  |   1468 |   if( pTerm ){
 | 
|  |   1469 |     Expr *pExpr;
 | 
|  |   1470 |     *ppIndex = 0;
 | 
|  |   1471 |     bestFlags = WHERE_ROWID_EQ;
 | 
|  |   1472 |     if( pTerm->eOperator & WO_EQ ){
 | 
|  |   1473 |       /* Rowid== is always the best pick.  Look no further.  Because only
 | 
|  |   1474 |       ** a single row is generated, output is always in sorted order */
 | 
|  |   1475 |       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
 | 
|  |   1476 |       *pnEq = 1;
 | 
|  |   1477 |       WHERETRACE(("... best is rowid\n"));
 | 
|  |   1478 |       return 0.0;
 | 
|  |   1479 |     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
 | 
|  |   1480 |       /* Rowid IN (LIST): cost is NlogN where N is the number of list
 | 
|  |   1481 |       ** elements.  */
 | 
|  |   1482 |       lowestCost = pExpr->pList->nExpr;
 | 
|  |   1483 |       lowestCost *= estLog(lowestCost);
 | 
|  |   1484 |     }else{
 | 
|  |   1485 |       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
 | 
|  |   1486 |       ** in the result of the inner select.  We have no way to estimate
 | 
|  |   1487 |       ** that value so make a wild guess. */
 | 
|  |   1488 |       lowestCost = 200;
 | 
|  |   1489 |     }
 | 
|  |   1490 |     WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
 | 
|  |   1491 |   }
 | 
|  |   1492 | 
 | 
|  |   1493 |   /* Estimate the cost of a table scan.  If we do not know how many
 | 
|  |   1494 |   ** entries are in the table, use 1 million as a guess.
 | 
|  |   1495 |   */
 | 
|  |   1496 |   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
 | 
|  |   1497 |   WHERETRACE(("... table scan base cost: %.9g\n", cost));
 | 
|  |   1498 |   flags = WHERE_ROWID_RANGE;
 | 
|  |   1499 | 
 | 
|  |   1500 |   /* Check for constraints on a range of rowids in a table scan.
 | 
|  |   1501 |   */
 | 
|  |   1502 |   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
 | 
|  |   1503 |   if( pTerm ){
 | 
|  |   1504 |     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
 | 
|  |   1505 |       flags |= WHERE_TOP_LIMIT;
 | 
|  |   1506 |       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
 | 
|  |   1507 |     }
 | 
|  |   1508 |     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
 | 
|  |   1509 |       flags |= WHERE_BTM_LIMIT;
 | 
|  |   1510 |       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
 | 
|  |   1511 |     }
 | 
|  |   1512 |     WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
 | 
|  |   1513 |   }else{
 | 
|  |   1514 |     flags = 0;
 | 
|  |   1515 |   }
 | 
|  |   1516 | 
 | 
|  |   1517 |   /* If the table scan does not satisfy the ORDER BY clause, increase
 | 
|  |   1518 |   ** the cost by NlogN to cover the expense of sorting. */
 | 
|  |   1519 |   if( pOrderBy ){
 | 
|  |   1520 |     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
 | 
|  |   1521 |       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
 | 
|  |   1522 |       if( rev ){
 | 
|  |   1523 |         flags |= WHERE_REVERSE;
 | 
|  |   1524 |       }
 | 
|  |   1525 |     }else{
 | 
|  |   1526 |       cost += cost*estLog(cost);
 | 
|  |   1527 |       WHERETRACE(("... sorting increases cost to %.9g\n", cost));
 | 
|  |   1528 |     }
 | 
|  |   1529 |   }
 | 
|  |   1530 |   if( cost<lowestCost ){
 | 
|  |   1531 |     lowestCost = cost;
 | 
|  |   1532 |     bestFlags = flags;
 | 
|  |   1533 |   }
 | 
|  |   1534 | 
 | 
|  |   1535 |   /* If the pSrc table is the right table of a LEFT JOIN then we may not
 | 
|  |   1536 |   ** use an index to satisfy IS NULL constraints on that table.  This is
 | 
|  |   1537 |   ** because columns might end up being NULL if the table does not match -
 | 
|  |   1538 |   ** a circumstance which the index cannot help us discover.  Ticket #2177.
 | 
|  |   1539 |   */
 | 
|  |   1540 |   if( (pSrc->jointype & JT_LEFT)!=0 ){
 | 
|  |   1541 |     eqTermMask = WO_EQ|WO_IN;
 | 
|  |   1542 |   }else{
 | 
|  |   1543 |     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
 | 
|  |   1544 |   }
 | 
|  |   1545 | 
 | 
|  |   1546 |   /* Look at each index.
 | 
|  |   1547 |   */
 | 
|  |   1548 |   for(; pProbe; pProbe=pProbe->pNext){
 | 
|  |   1549 |     int i;                       /* Loop counter */
 | 
|  |   1550 |     double inMultiplier = 1;
 | 
|  |   1551 | 
 | 
|  |   1552 |     WHERETRACE(("... index %s:\n", pProbe->zName));
 | 
|  |   1553 | 
 | 
|  |   1554 |     /* Count the number of columns in the index that are satisfied
 | 
|  |   1555 |     ** by x=EXPR constraints or x IN (...) constraints.
 | 
|  |   1556 |     */
 | 
|  |   1557 |     flags = 0;
 | 
|  |   1558 |     for(i=0; i<pProbe->nColumn; i++){
 | 
|  |   1559 |       int j = pProbe->aiColumn[i];
 | 
|  |   1560 |       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
 | 
|  |   1561 |       if( pTerm==0 ) break;
 | 
|  |   1562 |       flags |= WHERE_COLUMN_EQ;
 | 
|  |   1563 |       if( pTerm->eOperator & WO_IN ){
 | 
|  |   1564 |         Expr *pExpr = pTerm->pExpr;
 | 
|  |   1565 |         flags |= WHERE_COLUMN_IN;
 | 
|  |   1566 |         if( pExpr->pSelect!=0 ){
 | 
|  |   1567 |           inMultiplier *= 25;
 | 
|  |   1568 |         }else if( pExpr->pList!=0 ){
 | 
|  |   1569 |           inMultiplier *= pExpr->pList->nExpr + 1;
 | 
|  |   1570 |         }
 | 
|  |   1571 |       }
 | 
|  |   1572 |     }
 | 
|  |   1573 |     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
 | 
|  |   1574 |     nEq = i;
 | 
|  |   1575 |     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
 | 
|  |   1576 |          && nEq==pProbe->nColumn ){
 | 
|  |   1577 |       flags |= WHERE_UNIQUE;
 | 
|  |   1578 |     }
 | 
|  |   1579 |     WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
 | 
|  |   1580 | 
 | 
|  |   1581 |     /* Look for range constraints
 | 
|  |   1582 |     */
 | 
|  |   1583 |     if( nEq<pProbe->nColumn ){
 | 
|  |   1584 |       int j = pProbe->aiColumn[nEq];
 | 
|  |   1585 |       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
 | 
|  |   1586 |       if( pTerm ){
 | 
|  |   1587 |         flags |= WHERE_COLUMN_RANGE;
 | 
|  |   1588 |         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
 | 
|  |   1589 |           flags |= WHERE_TOP_LIMIT;
 | 
|  |   1590 |           cost /= 3;
 | 
|  |   1591 |         }
 | 
|  |   1592 |         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
 | 
|  |   1593 |           flags |= WHERE_BTM_LIMIT;
 | 
|  |   1594 |           cost /= 3;
 | 
|  |   1595 |         }
 | 
|  |   1596 |         WHERETRACE(("...... range reduces cost to %.9g\n", cost));
 | 
|  |   1597 |       }
 | 
|  |   1598 |     }
 | 
|  |   1599 | 
 | 
|  |   1600 |     /* Add the additional cost of sorting if that is a factor.
 | 
|  |   1601 |     */
 | 
|  |   1602 |     if( pOrderBy ){
 | 
|  |   1603 |       if( (flags & WHERE_COLUMN_IN)==0 &&
 | 
|  |   1604 |            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
 | 
|  |   1605 |         if( flags==0 ){
 | 
|  |   1606 |           flags = WHERE_COLUMN_RANGE;
 | 
|  |   1607 |         }
 | 
|  |   1608 |         flags |= WHERE_ORDERBY;
 | 
|  |   1609 |         if( rev ){
 | 
|  |   1610 |           flags |= WHERE_REVERSE;
 | 
|  |   1611 |         }
 | 
|  |   1612 |       }else{
 | 
|  |   1613 |         cost += cost*estLog(cost);
 | 
|  |   1614 |         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
 | 
|  |   1615 |       }
 | 
|  |   1616 |     }
 | 
|  |   1617 | 
 | 
|  |   1618 |     /* Check to see if we can get away with using just the index without
 | 
|  |   1619 |     ** ever reading the table.  If that is the case, then halve the
 | 
|  |   1620 |     ** cost of this index.
 | 
|  |   1621 |     */
 | 
|  |   1622 |     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
 | 
|  |   1623 |       Bitmask m = pSrc->colUsed;
 | 
|  |   1624 |       int j;
 | 
|  |   1625 |       for(j=0; j<pProbe->nColumn; j++){
 | 
|  |   1626 |         int x = pProbe->aiColumn[j];
 | 
|  |   1627 |         if( x<BMS-1 ){
 | 
|  |   1628 |           m &= ~(((Bitmask)1)<<x);
 | 
|  |   1629 |         }
 | 
|  |   1630 |       }
 | 
|  |   1631 |       if( m==0 ){
 | 
|  |   1632 |         flags |= WHERE_IDX_ONLY;
 | 
|  |   1633 |         cost /= 2;
 | 
|  |   1634 |         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
 | 
|  |   1635 |       }
 | 
|  |   1636 |     }
 | 
|  |   1637 | 
 | 
|  |   1638 |     /* If this index has achieved the lowest cost so far, then use it.
