| 2 |      1 | /*
 | 
|  |      2 | ** 2001 September 15
 | 
|  |      3 | **
 | 
|  |      4 | ** The author disclaims copyright to this source code.  In place of
 | 
|  |      5 | ** a legal notice, here is a blessing:
 | 
|  |      6 | **
 | 
|  |      7 | **    May you do good and not evil.
 | 
|  |      8 | **    May you find forgiveness for yourself and forgive others.
 | 
|  |      9 | **    May you share freely, never taking more than you give.
 | 
|  |     10 | **
 | 
|  |     11 | *************************************************************************
 | 
|  |     12 | ** This file contains C code routines that are called by the parser
 | 
|  |     13 | ** to handle SELECT statements in SQLite.
 | 
|  |     14 | **
 | 
|  |     15 | ** $Id: select.cpp 1282 2008-11-13 09:31:33Z LarsPson $
 | 
|  |     16 | */
 | 
|  |     17 | #include "sqliteInt.h"
 | 
|  |     18 | 
 | 
|  |     19 | 
 | 
|  |     20 | /*
 | 
|  |     21 | ** Delete all the content of a Select structure but do not deallocate
 | 
|  |     22 | ** the select structure itself.
 | 
|  |     23 | */
 | 
|  |     24 | static void clearSelect(Select *p){
 | 
|  |     25 |   sqlite3ExprListDelete(p->pEList);
 | 
|  |     26 |   sqlite3SrcListDelete(p->pSrc);
 | 
|  |     27 |   sqlite3ExprDelete(p->pWhere);
 | 
|  |     28 |   sqlite3ExprListDelete(p->pGroupBy);
 | 
|  |     29 |   sqlite3ExprDelete(p->pHaving);
 | 
|  |     30 |   sqlite3ExprListDelete(p->pOrderBy);
 | 
|  |     31 |   sqlite3SelectDelete(p->pPrior);
 | 
|  |     32 |   sqlite3ExprDelete(p->pLimit);
 | 
|  |     33 |   sqlite3ExprDelete(p->pOffset);
 | 
|  |     34 | }
 | 
|  |     35 | 
 | 
|  |     36 | 
 | 
|  |     37 | /*
 | 
|  |     38 | ** Allocate a new Select structure and return a pointer to that
 | 
|  |     39 | ** structure.
 | 
|  |     40 | */
 | 
|  |     41 | Select *sqlite3SelectNew(
 | 
|  |     42 |   Parse *pParse,        /* Parsing context */
 | 
|  |     43 |   ExprList *pEList,     /* which columns to include in the result */
 | 
|  |     44 |   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
 | 
|  |     45 |   Expr *pWhere,         /* the WHERE clause */
 | 
|  |     46 |   ExprList *pGroupBy,   /* the GROUP BY clause */
 | 
|  |     47 |   Expr *pHaving,        /* the HAVING clause */
 | 
|  |     48 |   ExprList *pOrderBy,   /* the ORDER BY clause */
 | 
|  |     49 |   int isDistinct,       /* true if the DISTINCT keyword is present */
 | 
|  |     50 |   Expr *pLimit,         /* LIMIT value.  NULL means not used */
 | 
|  |     51 |   Expr *pOffset         /* OFFSET value.  NULL means no offset */
 | 
|  |     52 | ){
 | 
|  |     53 |   Select *pNew;
 | 
|  |     54 |   Select standin;
 | 
|  |     55 |   sqlite3 *db = pParse->db;
 | 
|  |     56 |   pNew = (Select*)sqlite3DbMallocZero(db, sizeof(*pNew) );
 | 
|  |     57 |   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
 | 
|  |     58 |   if( pNew==0 ){
 | 
|  |     59 |     pNew = &standin;
 | 
|  |     60 |     memset(pNew, 0, sizeof(*pNew));
 | 
|  |     61 |   }
 | 
|  |     62 |   if( pEList==0 ){
 | 
|  |     63 |     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
 | 
|  |     64 |   }
 | 
|  |     65 |   pNew->pEList = pEList;
 | 
|  |     66 |   pNew->pSrc = pSrc;
 | 
|  |     67 |   pNew->pWhere = pWhere;
 | 
|  |     68 |   pNew->pGroupBy = pGroupBy;
 | 
|  |     69 |   pNew->pHaving = pHaving;
 | 
|  |     70 |   pNew->pOrderBy = pOrderBy;
 | 
|  |     71 |   pNew->isDistinct = isDistinct;
 | 
|  |     72 |   pNew->op = TK_SELECT;
 | 
|  |     73 |   assert( pOffset==0 || pLimit!=0 );
 | 
|  |     74 |   pNew->pLimit = pLimit;
 | 
|  |     75 |   pNew->pOffset = pOffset;
 | 
|  |     76 |   pNew->iLimit = -1;
 | 
|  |     77 |   pNew->iOffset = -1;
 | 
|  |     78 |   pNew->addrOpenEphm[0] = -1;
 | 
|  |     79 |   pNew->addrOpenEphm[1] = -1;
 | 
|  |     80 |   pNew->addrOpenEphm[2] = -1;
 | 
|  |     81 |   if( pNew==&standin) {
 | 
|  |     82 |     clearSelect(pNew);
 | 
|  |     83 |     pNew = 0;
 | 
|  |     84 |   }
 | 
|  |     85 |   return pNew;
 | 
|  |     86 | }
 | 
|  |     87 | 
 | 
|  |     88 | /*
 | 
|  |     89 | ** Delete the given Select structure and all of its substructures.