 | 
|  |   1639 |     */
 | 
|  |   1640 |     if( flags && cost < lowestCost ){
 | 
|  |   1641 |       bestIdx = pProbe;
 | 
|  |   1642 |       lowestCost = cost;
 | 
|  |   1643 |       bestFlags = flags;
 | 
|  |   1644 |       bestNEq = nEq;
 | 
|  |   1645 |     }
 | 
|  |   1646 |   }
 | 
|  |   1647 | 
 | 
|  |   1648 |   /* Report the best result
 | 
|  |   1649 |   */
 | 
|  |   1650 |   *ppIndex = bestIdx;
 | 
|  |   1651 |   WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
 | 
|  |   1652 |         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
 | 
|  |   1653 |   *pFlags = bestFlags | eqTermMask;
 | 
|  |   1654 |   *pnEq = bestNEq;
 | 
|  |   1655 |   return lowestCost;
 | 
|  |   1656 | }
 | 
|  |   1657 | 
 | 
|  |   1658 | 
 | 
|  |   1659 | /*
 | 
|  |   1660 | ** Disable a term in the WHERE clause.  Except, do not disable the term
 | 
|  |   1661 | ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
 | 
|  |   1662 | ** or USING clause of that join.
 | 
|  |   1663 | **
 | 
|  |   1664 | ** Consider the term t2.z='ok' in the following queries:
 | 
|  |   1665 | **
 | 
|  |   1666 | **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
 | 
|  |   1667 | **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
 | 
|  |   1668 | **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
 | 
|  |   1669 | **
 | 
|  |   1670 | ** The t2.z='ok' is disabled in the in (2) because it originates
 | 
|  |   1671 | ** in the ON clause.  The term is disabled in (3) because it is not part
 | 
|  |   1672 | ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
 | 
|  |   1673 | **
 | 
|  |   1674 | ** Disabling a term causes that term to not be tested in the inner loop
 | 
|  |   1675 | ** of the join.  Disabling is an optimization.  When terms are satisfied
 | 
|  |   1676 | ** by indices, we disable them to prevent redundant tests in the inner
 | 
|  |   1677 | ** loop.  We would get the correct results if nothing were ever disabled,
 | 
|  |   1678 | ** but joins might run a little slower.  The trick is to disable as much
 | 
|  |   1679 | ** as we can without disabling too much.  If we disabled in (1), we'd get
 | 
|  |   1680 | ** the wrong answer.  See ticket #813.
 | 
|  |   1681 | */
 | 
|  |   1682 | static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
 | 
|  |   1683 |   if( pTerm
 | 
|  |   1684 |       && (pTerm->flags & TERM_CODED)==0
 | 
|  |   1685 |       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
 | 
|  |   1686 |   ){
 | 
|  |   1687 |     pTerm->flags |= TERM_CODED;
 | 
|  |   1688 |     if( pTerm->iParent>=0 ){
 | 
|  |   1689 |       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
 | 
|  |   1690 |       if( (--pOther->nChild)==0 ){
 | 
|  |   1691 |         disableTerm(pLevel, pOther);
 | 
|  |   1692 |       }
 | 
|  |   1693 |     }
 | 
|  |   1694 |   }
 | 
|  |   1695 | }
 | 
|  |   1696 | 
 | 
|  |   1697 | /*
 | 
|  |   1698 | ** Generate code that builds a probe for an index.
 | 
|  |   1699 | **
 | 
|  |   1700 | ** There should be nColumn values on the stack.  The index
 | 
|  |   1701 | ** to be probed is pIdx.  Pop the values from the stack and
 | 
|  |   1702 | ** replace them all with a single record that is the index
 | 
|  |   1703 | ** problem.
 | 
|  |   1704 | */
 | 
|  |   1705 | static void buildIndexProbe(
 | 
|  |   1706 |   Vdbe *v,        /* Generate code into this VM */
 | 
|  |   1707 |   int nColumn,    /* The number of columns to check for NULL */
 | 
|  |   1708 |   Index *pIdx     /* Index that we will be searching */
 | 
|  |   1709 | ){
 | 
|  |   1710 |   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
|  |   1711 |   sqlite3IndexAffinityStr(v, pIdx);
 | 
|  |   1712 | }
 | 
|  |   1713 | 
 | 
|  |   1714 | 
 | 
|  |   1715 | /*
 | 
|  |   1716 | ** Generate code for a single equality term of the WHERE clause.  An equality
 | 
|  |   1717 | ** term can be either X=expr or X IN (...).   pTerm is the term to be 
 | 
|  |   1718 | ** coded.
 | 
|  |   1719 | **
 | 
|  |   1720 | ** The current value for the constraint is left on the top of the stack.
 | 
|  |   1721 | **
 | 
|  |   1722 | ** For a constraint of the form X=expr, the expression is evaluated and its
 | 
|  |   1723 | ** result is left on the stack.  For constraints of the form X IN (...)
 | 
|  |   1724 | ** this routine sets up a loop that will iterate over all values of X.
 | 
|  |   1725 | */
 | 
|  |   1726 | static void codeEqualityTerm(
 | 
|  |   1727 |   Parse *pParse,      /* The parsing context */
 | 
|  |   1728 |   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
 | 
|  |   1729 |   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
 | 
|  |   1730 | ){
 | 
|  |   1731 |   Expr *pX = pTerm->pExpr;
 | 
|  |   1732 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   1733 |   if( pX->op==TK_EQ ){
 | 
|  |   1734 |     sqlite3ExprCode(pParse, pX->pRight);
 | 
|  |   1735 |   }else if( pX->op==TK_ISNULL ){
 | 
|  |   1736 |     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |   1737 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   1738 |   }else{
 | 
|  |   1739 |     int eType;
 | 
|  |   1740 |     int iTab;
 | 
|  |   1741 | 	WhereLevel::InLoop *pIn;
 | 
|  |   1742 | 
 | 
|  |   1743 |     assert( pX->op==TK_IN );
 | 
|  |   1744 |     eType = sqlite3FindInIndex(pParse, pX, 1);
 | 
|  |   1745 |     iTab = pX->iTable;
 | 
|  |   1746 |     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
 | 
|  |   1747 |     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
 | 
|  |   1748 |     if( pLevel->nIn==0 ){
 | 
|  |   1749 |       pLevel->nxt = sqlite3VdbeMakeLabel(v);
 | 
|  |   1750 |     }
 | 
|  |   1751 |     pLevel->nIn++;
 | 
|  |   1752 | 	pLevel->aInLoop = (WhereLevel::InLoop*)sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
 | 
|  |   1753 |                                     sizeof(pLevel->aInLoop[0])*pLevel->nIn);
 | 
|  |   1754 | 	pIn = (WhereLevel::InLoop*)pLevel->aInLoop;
 | 
|  |   1755 |     if( pIn ){
 | 
|  |   1756 |       int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column);
 | 
|  |   1757 |       pIn += pLevel->nIn - 1;
 | 
|  |   1758 |       pIn->iCur = iTab;
 | 
|  |   1759 |       pIn->topAddr = sqlite3VdbeAddOp(v, op, iTab, 0);
 | 
|  |   1760 |       sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
 | 
|  |   1761 |     }else{
 | 
|  |   1762 |       pLevel->nIn = 0;
 | 
|  |   1763 |     }
 | 
|  |   1764 | #endif
 | 
|  |   1765 |   }
 | 
|  |   1766 |   disableTerm(pLevel, pTerm);
 | 
|  |   1767 | }
 | 
|  |   1768 | 
 | 
|  |   1769 | /*
 | 
|  |   1770 | ** Generate code that will evaluate all == and IN constraints for an
 | 
|  |   1771 | ** index.  The values for all constraints are left on the stack.
 | 
|  |   1772 | **
 | 
|  |   1773 | ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
 | 
|  |   1774 | ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
 | 
|  |   1775 | ** The index has as many as three equality constraints, but in this
 | 
|  |   1776 | ** example, the third "c" value is an inequality.  So only two 
 | 
|  |   1777 | ** constraints are coded.  This routine will generate code to evaluate
 | 
|  |   1778 | ** a==5 and b IN (1,2,3).  The current values for a and b will be left
 | 
|  |   1779 | ** on the stack - a is the deepest and b the shallowest.
 | 
|  |   1780 | **
 | 
|  |   1781 | ** In the example above nEq==2.  But this subroutine works for any value
 | 
|  |   1782 | ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
 | 
|  |   1783 | ** The only thing it does is allocate the pLevel->iMem memory cell.
 | 
|  |   1784 | **
 | 
|  |   1785 | ** This routine always allocates at least one memory cell and puts
 | 
|  |   1786 | ** the address of that memory cell in pLevel->iMem.  The code that
 | 
|  |   1787 | ** calls this routine will use pLevel->iMem to store the termination
 | 
|  |   1788 | ** key value of the loop.  If one or more IN operators appear, then
 | 
|  |   1789 | ** this routine allocates an additional nEq memory cells for internal
 | 
|  |   1790 | ** use.
 | 
|  |   1791 | */
 | 
|  |   1792 | static void codeAllEqualityTerms(
 | 
|  |   1793 |   Parse *pParse,        /* Parsing context */
 | 
|  |   1794 |   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
 | 
|  |   1795 |   WhereClause *pWC,     /* The WHERE clause */
 | 
|  |   1796 |   Bitmask notReady      /* Which parts of FROM have not yet been coded */
 | 
|  |   1797 | ){
 | 
|  |   1798 |   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
 | 
|  |   1799 |   int termsInMem = 0;           /* If true, store value in mem[] cells */
 | 
|  |   1800 |   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
 | 
|  |   1801 |   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
 | 
|  |   1802 |   int iCur = pLevel->iTabCur;   /* The cursor of the table */
 | 
|  |   1803 |   WhereTerm *pTerm;             /* A single constraint term */
 | 
|  |   1804 |   int j;                        /* Loop counter */
 | 
|  |   1805 | 
 | 
|  |   1806 |   /* Figure out how many memory cells we will need then allocate them.
 | 
|  |   1807 |   ** We always need at least one used to store the loop terminator
 | 
|  |   1808 |   ** value.  If there are IN operators we'll need one for each == or
 | 
|  |   1809 |   ** IN constraint.
 | 
|  |   1810 |   */
 | 
|  |   1811 |   pLevel->iMem = pParse->nMem++;
 | 
|  |   1812 |   if( pLevel->flags & WHERE_COLUMN_IN ){
 | 
|  |   1813 |     pParse->nMem += pLevel->nEq;
 | 
|  |   1814 |     termsInMem = 1;
 | 
|  |   1815 |   }
 | 
|  |   1816 | 
 | 
|  |   1817 |   /* Evaluate the equality constraints
 | 
|  |   1818 |   */
 | 
|  |   1819 |   assert( pIdx->nColumn>=nEq );
 | 
|  |   1820 |   for(j=0; j<nEq; j++){
 | 
|  |   1821 |     int k = pIdx->aiColumn[j];
 | 
|  |   1822 |     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
 | 
|  |   1823 |     if( pTerm==0 ) break;
 | 
|  |   1824 |     assert( (pTerm->flags & TERM_CODED)==0 );
 | 
|  |   1825 |     codeEqualityTerm(pParse, pTerm, pLevel);
 | 
|  |   1826 |     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
 | 
|  |   1827 |       sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
 | 
|  |   1828 |     }
 | 
|  |   1829 |     if( termsInMem ){
 | 
|  |   1830 |       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
 | 
|  |   1831 |     }
 | 
|  |   1832 |   }
 | 
|  |   1833 | 
 | 
|  |   1834 |   /* Make sure all the constraint values are on the top of the stack
 | 
|  |   1835 |   */
 | 
|  |   1836 |   if( termsInMem ){
 | 
|  |   1837 |     for(j=0; j<nEq; j++){
 | 
|  |   1838 |       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
 | 
|  |   1839 |     }
 | 
|  |   1840 |   }
 | 
|  |   1841 | }
 | 
|  |   1842 | 
 | 
|  |   1843 | #if defined(SQLITE_TEST)
 | 
|  |   1844 | /*
 | 
|  |   1845 | ** The following variable holds a text description of query plan generated
 | 
|  |   1846 | ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
 | 
|  |   1847 | ** overwrites the previous.  This information is used for testing and
 | 
|  |   1848 | ** analysis only.
 | 
|  |   1849 | */
 | 
|  |   1850 | char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
 | 
|  |   1851 | static int nQPlan = 0;              /* Next free slow in _query_plan[] */
 | 
|  |   1852 | 
 | 
|  |   1853 | #endif /* SQLITE_TEST */
 | 
|  |   1854 | 
 | 
|  |   1855 | 
 | 
|  |   1856 | /*
 | 
|  |   1857 | ** Free a WhereInfo structure
 | 
|  |   1858 | */
 | 
|  |   1859 | static void whereInfoFree(WhereInfo *pWInfo){
 | 
|  |   1860 |   if( pWInfo ){
 | 
|  |   1861 |     int i;
 | 
|  |   1862 |     for(i=0; i<pWInfo->nLevel; i++){
 | 
|  |   1863 |       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
 | 
|  |   1864 |       if( pInfo ){
 | 
|  |   1865 |         if( pInfo->needToFreeIdxStr ){
 | 
|  |   1866 |           /* Coverage: Don't think this can be reached. By the time this
 | 
|  |   1867 |           ** function is called, the index-strings have been passed
 | 
|  |   1868 |           ** to the vdbe layer for deletion.
 | 
|  |   1869 |           */
 | 
|  |   1870 |           sqlite3_free(pInfo->idxStr);
 | 
|  |   1871 |         }
 | 
|  |   1872 |         sqlite3_free(pInfo);
 | 
|  |   1873 |       }
 | 
|  |   1874 |     }
 | 
|  |   1875 |     sqlite3_free(pWInfo);
 | 
|  |   1876 |   }
 | 
|  |   1877 | }
 | 
|  |   1878 | 
 | 
|  |   1879 | 
 | 
|  |   1880 | /*
 | 
|  |   1881 | ** Generate the beginning of the loop used for WHERE clause processing.
 | 
|  |   1882 | ** The return value is a pointer to an opaque structure that contains
 | 
|  |   1883 | ** information needed to terminate the loop.  Later, the calling routine
 | 
|  |   1884 | ** should invoke sqlite3WhereEnd() with the return value of this function
 | 
|  |   1885 | ** in order to complete the WHERE clause processing.
 | 
|  |   1886 | **
 | 
|  |   1887 | ** If an error occurs, this routine returns NULL.
 | 
|  |   1888 | **
 | 
|  |   1889 | ** The basic idea is to do a nested loop, one loop for each table in
 | 
|  |   1890 | ** the FROM clause of a select.  (INSERT and UPDATE statements are the
 | 
|  |   1891 | ** same as a SELECT with only a single table in the FROM clause.)  For
 | 
|  |   1892 | ** example, if the SQL is this:
 | 
|  |   1893 | **
 | 
|  |   1894 | **       SELECT * FROM t1, t2, t3 WHERE ...;
 | 
|  |   1895 | **
 | 
|  |   1896 | ** Then the code generated is conceptually like the following:
 | 
|  |   1897 | **
 | 
|  |   1898 | **      foreach row1 in t1 do       \    Code generated
 | 
|  |   1899 | **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
 | 
|  |   1900 | **          foreach row3 in t3 do   /
 | 
|  |   1901 | **            ...
 | 
|  |   1902 | **          end                     \    Code generated
 | 
|  |   1903 | **        end                        |-- by sqlite3WhereEnd()
 | 
|  |   1904 | **      end                         /
 | 
|  |   1905 | **
 | 
|  |   1906 | ** Note that the loops might not be nested in the order in which they
 | 
|  |   1907 | ** appear in the FROM clause if a different order is better able to make
 | 
|  |   1908 | ** use of indices.  Note also that when the IN operator appears in
 | 
|  |   1909 | ** the WHERE clause, it might result in additional nested loops for
 | 
|  |   1910 | ** scanning through all values on the right-hand side of the IN.
 | 
|  |   1911 | **
 | 
|  |   1912 | ** There are Btree cursors associated with each table.  t1 uses cursor
 | 
|  |   1913 | ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
 | 
|  |   1914 | ** And so forth.  This routine generates code to open those VDBE cursors
 | 
|  |   1915 | ** and sqlite3WhereEnd() generates the code to close them.
 | 
|  |   1916 | **
 | 
|  |   1917 | ** The code that sqlite3WhereBegin() generates leaves the cursors named
 | 
|  |   1918 | ** in pTabList pointing at their appropriate entries.  The [...] code
 | 
|  |   1919 | ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
 | 
|  |   1920 | ** data from the various tables of the loop.
 | 
|  |   1921 | **
 | 
|  |   1922 | ** If the WHERE clause is empty, the foreach loops must each scan their
 | 
|  |   1923 | ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
 | 
|  |   1924 | ** the tables have indices and there are terms in the WHERE clause that
 | 
|  |   1925 | ** refer to those indices, a complete table scan can be avoided and the
 | 
|  |   1926 | ** code will run much faster.  Most of the work of this routine is checking
 | 
|  |   1927 | ** to see if there are indices that can be used to speed up the loop.
 | 
|  |   1928 | **
 | 
|  |   1929 | ** Terms of the WHERE clause are also used to limit which rows actually
 | 
|  |   1930 | ** make it to the "..." in the middle of the loop.  After each "foreach",
 | 
|  |   1931 | ** terms of the WHERE clause that use only terms in that loop and outer
 | 
|  |   1932 | ** loops are evaluated and if false a jump is made around all subsequent
 | 
|  |   1933 | ** inner loops (or around the "..." if the test occurs within the inner-
 | 
|  |   1934 | ** most loop)
 | 
|  |   1935 | **
 | 
|  |   1936 | ** OUTER JOINS
 | 
|  |   1937 | **
 | 
|  |   1938 | ** An outer join of tables t1 and t2 is conceptally coded as follows:
 | 
|  |   1939 | **
 | 
|  |   1940 | **    foreach row1 in t1 do
 | 
|  |   1941 | **      flag = 0
 | 
|  |   1942 | **      foreach row2 in t2 do
 | 
|  |   1943 | **        start:
 | 
|  |   1944 | **          ...
 | 
|  |   1945 | **          flag = 1
 | 
|  |   1946 | **      end
 | 
|  |   1947 | **      if flag==0 then
 | 
|  |   1948 | **        move the row2 cursor to a null row
 | 
|  |   1949 | **        goto start
 | 
|  |   1950 | **      fi
 | 
|  |   1951 | **    end
 | 
|  |   1952 | **
 | 
|  |   1953 | ** ORDER BY CLAUSE PROCESSING
 | 
|  |   1954 | **
 | 
|  |   1955 | ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
 | 
|  |   1956 | ** if there is one.  If there is no ORDER BY clause or if this routine
 | 
|  |   1957 | ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
 | 
|  |   1958 | **
 | 
|  |   1959 | ** If an index can be used so that the natural output order of the table
 | 
|  |   1960 | ** scan is correct for the ORDER BY clause, then that index is used and
 | 
|  |   1961 | ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
 | 
|  |   1962 | ** unnecessary sort of the result set if an index appropriate for the
 | 
|  |   1963 | ** ORDER BY clause already exists.