 | 
|  |     90 | */
 | 
|  |     91 | void sqlite3SelectDelete(Select *p){
 | 
|  |     92 |   if( p ){
 | 
|  |     93 |     clearSelect(p);
 | 
|  |     94 |     sqlite3_free(p);
 | 
|  |     95 |   }
 | 
|  |     96 | }
 | 
|  |     97 | 
 | 
|  |     98 | /*
 | 
|  |     99 | ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
 | 
|  |    100 | ** type of join.  Return an integer constant that expresses that type
 | 
|  |    101 | ** in terms of the following bit values:
 | 
|  |    102 | **
 | 
|  |    103 | **     JT_INNER
 | 
|  |    104 | **     JT_CROSS
 | 
|  |    105 | **     JT_OUTER
 | 
|  |    106 | **     JT_NATURAL
 | 
|  |    107 | **     JT_LEFT
 | 
|  |    108 | **     JT_RIGHT
 | 
|  |    109 | **
 | 
|  |    110 | ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
 | 
|  |    111 | **
 | 
|  |    112 | ** If an illegal or unsupported join type is seen, then still return
 | 
|  |    113 | ** a join type, but put an error in the pParse structure.
 | 
|  |    114 | */
 | 
|  |    115 | int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
 | 
|  |    116 |   int jointype = 0;
 | 
|  |    117 |   Token *apAll[3];
 | 
|  |    118 |   Token *p;
 | 
|  |    119 |   static const struct {
 | 
|  |    120 |     const char zKeyword[8];
 | 
|  |    121 |     u8 nChar;
 | 
|  |    122 |     u8 code;
 | 
|  |    123 |   } keywords[] = {
 | 
|  |    124 |     { "natural", 7, JT_NATURAL },
 | 
|  |    125 |     { "left",    4, JT_LEFT|JT_OUTER },
 | 
|  |    126 |     { "right",   5, JT_RIGHT|JT_OUTER },
 | 
|  |    127 |     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
 | 
|  |    128 |     { "outer",   5, JT_OUTER },
 | 
|  |    129 |     { "inner",   5, JT_INNER },
 | 
|  |    130 |     { "cross",   5, JT_INNER|JT_CROSS },
 | 
|  |    131 |   };
 | 
|  |    132 |   int i, j;
 | 
|  |    133 |   apAll[0] = pA;
 | 
|  |    134 |   apAll[1] = pB;
 | 
|  |    135 |   apAll[2] = pC;
 | 
|  |    136 |   for(i=0; i<3 && apAll[i]; i++){
 | 
|  |    137 |     p = apAll[i];
 | 
|  |    138 |     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
 | 
|  |    139 |       if( p->n==keywords[j].nChar 
 | 
|  |    140 |           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
 | 
|  |    141 |         jointype |= keywords[j].code;
 | 
|  |    142 |         break;
 | 
|  |    143 |       }
 | 
|  |    144 |     }
 | 
|  |    145 |     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
 | 
|  |    146 |       jointype |= JT_ERROR;
 | 
|  |    147 |       break;
 | 
|  |    148 |     }
 | 
|  |    149 |   }
 | 
|  |    150 |   if(
 | 
|  |    151 |      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
 | 
|  |    152 |      (jointype & JT_ERROR)!=0
 | 
|  |    153 |   ){
 | 
|  |    154 |     const char *zSp1 = " ";
 | 
|  |    155 |     const char *zSp2 = " ";
 | 
|  |    156 |     if( pB==0 ){ zSp1++; }
 | 
|  |    157 |     if( pC==0 ){ zSp2++; }
 | 
|  |    158 |     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
 | 
|  |    159 |        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
 | 
|  |    160 |     jointype = JT_INNER;
 | 
|  |    161 |   }else if( jointype & JT_RIGHT ){
 | 
|  |    162 |     sqlite3ErrorMsg(pParse, 
 | 
|  |    163 |       "RIGHT and FULL OUTER JOINs are not currently supported");
 | 
|  |    164 |     jointype = JT_INNER;
 | 
|  |    165 |   }
 | 
|  |    166 |   return jointype;
 | 
|  |    167 | }
 | 
|  |    168 | 
 | 
|  |    169 | /*
 | 
|  |    170 | ** Return the index of a column in a table.  Return -1 if the column
 | 
|  |    171 | ** is not contained in the table.