 | 
|  |   1964 | **
 | 
|  |   1965 | ** If the where clause loops cannot be arranged to provide the correct
 | 
|  |   1966 | ** output order, then the *ppOrderBy is unchanged.
 | 
|  |   1967 | */
 | 
|  |   1968 | WhereInfo *sqlite3WhereBegin(
 | 
|  |   1969 |   Parse *pParse,        /* The parser context */
 | 
|  |   1970 |   SrcList *pTabList,    /* A list of all tables to be scanned */
 | 
|  |   1971 |   Expr *pWhere,         /* The WHERE clause */
 | 
|  |   1972 |   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
 | 
|  |   1973 | ){
 | 
|  |   1974 |   int i;                     /* Loop counter */
 | 
|  |   1975 |   WhereInfo *pWInfo;         /* Will become the return value of this function */
 | 
|  |   1976 |   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
 | 
|  |   1977 |   int brk, cont = 0;         /* Addresses used during code generation */
 | 
|  |   1978 |   Bitmask notReady;          /* Cursors that are not yet positioned */
 | 
|  |   1979 |   WhereTerm *pTerm;          /* A single term in the WHERE clause */
 | 
|  |   1980 |   ExprMaskSet maskSet;       /* The expression mask set */
 | 
|  |   1981 |   WhereClause wc;            /* The WHERE clause is divided into these terms */
 | 
|  |   1982 |   SrcList::SrcList_item *pTabItem;  /* A single entry from pTabList */
 | 
|  |   1983 |   WhereLevel *pLevel;             /* A single level in the pWInfo list */
 | 
|  |   1984 |   int iFrom;                      /* First unused FROM clause element */
 | 
|  |   1985 |   int andFlags;              /* AND-ed combination of all wc.a[].flags */
 | 
|  |   1986 |   sqlite3 *db;               /* Database connection */
 | 
|  |   1987 | 
 | 
|  |   1988 |   /* The number of tables in the FROM clause is limited by the number of
 | 
|  |   1989 |   ** bits in a Bitmask 
 | 
|  |   1990 |   */
 | 
|  |   1991 |   if( pTabList->nSrc>BMS ){
 | 
|  |   1992 |     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
 | 
|  |   1993 |     return 0;
 | 
|  |   1994 |   }
 | 
|  |   1995 | 
 | 
|  |   1996 |   /* Split the WHERE clause into separate subexpressions where each
 | 
|  |   1997 |   ** subexpression is separated by an AND operator.
 | 
|  |   1998 |   */
 | 
|  |   1999 |   initMaskSet(&maskSet);
 | 
|  |   2000 |   whereClauseInit(&wc, pParse, &maskSet);
 | 
|  |   2001 |   whereSplit(&wc, pWhere, TK_AND);
 | 
|  |   2002 |     
 | 
|  |   2003 |   /* Allocate and initialize the WhereInfo structure that will become the
 | 
|  |   2004 |   ** return value.
 | 
|  |   2005 |   */
 | 
|  |   2006 |   db = pParse->db;
 | 
|  |   2007 |   pWInfo = (WhereInfo*)sqlite3DbMallocZero(db,  
 | 
|  |   2008 |                       sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
 | 
|  |   2009 |   if( db->mallocFailed ){
 | 
|  |   2010 |     goto whereBeginNoMem;
 | 
|  |   2011 |   }
 | 
|  |   2012 |   pWInfo->nLevel = pTabList->nSrc;
 | 
|  |   2013 |   pWInfo->pParse = pParse;
 | 
|  |   2014 |   pWInfo->pTabList = pTabList;
 | 
|  |   2015 |   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
 | 
|  |   2016 | 
 | 
|  |   2017 |   /* Special case: a WHERE clause that is constant.  Evaluate the
 | 
|  |   2018 |   ** expression and either jump over all of the code or fall thru.
 | 
|  |   2019 |   */
 | 
|  |   2020 |   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
 | 
|  |   2021 |     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
 | 
|  |   2022 |     pWhere = 0;
 | 
|  |   2023 |   }
 | 
|  |   2024 | 
 | 
|  |   2025 |   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
 | 
|  |   2026 |   ** add new virtual terms onto the end of the WHERE clause.  We do not
 | 
|  |   2027 |   ** want to analyze these virtual terms, so start analyzing at the end
 | 
|  |   2028 |   ** and work forward so that the added virtual terms are never processed.
 | 
|  |   2029 |   */
 | 
|  |   2030 |   for(i=0; i<pTabList->nSrc; i++){
 | 
|  |   2031 |     createMask(&maskSet, pTabList->a[i].iCursor);
 | 
|  |   2032 |   }
 | 
|  |   2033 |   exprAnalyzeAll(pTabList, &wc);
 | 
|  |   2034 |   if( db->mallocFailed ){
 | 
|  |   2035 |     goto whereBeginNoMem;
 | 
|  |   2036 |   }
 | 
|  |   2037 | 
 | 
|  |   2038 |   /* Chose the best index to use for each table in the FROM clause.
 | 
|  |   2039 |   **
 | 
|  |   2040 |   ** This loop fills in the following fields:
 | 
|  |   2041 |   **
 | 
|  |   2042 |   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
 | 
|  |   2043 |   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
 | 
|  |   2044 |   **   pWInfo->a[].nEq       The number of == and IN constraints
 | 
|  |   2045 |   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
 | 
|  |   2046 |   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
 | 
|  |   2047 |   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
 | 
|  |   2048 |   **
 | 
|  |   2049 |   ** This loop also figures out the nesting order of tables in the FROM
 | 
|  |   2050 |   ** clause.
 | 
|  |   2051 |   */
 | 
|  |   2052 |   notReady = ~(Bitmask)0;
 | 
|  |   2053 |   pTabItem = pTabList->a;
 | 
|  |   2054 |   pLevel = pWInfo->a;
 | 
|  |   2055 |   andFlags = ~0;
 | 
|  |   2056 |   WHERETRACE(("*** Optimizer Start ***\n"));
 | 
|  |   2057 |   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
|  |   2058 |     Index *pIdx;                /* Index for FROM table at pTabItem */
 | 
|  |   2059 |     int flags;                  /* Flags asssociated with pIdx */
 | 
|  |   2060 |     int nEq;                    /* Number of == or IN constraints */
 | 
|  |   2061 |     double cost;                /* The cost for pIdx */
 | 
|  |   2062 |     int j;                      /* For looping over FROM tables */
 | 
|  |   2063 |     Index *pBest = 0;           /* The best index seen so far */
 | 
|  |   2064 |     int bestFlags = 0;          /* Flags associated with pBest */
 | 
|  |   2065 |     int bestNEq = 0;            /* nEq associated with pBest */
 | 
|  |   2066 |     double lowestCost;          /* Cost of the pBest */
 | 
|  |   2067 |     int bestJ = 0;              /* The value of j */
 | 
|  |   2068 |     Bitmask m;                  /* Bitmask value for j or bestJ */
 | 
|  |   2069 |     int once = 0;               /* True when first table is seen */
 | 
|  |   2070 |     sqlite3_index_info *pIndex; /* Current virtual index */
 | 
|  |   2071 | 
 | 
|  |   2072 |     lowestCost = SQLITE_BIG_DBL;
 | 
|  |   2073 |     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
 | 
|  |   2074 |       int doNotReorder;  /* True if this table should not be reordered */
 | 
|  |   2075 | 
 | 
|  |   2076 |       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
 | 
|  |   2077 |       if( once && doNotReorder ) break;
 | 
|  |   2078 |       m = getMask(&maskSet, pTabItem->iCursor);
 | 
|  |   2079 |       if( (m & notReady)==0 ){
 | 
|  |   2080 |         if( j==iFrom ) iFrom++;
 | 
|  |   2081 |         continue;
 | 
|  |   2082 |       }
 | 
|  |   2083 |       assert( pTabItem->pTab );
 | 
|  |   2084 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   2085 |       if( IsVirtual(pTabItem->pTab) ){
 | 
|  |   2086 |         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
 | 
|  |   2087 |         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
 | 
|  |   2088 |                                 ppOrderBy ? *ppOrderBy : 0, i==0,
 | 
|  |   2089 |                                 ppIdxInfo);
 | 
|  |   2090 |         flags = WHERE_VIRTUALTABLE;
 | 
|  |   2091 |         pIndex = *ppIdxInfo;
 | 
|  |   2092 |         if( pIndex && pIndex->orderByConsumed ){
 | 
|  |   2093 |           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
 | 
|  |   2094 |         }
 | 
|  |   2095 |         pIdx = 0;
 | 
|  |   2096 |         nEq = 0;
 | 
|  |   2097 |         if( (SQLITE_BIG_DBL/2.0)<cost ){
 | 
|  |   2098 |           /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
 | 
|  |   2099 |           ** inital value of lowestCost in this loop. If it is, then
 | 
|  |   2100 |           ** the (cost<lowestCost) test below will never be true and
 | 
|  |   2101 |           ** pLevel->pBestIdx never set.
 | 
|  |   2102 |           */ 
 | 
|  |   2103 |           cost = (SQLITE_BIG_DBL/2.0);
 | 
|  |   2104 |         }
 | 
|  |   2105 |       }else 
 | 
|  |   2106 | #endif
 | 
|  |   2107 |       {
 | 
|  |   2108 |         cost = bestIndex(pParse, &wc, pTabItem, notReady,
 | 
|  |   2109 |                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
 | 
|  |   2110 |                          &pIdx, &flags, &nEq);
 | 
|  |   2111 |         pIndex = 0;
 | 
|  |   2112 |       }
 | 
|  |   2113 |       if( cost<lowestCost ){
 | 
|  |   2114 |         once = 1;
 | 
|  |   2115 |         lowestCost = cost;
 | 
|  |   2116 |         pBest = pIdx;
 | 
|  |   2117 |         bestFlags = flags;
 | 
|  |   2118 |         bestNEq = nEq;
 | 
|  |   2119 |         bestJ = j;
 | 
|  |   2120 |         pLevel->pBestIdx = pIndex;
 | 
|  |   2121 |       }
 | 
|  |   2122 |       if( doNotReorder ) break;
 | 
|  |   2123 |     }
 | 
|  |   2124 |     WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
 | 
|  |   2125 |            pLevel-pWInfo->a));
 | 
|  |   2126 |     if( (bestFlags & WHERE_ORDERBY)!=0 ){
 | 
|  |   2127 |       *ppOrderBy = 0;
 | 
|  |   2128 |     }
 | 
|  |   2129 |     andFlags &= bestFlags;
 | 
|  |   2130 |     pLevel->flags = bestFlags;
 | 
|  |   2131 |     pLevel->pIdx = pBest;
 | 
|  |   2132 |     pLevel->nEq = bestNEq;
 | 
|  |   2133 |     pLevel->aInLoop = 0;
 | 
|  |   2134 |     pLevel->nIn = 0;
 | 
|  |   2135 |     if( pBest ){
 | 
|  |   2136 |       pLevel->iIdxCur = pParse->nTab++;
 | 
|  |   2137 |     }else{
 | 
|  |   2138 |       pLevel->iIdxCur = -1;
 | 
|  |   2139 |     }
 | 
|  |   2140 |     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
 | 
|  |   2141 |     pLevel->iFrom = bestJ;
 | 
|  |   2142 |   }
 | 
|  |   2143 |   WHERETRACE(("*** Optimizer Finished ***\n"));
 | 
|  |   2144 | 
 | 
|  |   2145 |   /* If the total query only selects a single row, then the ORDER BY
 | 
|  |   2146 |   ** clause is irrelevant.
 | 
|  |   2147 |   */
 | 
|  |   2148 |   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
 | 
|  |   2149 |     *ppOrderBy = 0;
 | 
|  |   2150 |   }
 | 
|  |   2151 | 
 | 
|  |   2152 |   /* Open all tables in the pTabList and any indices selected for
 | 
|  |   2153 |   ** searching those tables.
 | 
|  |   2154 |   */
 | 
|  |   2155 |   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
 | 
|  |   2156 |   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
|  |   2157 |     Table *pTab;     /* Table to open */
 | 
|  |   2158 |     Index *pIx;      /* Index used to access pTab (if any) */
 | 
|  |   2159 |     int iDb;         /* Index of database containing table/index */
 | 
|  |   2160 |     int iIdxCur = pLevel->iIdxCur;
 | 
|  |   2161 | 
 | 
|  |   2162 | #ifndef SQLITE_OMIT_EXPLAIN
 | 
|  |   2163 |     if( pParse->explain==2 ){
 | 
|  |   2164 |       char *zMsg;
 | 
|  |   2165 | 	  SrcList::SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
 | 
|  |   2166 |       zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
 | 
|  |   2167 |       if( pItem->zAlias ){
 | 
|  |   2168 |         zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
 | 
|  |   2169 |       }
 | 
|  |   2170 |       if( (pIx = pLevel->pIdx)!=0 ){
 | 
|  |   2171 |         zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
 | 
|  |   2172 |       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | 
|  |   2173 |         zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
 | 
|  |   2174 |       }
 | 
|  |   2175 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   2176 |       else if( pLevel->pBestIdx ){
 | 
|  |   2177 |         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
 | 
|  |   2178 |         zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
 | 
|  |   2179 |                     pBestIdx->idxNum, pBestIdx->idxStr);
 | 
|  |   2180 |       }
 | 
|  |   2181 | #endif
 | 
|  |   2182 |       if( pLevel->flags & WHERE_ORDERBY ){
 | 
|  |   2183 |         zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
 | 
|  |   2184 |       }
 | 
|  |   2185 |       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
 | 
|  |   2186 |     }
 | 
|  |   2187 | #endif /* SQLITE_OMIT_EXPLAIN */
 | 
|  |   2188 |     pTabItem = &pTabList->a[pLevel->iFrom];
 | 
|  |   2189 |     pTab = pTabItem->pTab;
 | 
|  |   2190 |     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | 
|  |   2191 |     if( pTab->isEphem || pTab->pSelect ) continue;
 | 
|  |   2192 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   2193 |     if( pLevel->pBestIdx ){
 | 
|  |   2194 |       int iCur = pTabItem->iCursor;
 | 
|  |   2195 |       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
 | 
|  |   2196 |     }else
 | 
|  |   2197 | #endif
 | 
|  |   2198 |     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | 
|  |   2199 |       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
 | 
|  |   2200 |       if( pTab->nCol<(sizeof(Bitmask)*8) ){
 | 
|  |   2201 |         Bitmask b = pTabItem->colUsed;
 | 
|  |   2202 |         int n = 0;
 | 
|  |   2203 |         for(; b; b=b>>1, n++){}
 | 
|  |   2204 |         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
 | 
|  |   2205 |         assert( n<=pTab->nCol );
 | 
|  |   2206 |       }
 | 
|  |   2207 |     }else{
 | 
|  |   2208 |       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | 
|  |   2209 |     }
 | 
|  |   2210 |     pLevel->iTabCur = pTabItem->iCursor;
 | 
|  |   2211 |     if( (pIx = pLevel->pIdx)!=0 ){
 | 
|  |   2212 |       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
 | 
|  |   2213 |       assert( pIx->pSchema==pTab->pSchema );
 | 
|  |   2214 |       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
|  |   2215 |       VdbeComment((v, "# %s", pIx->zName));
 | 
|  |   2216 |       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
 | 
|  |   2217 |                      (char*)pKey, P3_KEYINFO_HANDOFF);
 | 
|  |   2218 |       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
 | 
|  |   2219 |     }
 | 
|  |   2220 |     sqlite3CodeVerifySchema(pParse, iDb);
 | 
|  |   2221 |   }
 | 
|  |   2222 |   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2223 | 
 | 
|  |   2224 |   /* Generate the code to do the search.  Each iteration of the for
 | 
|  |   2225 |   ** loop below generates code for a single nested loop of the VM
 | 
|  |   2226 |   ** program.
 | 
|  |   2227 |   */
 | 
|  |   2228 |   notReady = ~(Bitmask)0;
 | 
|  |   2229 |   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
|  |   2230 |     int j;
 | 
|  |   2231 |     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
 | 
|  |   2232 |     Index *pIdx;       /* The index we will be using */
 | 
|  |   2233 |     int nxt;           /* Where to jump to continue with the next IN case */
 | 
|  |   2234 |     int iIdxCur;       /* The VDBE cursor for the index */
 | 
|  |   2235 |     int omitTable;     /* True if we use the index only */
 | 
|  |   2236 |     int bRev;          /* True if we need to scan in reverse order */
 | 
|  |   2237 | 
 | 
|  |   2238 |     pTabItem = &pTabList->a[pLevel->iFrom];
 | 
|  |   2239 |     iCur = pTabItem->iCursor;
 | 
|  |   2240 |     pIdx = pLevel->pIdx;
 | 
|  |   2241 |     iIdxCur = pLevel->iIdxCur;
 | 
|  |   2242 |     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
 | 
|  |   2243 |     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
 | 
|  |   2244 | 
 | 
|  |   2245 |     /* Create labels for the "break" and "continue" instructions
 | 
|  |   2246 |     ** for the current loop.  Jump to brk to break out of a loop.
 | 
|  |   2247 |     ** Jump to cont to go immediately to the next iteration of the
 | 
|  |   2248 |     ** loop.
 | 
|  |   2249 |     **
 | 
|  |   2250 |     ** When there is an IN operator, we also have a "nxt" label that
 | 
|  |   2251 |     ** means to continue with the next IN value combination.  When
 | 
|  |   2252 |     ** there are no IN operators in the constraints, the "nxt" label
 | 
|  |   2253 |     ** is the same as "brk".
 | 
|  |   2254 |     */
 | 
|  |   2255 |     brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
 | 
|  |   2256 |     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
 | 
|  |   2257 | 
 | 
|  |   2258 |     /* If this is the right table of a LEFT OUTER JOIN, allocate and
 | 
|  |   2259 |     ** initialize a memory cell that records if this table matches any
 | 
|  |   2260 |     ** row of the left table of the join.
 | 
|  |   2261 |     */
 | 
|  |   2262 |     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
 | 
|  |   2263 |       if( !pParse->nMem ) pParse->nMem++;
 | 
|  |   2264 |       pLevel->iLeftJoin = pParse->nMem++;
 | 
|  |   2265 |       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
 | 
|  |   2266 |       VdbeComment((v, "# init LEFT JOIN no-match flag"));
 | 
|  |   2267 |     }
 | 
|  |   2268 | 
 | 
|  |   2269 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   2270 |     if( pLevel->pBestIdx ){
 | 
|  |   2271 |       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
 | 
|  |   2272 |       **          to access the data.
 | 
|  |   2273 |       */
 | 
|  |   2274 |       int j;
 | 
|  |   2275 |       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
 | 
|  |   2276 |       int nConstraint = pBestIdx->nConstraint;
 | 
|  |   2277 | 	  sqlite3_index_info::sqlite3_index_constraint_usage *aUsage =
 | 
|  |   2278 |                                                   pBestIdx->aConstraintUsage;
 | 
|  |   2279 | 	  const sqlite3_index_info::sqlite3_index_constraint *aConstraint =
 | 
|  |   2280 |                                                   pBestIdx->aConstraint;
 | 
|  |   2281 | 
 | 
|  |   2282 |       for(j=1; j<=nConstraint; j++){
 | 
|  |   2283 |         int k;
 | 
|  |   2284 |         for(k=0; k<nConstraint; k++){
 | 
|  |   2285 |           if( aUsage[k].argvIndex==j ){
 | 
|  |   2286 |             int iTerm = aConstraint[k].iTermOffset;
 | 
|  |   2287 |             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
 | 
|  |   2288 |             break;
 | 
|  |   2289 |           }
 | 
|  |   2290 |         }
 | 
|  |   2291 |         if( k==nConstraint ) break;
 | 
|  |   2292 |       }
 | 
|  |   2293 |       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
 | 
|  |   2294 |       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
 | 
|  |   2295 |       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
 | 
|  |   2296 |                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
 | 
|  |   2297 |       pBestIdx->needToFreeIdxStr = 0;
 | 
|  |   2298 |       for(j=0; j<pBestIdx->nConstraint; j++){
 | 
|  |   2299 |         if( aUsage[j].omit ){
 | 
|  |   2300 |           int iTerm = aConstraint[j].iTermOffset;
 | 
|  |   2301 |           disableTerm(pLevel, &wc.a[iTerm]);
 | 
|  |   2302 |         }
 | 
|  |   2303 |       }
 | 
|  |   2304 |       pLevel->op = OP_VNext;
 | 
|  |   2305 |       pLevel->p1 = iCur;
 | 
|  |   2306 |       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2307 |     }else
 | 
|  |   2308 | #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
|  |   2309 | 
 | 
|  |   2310 |     if( pLevel->flags & WHERE_ROWID_EQ ){
 | 
|  |   2311 |       /* Case 1:  We can directly reference a single row using an
 | 
|  |   2312 |       **          equality comparison against the ROWID field.  Or
 | 
|  |   2313 |       **          we reference multiple rows using a "rowid IN (...)"
 | 
|  |   2314 |       **          construct.
 | 
|  |   2315 |       */
 | 
|  |   2316 |       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | 
|  |   2317 |       assert( pTerm!=0 );
 | 
|  |   2318 |       assert( pTerm->pExpr!=0 );
 | 
|  |   2319 |       assert( pTerm->leftCursor==iCur );
 | 
|  |   2320 |       assert( omitTable==0 );
 | 
|  |   2321 |       codeEqualityTerm(pParse, pTerm, pLevel);
 | 
|  |   2322 |       nxt = pLevel->nxt;
 | 
|  |   2323 |       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
 | 
|  |   2324 |       sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
 | 
|  |   2325 |       VdbeComment((v, "pk"));
 | 
|  |   2326 |       pLevel->op = OP_Noop;
 | 
|  |   2327 |     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
 | 
|  |   2328 |       /* Case 2:  We have an inequality comparison against the ROWID field.
 | 
|  |   2329 |       */
 | 
|  |   2330 |       int testOp = OP_Noop;
 | 
|  |   2331 |       int start;
 | 
|  |   2332 |       WhereTerm *pStart, *pEnd;
 | 
|  |   2333 | 
 | 
|  |   2334 |       assert( omitTable==0 );
 | 
|  |   2335 |       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
 | 
|  |   2336 |       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
 | 
|  |   2337 |       if( bRev ){
 | 
|  |   2338 |         pTerm = pStart;
 | 
|  |   2339 |         pStart = pEnd;
 | 
|  |   2340 |         pEnd = pTerm;
 | 
|  |   2341 |       }
 | 
|  |   2342 |       if( pStart ){
 | 
|  |   2343 |         Expr *pX;
 | 
|  |   2344 |         pX = pStart->pExpr;
 | 
|  |   2345 |         assert( pX!=0 );
 | 
|  |   2346 |         assert( pStart->leftCursor==iCur );
 | 
|  |   2347 |         sqlite3ExprCode(pParse, pX->pRight);
 | 
|  |   2348 |         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
 | 
|  |   2349 |         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
 | 
|  |   2350 |         VdbeComment((v, "pk"));
 | 
|  |   2351 |         disableTerm(pLevel, pStart);
 | 
|  |   2352 |       }else{
 | 
|  |   2353 |         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
 | 
|  |   2354 |       }
 | 
|  |   2355 |       if( pEnd ){
 | 
|  |   2356 |         Expr *pX;
 | 
|  |   2357 |         pX = pEnd->pExpr;
 | 
|  |   2358 |         assert( pX!=0 );
 | 
|  |   2359 |         assert( pEnd->leftCursor==iCur );
 | 
|  |   2360 |         sqlite3ExprCode(pParse, pX->pRight);
 | 
|  |   2361 |         pLevel->iMem = pParse->nMem++;
 | 
|  |   2362 |         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
|  |   2363 |         if( pX->op==TK_LT || pX->op==TK_GT ){
 | 
|  |   2364 |           testOp = bRev ? OP_Le : OP_Ge;
 | 
|  |   2365 |         }else{
 | 
|  |   2366 |           testOp = bRev ? OP_Lt : OP_Gt;
 | 
|  |   2367 |         }
 | 
|  |   2368 |         disableTerm(pLevel, pEnd);
 | 
|  |   2369 |       }
 | 
|  |   2370 |       start = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2371 |       pLevel->op = bRev ? OP_Prev : OP_Next;
 | 
|  |   2372 |       pLevel->p1 = iCur;
 | 
|  |   2373 |       pLevel->p2 = start;
 | 
|  |   2374 |       if( testOp!=OP_Noop ){
 | 
|  |   2375 |         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
 | 
|  |   2376 |         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
|  |   2377 |         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
 | 
|  |   2378 |       }
 | 
|  |   2379 |     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
 | 
|  |   2380 |       /* Case 3: The WHERE clause term that refers to the right-most
 | 
|  |   2381 |       **         column of the index is an inequality.  For example, if
 | 
|  |   2382 |       **         the index is on (x,y,z) and the WHERE clause is of the
 | 
|  |   2383 |       **         form "x=5 AND y<10" then this case is used.  Only the
 | 
|  |   2384 |       **         right-most column can be an inequality - the rest must
 | 
|  |   2385 |       **         use the "==" and "IN" operators.
 | 
|  |   2386 |       **
 | 
|  |   2387 |       **         This case is also used when there are no WHERE clause
 | 
|  |   2388 |       **         constraints but an index is selected anyway, in order
 | 
|  |   2389 |       **         to force the output order to conform to an ORDER BY.
 | 
|  |   2390 |       */
 | 
|  |   2391 |       int start;
 | 
|  |   2392 |       int nEq = pLevel->nEq;
 | 
|  |   2393 |       int topEq=0;        /* True if top limit uses ==. False is strictly < */
 | 
|  |   2394 |       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
 | 
|  |   2395 |       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
 | 
|  |   2396 |       int testOp;
 | 
|  |   2397 |       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
 | 
|  |   2398 |       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
 | 
|  |   2399 | 
 | 
|  |   2400 |       /* Generate code to evaluate all constraint terms using == or IN
 | 
|  |   2401 |       ** and level the values of those terms on the stack.
 | 
|  |   2402 |       */
 | 
|  |   2403 |       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
 | 
|  |   2404 | 
 | 
|  |   2405 |       /* Duplicate the equality term values because they will all be
 | 
|  |   2406 |       ** used twice: once to make the termination key and once to make the
 | 
|  |   2407 |       ** start key.
 | 
|  |   2408 |       */
 | 
|  |   2409 |       for(j=0; j<nEq; j++){
 | 
|  |   2410 |         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
 | 
|  |   2411 |       }
 | 
|  |   2412 | 
 | 
|  |   2413 |       /* Figure out what comparison operators to use for top and bottom 
 | 
|  |   2414 |       ** search bounds. For an ascending index, the bottom bound is a > or >=
 | 
|  |   2415 |       ** operator and the top bound is a < or <= operator.  For a descending
 | 
|  |   2416 |       ** index the operators are reversed.
 | 
|  |   2417 |       */
 | 
|  |   2418 |       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
 | 
|  |   2419 |         topOp = WO_LT|WO_LE;
 | 
|  |   2420 |         btmOp = WO_GT|WO_GE;
 | 
|  |   2421 |       }else{
 | 
|  |   2422 |         topOp = WO_GT|WO_GE;
 | 
|  |   2423 |         btmOp = WO_LT|WO_LE;
 | 
|  |   2424 |         SWAP(int, topLimit, btmLimit);
 | 
|  |   2425 |       }
 | 
|  |   2426 | 
 | 
|  |   2427 |       /* Generate the termination key.  This is the key value that
 | 
|  |   2428 |       ** will end the search.  There is no termination key if there
 | 
|  |   2429 |       ** are no equality terms and no "X<..." term.
 | 
|  |   2430 |       **
 | 
|  |   2431 |       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
 | 
|  |   2432 |       ** key computed here really ends up being the start key.
 | 
|  |   2433 |       */
 | 
|  |   2434 |       nxt = pLevel->nxt;
 | 
|  |   2435 |       if( topLimit ){
 | 
|  |   2436 |         Expr *pX;
 | 
|  |   2437 |         int k = pIdx->aiColumn[j];
 | 
|  |   2438 |         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
 | 
|  |   2439 |         assert( pTerm!=0 );
 | 
|  |   2440 |         pX = pTerm->pExpr;
 | 
|  |   2441 |         assert( (pTerm->flags & TERM_CODED)==0 );
 | 
|  |   2442 |         sqlite3ExprCode(pParse, pX->pRight);
 | 
|  |   2443 |         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt);
 | 
|  |   2444 |         topEq = pTerm->eOperator & (WO_LE|WO_GE);
 | 
|  |   2445 |         disableTerm(pLevel, pTerm);
 | 
|  |   2446 |         testOp = OP_IdxGE;
 | 
|  |   2447 |       }else{
 | 
|  |   2448 |         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
 | 
|  |   2449 |         topEq = 1;
 | 
|  |   2450 |       }
 | 
|  |   2451 |       if( testOp!=OP_Noop ){
 | 
|  |   2452 |         int nCol = nEq + topLimit;
 | 
|  |   2453 |         pLevel->iMem = pParse->nMem++;
 | 
|  |   2454 |         buildIndexProbe(v, nCol, pIdx);
 | 
|  |   2455 |         if( bRev ){
 | 
|  |   2456 |           int op = topEq ? OP_MoveLe : OP_MoveLt;
 | 
|  |   2457 |           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
 | 
|  |   2458 |         }else{
 | 
|  |   2459 |           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
|  |   2460 |         }
 | 
|  |   2461 |       }else if( bRev ){
 | 
|  |   2462 |         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
 | 
|  |   2463 |       }
 | 
|  |   2464 | 
 | 
|  |   2465 |       /* Generate the start key.  This is the key that defines the lower
 | 
|  |   2466 |       ** bound on the search.  There is no start key if there are no
 | 
|  |   2467 |       ** equality terms and if there is no "X>..." term.  In
 | 
|  |   2468 |       ** that case, generate a "Rewind" instruction in place of the
 | 
|  |   2469 |       ** start key search.
 | 
|  |   2470 |       **
 | 
|  |   2471 |       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
 | 
|  |   2472 |       ** "start" key really ends up being used as the termination key.
 | 
|  |   2473 |       */
 | 
|  |   2474 |       if( btmLimit ){
 | 
|  |   2475 |         Expr *pX;
 | 
|  |   2476 |         int k = pIdx->aiColumn[j];
 | 
|  |   2477 |         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
 | 
|  |   2478 |         assert( pTerm!=0 );
 | 
|  |   2479 |         pX = pTerm->pExpr;
 | 
|  |   2480 |         assert( (pTerm->flags & TERM_CODED)==0 );
 | 
|  |   2481 |         sqlite3ExprCode(pParse, pX->pRight);
 | 
|  |   2482 |         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
 | 
|  |   2483 |         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
 | 
|  |   2484 |         disableTerm(pLevel, pTerm);
 | 
|  |   2485 |       }else{
 | 
|  |   2486 |         btmEq = 1;
 | 
|  |   2487 |       }
 | 
|  |   2488 |       if( nEq>0 || btmLimit ){
 | 
|  |   2489 |         int nCol = nEq + btmLimit;
 | 
|  |   2490 |         buildIndexProbe(v, nCol, pIdx);
 | 
|  |   2491 |         if( bRev ){
 | 
|  |   2492 |           pLevel->iMem = pParse->nMem++;
 | 
|  |   2493 |           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
 | 
|  |   2494 |           testOp = OP_IdxLT;
 | 
|  |   2495 |         }else{
 | 
|  |   2496 |           int op = btmEq ? OP_MoveGe : OP_MoveGt;
 | 
|  |   2497 |           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
 | 
|  |   2498 |         }
 | 
|  |   2499 |       }else if( bRev ){
 | 
|  |   2500 |         testOp = OP_Noop;
 | 
|  |   2501 |       }else{
 | 
|  |   2502 |         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
 | 
|  |   2503 |       }
 | 
|  |   2504 | 
 | 
|  |   2505 |       /* Generate the the top of the loop.  If there is a termination
 | 
|  |   2506 |       ** key we have to test for that key and abort at the top of the
 | 
|  |   2507 |       ** loop.
 | 
|  |   2508 |       */
 | 
|  |   2509 |       start = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2510 |       if( testOp!=OP_Noop ){
 | 
|  |   2511 |         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
|  |   2512 |         sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
 | 
|  |   2513 |         if( (topEq && !bRev) || (!btmEq && bRev) ){
 | 
|  |   2514 |           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
 | 
|  |   2515 |         }
 | 
|  |   2516 |       }
 | 
|  |   2517 |       if( topLimit | btmLimit ){
 | 
|  |   2518 |         sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
 | 
|  |   2519 |         sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
 | 
|  |   2520 |       }
 | 
|  |   2521 |       if( !omitTable ){
 | 
|  |   2522 |         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
 | 
|  |   2523 |         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
 | 
|  |   2524 |       }
 | 
|  |   2525 | 
 | 
|  |   2526 |       /* Record the instruction used to terminate the loop.
 | 
|  |   2527 |       */
 | 
|  |   2528 |       pLevel->op = bRev ? OP_Prev : OP_Next;
 | 
|  |   2529 |       pLevel->p1 = iIdxCur;
 | 
|  |   2530 |       pLevel->p2 = start;
 | 
|  |   2531 |     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
 | 
|  |   2532 |       /* Case 4:  There is an index and all terms of the WHERE clause that
 | 
|  |   2533 |       **          refer to the index using the "==" or "IN" operators.
 | 
|  |   2534 |       */
 | 
|  |   2535 |       int start;
 | 
|  |   2536 |       int nEq = pLevel->nEq;
 | 
|  |   2537 | 
 | 
|  |   2538 |       /* Generate code to evaluate all constraint terms using == or IN
 | 
|  |   2539 |       ** and leave the values of those terms on the stack.
 | 
|  |   2540 |       */
 | 
|  |   2541 |       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
 | 
|  |   2542 |       nxt = pLevel->nxt;
 | 
|  |   2543 | 
 | 
|  |   2544 |       /* Generate a single key that will be used to both start and terminate
 | 
|  |   2545 |       ** the search
 | 
|  |   2546 |       */
 | 
|  |   2547 |       buildIndexProbe(v, nEq, pIdx);
 | 
|  |   2548 |       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
 | 
|  |   2549 | 
 | 
|  |   2550 |       /* Generate code (1) to move to the first matching element of the table.
 | 
|  |   2551 |       ** Then generate code (2) that jumps to "nxt" after the cursor is past
 | 
|  |   2552 |       ** the last matching element of the table.  The code (1) is executed
 | 
|  |   2553 |       ** once to initialize the search, the code (2) is executed before each
 | 
|  |   2554 |       ** iteration of the scan to see if the scan has finished. */
 | 
|  |   2555 |       if( bRev ){
 | 
|  |   2556 |         /* Scan in reverse order */
 | 
|  |   2557 |         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
 | 
|  |   2558 |         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
|  |   2559 |         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
 | 
|  |   2560 |         pLevel->op = OP_Prev;
 | 
|  |   2561 |       }else{
 | 
|  |   2562 |         /* Scan in the forward order */
 | 
|  |   2563 |         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
 | 
|  |   2564 |         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
 | 
|  |   2565 |         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
 | 
|  |   2566 |         pLevel->op = OP_Next;
 | 
|  |   2567 |       }
 | 
|  |   2568 |       if( !omitTable ){
 | 
|  |   2569 |         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
 | 
|  |   2570 |         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
 | 
|  |   2571 |       }
 | 
|  |   2572 |       pLevel->p1 = iIdxCur;
 | 
|  |   2573 |       pLevel->p2 = start;
 | 
|  |   2574 |     }else{
 | 
|  |   2575 |       /* Case 5:  There is no usable index.  We must do a complete
 | 
|  |   2576 |       **          scan of the entire table.
 | 
|  |   2577 |       */
 | 
|  |   2578 |       assert( omitTable==0 );
 | 
|  |   2579 |       assert( bRev==0 );
 | 
|  |   2580 |       pLevel->op = OP_Next;
 | 
|  |   2581 |       pLevel->p1 = iCur;
 | 
|  |   2582 |       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
 | 
|  |   2583 |     }
 | 
|  |   2584 |     notReady &= ~getMask(&maskSet, iCur);
 | 
|  |   2585 |     sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
 | 
|  |   2586 | 
 | 
|  |   2587 |     /* Insert code to test every subexpression that can be completely
 | 
|  |   2588 |     ** computed using the current set of tables.
 | 
|  |   2589 |     */
 | 
|  |   2590 |     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
 | 
|  |   2591 |       Expr *pE;
 | 
|  |   2592 |       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | 
|  |   2593 |       if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | 
|  |   2594 |       pE = pTerm->pExpr;
 | 
|  |   2595 |       assert( pE!=0 );
 | 
|  |   2596 |       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
 | 
|  |   2597 |         continue;
 | 
|  |   2598 |       }
 | 
|  |   2599 |       sqlite3ExprIfFalse(pParse, pE, cont, 1);
 | 
|  |   2600 |       pTerm->flags |= TERM_CODED;
 | 
|  |   2601 |     }
 | 
|  |   2602 | 
 | 
|  |   2603 |     /* For a LEFT OUTER JOIN, generate code that will record the fact that
 | 
|  |   2604 |     ** at least one row of the right table has matched the left table.  
 | 
|  |   2605 |     */
 | 
|  |   2606 |     if( pLevel->iLeftJoin ){
 | 
|  |   2607 |       pLevel->top = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2608 |       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
 | 
|  |   2609 |       VdbeComment((v, "# record LEFT JOIN hit"));
 | 
|  |   2610 |       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
 | 
|  |   2611 |         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | 
|  |   2612 |         if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | 
|  |   2613 |         assert( pTerm->pExpr );
 | 
|  |   2614 |         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
 | 
|  |   2615 |         pTerm->flags |= TERM_CODED;
 | 
|  |   2616 |       }
 | 
|  |   2617 |     }
 | 
|  |   2618 |   }
 | 
|  |   2619 | 
 | 
|  |   2620 | #ifdef SQLITE_TEST  /* For testing and debugging use only */
 | 
|  |   2621 |   /* Record in the query plan information about the current table
 | 
|  |   2622 |   ** and the index used to access it (if any).  If the table itself
 | 
|  |   2623 |   ** is not used, its name is just '{}'.  If no index is used
 | 
|  |   2624 |   ** the index is listed as "{}".  If the primary key is used the
 | 
|  |   2625 |   ** index name is '*'.
 | 
|  |   2626 |   */
 | 
|  |   2627 |   for(i=0; i<pTabList->nSrc; i++){
 | 
|  |   2628 |     char *z;
 | 
|  |   2629 |     int n;
 | 
|  |   2630 |     pLevel = &pWInfo->a[i];
 | 
|  |   2631 |     pTabItem = &pTabList->a[pLevel->iFrom];
 | 
|  |   2632 |     z = pTabItem->zAlias;
 | 
|  |   2633 |     if( z==0 ) z = pTabItem->pTab->zName;
 | 
|  |   2634 |     n = strlen(z);
 | 
|  |   2635 |     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
 | 
|  |   2636 |       if( pLevel->flags & WHERE_IDX_ONLY ){
 | 
|  |   2637 |         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
 | 
|  |   2638 |         nQPlan += 2;
 | 
|  |   2639 |       }else{
 | 
|  |   2640 |         memcpy(&sqlite3_query_plan[nQPlan], z, n);
 | 
|  |   2641 |         nQPlan += n;
 | 
|  |   2642 |       }
 | 
|  |   2643 |       sqlite3_query_plan[nQPlan++] = ' ';
 | 
|  |   2644 |     }
 | 
|  |   2645 |     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | 
|  |   2646 |       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
 | 
|  |   2647 |       nQPlan += 2;
 | 
|  |   2648 |     }else if( pLevel->pIdx==0 ){
 | 
|  |   2649 |       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
 | 
|  |   2650 |       nQPlan += 3;
 | 
|  |   2651 |     }else{
 | 
|  |   2652 |       n = strlen(pLevel->pIdx->zName);
 | 
|  |   2653 |       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
 | 
|  |   2654 |         memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
 | 
|  |   2655 |         nQPlan += n;
 | 
|  |   2656 |         sqlite3_query_plan[nQPlan++] = ' ';
 | 
|  |   2657 |       }
 | 
|  |   2658 |     }
 | 
|  |   2659 |   }
 | 
|  |   2660 |   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
 | 
|  |   2661 |     sqlite3_query_plan[--nQPlan] = 0;
 | 
|  |   2662 |   }
 | 
|  |   2663 |   sqlite3_query_plan[nQPlan] = 0;
 | 
|  |   2664 |   nQPlan = 0;
 | 
|  |   2665 | #endif /* SQLITE_TEST // Testing and debugging use only */
 | 
|  |   2666 | 
 | 
|  |   2667 |   /* Record the continuation address in the WhereInfo structure.  Then
 | 
|  |   2668 |   ** clean up and return.
 | 
|  |   2669 |   */
 | 
|  |   2670 |   pWInfo->iContinue = cont;
 | 
|  |   2671 |   whereClauseClear(&wc);
 | 
|  |   2672 |   return pWInfo;
 | 
|  |   2673 | 
 | 
|  |   2674 |   /* Jump here if malloc fails */
 | 
|  |   2675 | whereBeginNoMem:
 | 
|  |   2676 |   whereClauseClear(&wc);
 | 
|  |   2677 |   whereInfoFree(pWInfo);
 | 
|  |   2678 |   return 0;
 | 
|  |   2679 | }
 | 
|  |   2680 | 
 | 
|  |   2681 | /*
 | 
|  |   2682 | ** Generate the end of the WHERE loop.  See comments on 
 | 
|  |   2683 | ** sqlite3WhereBegin() for additional information.
 | 
|  |   2684 | */
 | 
|  |   2685 | void sqlite3WhereEnd(WhereInfo *pWInfo){
 | 
|  |   2686 |   Vdbe *v = pWInfo->pParse->pVdbe;
 | 
|  |   2687 |   int i;
 | 
|  |   2688 |   WhereLevel *pLevel;
 | 
|  |   2689 |   SrcList *pTabList = pWInfo->pTabList;
 | 
|  |   2690 | 
 | 
|  |   2691 |   /* Generate loop termination code.
 | 
|  |   2692 |   */
 | 
|  |   2693 |   for(i=pTabList->nSrc-1; i>=0; i--){
 | 
|  |   2694 |     pLevel = &pWInfo->a[i];
 | 
|  |   2695 |     sqlite3VdbeResolveLabel(v, pLevel->cont);
 | 
|  |   2696 |     if( pLevel->op!=OP_Noop ){
 | 
|  |   2697 |       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
 | 
|  |   2698 |     }
 | 
|  |   2699 |     if( pLevel->nIn ){
 | 
|  |   2700 | 		WhereLevel::InLoop *pIn;
 | 
|  |   2701 |       int j;
 | 
|  |   2702 |       sqlite3VdbeResolveLabel(v, pLevel->nxt);
 | 
|  |   2703 |       for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
 | 
|  |   2704 |         sqlite3VdbeJumpHere(v, pIn->topAddr+1);
 | 
|  |   2705 |         sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
 | 
|  |   2706 |         sqlite3VdbeJumpHere(v, pIn->topAddr-1);
 | 
|  |   2707 |       }
 | 
|  |   2708 |       sqlite3_free(pLevel->aInLoop);
 | 
|  |   2709 |     }
 | 
|  |   2710 |     sqlite3VdbeResolveLabel(v, pLevel->brk);
 | 
|  |   2711 |     if( pLevel->iLeftJoin ){
 | 
|  |   2712 |       int addr;
 | 
|  |   2713 |       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
 | 
|  |   2714 |       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
 | 
|  |   2715 |       if( pLevel->iIdxCur>=0 ){
 | 
|  |   2716 |         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
 | 
|  |   2717 |       }
 | 
|  |   2718 |       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
 | 
|  |   2719 |       sqlite3VdbeJumpHere(v, addr);
 | 
|  |   2720 |     }
 | 
|  |   2721 |   }
 | 
|  |   2722 | 
 | 
|  |   2723 |   /* The "break" point is here, just past the end of the outer loop.
 | 
|  |   2724 |   ** Set it.
 | 
|  |   2725 |   */
 | 
|  |   2726 |   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
 | 
|  |   2727 | 
 | 
|  |   2728 |   /* Close all of the cursors that were opened by sqlite3WhereBegin.
 | 
|  |   2729 |   */
 | 
|  |   2730 |   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | 
|  |   2731 | 	  SrcList::SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
 | 
|  |   2732 |     Table *pTab = pTabItem->pTab;
 | 
|  |   2733 |     assert( pTab!=0 );
 | 
|  |   2734 |     if( pTab->isEphem || pTab->pSelect ) continue;
 | 
|  |   2735 |     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | 
|  |   2736 |       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
 | 
|  |   2737 |     }
 | 
|  |   2738 |     if( pLevel->pIdx!=0 ){
 | 
|  |   2739 |       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
 | 
|  |   2740 |     }
 | 
|  |   2741 | 
 | 
|  |   2742 |     /* If this scan uses an index, make code substitutions to read data
 | 
|  |   2743 |     ** from the index in preference to the table. Sometimes, this means
 | 
|  |   2744 |     ** the table need never be read from. This is a performance boost,
 | 
|  |   2745 |     ** as the vdbe level waits until the table is read before actually
 | 
|  |   2746 |     ** seeking the table cursor to the record corresponding to the current
 | 
|  |   2747 |     ** position in the index.
 | 
|  |   2748 |     ** 
 | 
|  |   2749 |     ** Calls to the code generator in between sqlite3WhereBegin and
 | 
|  |   2750 |     ** sqlite3WhereEnd will have created code that references the table
 | 
|  |   2751 |     ** directly.  This loop scans all that code looking for opcodes
 | 
|  |   2752 |     ** that reference the table and converts them into opcodes that
 | 
|  |   2753 |     ** reference the index.
 | 
|  |   2754 |     */
 | 
|  |   2755 |     if( pLevel->pIdx ){
 | 
|  |   2756 |       int k, j, last;
 | 
|  |   2757 |       VdbeOp *pOp;
 | 
|  |   2758 |       Index *pIdx = pLevel->pIdx;
 | 
|  |   2759 |       int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
 | 
|  |   2760 | 
 | 
|  |   2761 |       assert( pIdx!=0 );
 | 
|  |   2762 |       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
 | 
|  |   2763 |       last = sqlite3VdbeCurrentAddr(v);
 | 
|  |   2764 |       for(k=pWInfo->iTop; k<last; k++, pOp++){
 | 
|  |   2765 |         if( pOp->p1!=pLevel->iTabCur ) continue;
 | 
|  |   2766 |         if( pOp->opcode==OP_Column ){
 | 
|  |   2767 |           for(j=0; j<pIdx->nColumn; j++){
 | 
|  |   2768 |             if( pOp->p2==pIdx->aiColumn[j] ){
 | 
|  |   2769 |               pOp->p2 = j;
 | 
|  |   2770 |               pOp->p1 = pLevel->iIdxCur;
 | 
|  |   2771 |               break;
 | 
|  |   2772 |             }
 | 
|  |   2773 |           }
 | 
|  |   2774 |           assert(!useIndexOnly || j<pIdx->nColumn);
 | 
|  |   2775 |         }else if( pOp->opcode==OP_Rowid ){
 | 
|  |   2776 |           pOp->p1 = pLevel->iIdxCur;
 | 
|  |   2777 |           pOp->opcode = OP_IdxRowid;
 | 
|  |   2778 |         }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
 | 
|  |   2779 |           pOp->opcode = OP_Noop;
 | 
|  |   2780 |         }
 | 
|  |   2781 |       }
 | 
|  |   2782 |     }
 | 
|  |   2783 |   }
 | 
|  |   2784 | 
 | 
|  |   2785 |   /* Final cleanup
 | 
|  |   2786 |   */
 | 
|  |   2787 |   whereInfoFree(pWInfo);
 | 
|  |   2788 |   return;
 | 
|  |   2789 | }
 |