 | 
|  |    172 | */
 | 
|  |    173 | static int columnIndex(Table *pTab, const char *zCol){
 | 
|  |    174 |   int i;
 | 
|  |    175 |   for(i=0; i<pTab->nCol; i++){
 | 
|  |    176 |     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
 | 
|  |    177 |   }
 | 
|  |    178 |   return -1;
 | 
|  |    179 | }
 | 
|  |    180 | 
 | 
|  |    181 | /*
 | 
|  |    182 | ** Set the value of a token to a '\000'-terminated string.
 | 
|  |    183 | */
 | 
|  |    184 | static void setToken(Token *p, const char *z){
 | 
|  |    185 |   p->z = (u8*)z;
 | 
|  |    186 |   p->n = z ? strlen(z) : 0;
 | 
|  |    187 |   p->dyn = 0;
 | 
|  |    188 | }
 | 
|  |    189 | 
 | 
|  |    190 | /*
 | 
|  |    191 | ** Set the token to the double-quoted and escaped version of the string pointed
 | 
|  |    192 | ** to by z. For example;
 | 
|  |    193 | **
 | 
|  |    194 | **    {a"bc}  ->  {"a""bc"}
 | 
|  |    195 | */
 | 
|  |    196 | static void setQuotedToken(Parse *pParse, Token *p, const char *z){
 | 
|  |    197 |   p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z);
 | 
|  |    198 |   p->dyn = 1;
 | 
|  |    199 |   if( p->z ){
 | 
|  |    200 |     p->n = strlen((char *)p->z);
 | 
|  |    201 |   }else{
 | 
|  |    202 |     pParse->db->mallocFailed = 1;
 | 
|  |    203 |   }
 | 
|  |    204 | }
 | 
|  |    205 | 
 | 
|  |    206 | /*
 | 
|  |    207 | ** Create an expression node for an identifier with the name of zName
 | 
|  |    208 | */
 | 
|  |    209 | Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
 | 
|  |    210 |   Token dummy;
 | 
|  |    211 |   setToken(&dummy, zName);
 | 
|  |    212 |   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
 | 
|  |    213 | }
 | 
|  |    214 | 
 | 
|  |    215 | 
 | 
|  |    216 | /*
 | 
|  |    217 | ** Add a term to the WHERE expression in *ppExpr that requires the
 | 
|  |    218 | ** zCol column to be equal in the two tables pTab1 and pTab2.
 | 
|  |    219 | */
 | 
|  |    220 | static void addWhereTerm(
 | 
|  |    221 |   Parse *pParse,           /* Parsing context */
 | 
|  |    222 |   const char *zCol,        /* Name of the column */
 | 
|  |    223 |   const Table *pTab1,      /* First table */
 | 
|  |    224 |   const char *zAlias1,     /* Alias for first table.  May be NULL */
 | 
|  |    225 |   const Table *pTab2,      /* Second table */
 | 
|  |    226 |   const char *zAlias2,     /* Alias for second table.  May be NULL */
 | 
|  |    227 |   int iRightJoinTable,     /* VDBE cursor for the right table */
 | 
|  |    228 |   Expr **ppExpr            /* Add the equality term to this expression */
 | 
|  |    229 | ){
 | 
|  |    230 |   Expr *pE1a, *pE1b, *pE1c;
 | 
|  |    231 |   Expr *pE2a, *pE2b, *pE2c;
 | 
|  |    232 |   Expr *pE;
 | 
|  |    233 | 
 | 
|  |    234 |   pE1a = sqlite3CreateIdExpr(pParse, zCol);
 | 
|  |    235 |   pE2a = sqlite3CreateIdExpr(pParse, zCol);
 | 
|  |    236 |   if( zAlias1==0 ){
 | 
|  |    237 |     zAlias1 = pTab1->zName;
 | 
|  |    238 |   }
 | 
|  |    239 |   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
 | 
|  |    240 |   if( zAlias2==0 ){
 | 
|  |    241 |     zAlias2 = pTab2->zName;
 | 
|  |    242 |   }
 | 
|  |    243 |   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
 | 
|  |    244 |   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
 | 
|  |    245 |   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
 | 
|  |    246 |   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
 | 
|  |    247 |   if( pE ){
 | 
|  |    248 |     ExprSetProperty(pE, EP_FromJoin);
 | 
|  |    249 |     pE->iRightJoinTable = iRightJoinTable;
 | 
|  |    250 |   }
 | 
|  |    251 |   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
 | 
|  |    252 | }
 | 
|  |    253 | 
 | 
|  |    254 | /*
 | 
|  |    255 | ** Set the EP_FromJoin property on all terms of the given expression.
 | 
|  |    256 | ** And set the Expr.iRightJoinTable to iTable for every term in the
 | 
|  |    257 | ** expression.
 | 
|  |    258 | **
 | 
|  |    259 | ** The EP_FromJoin property is used on terms of an expression to tell
 | 
|  |    260 | ** the LEFT OUTER JOIN processing logic that this term is part of the
 | 
|  |    261 | ** join restriction specified in the ON or USING clause and not a part
 | 
|  |    262 | ** of the more general WHERE clause.  These terms are moved over to the
 | 
|  |    263 | ** WHERE clause during join processing but we need to remember that they
 | 
|  |    264 | ** originated in the ON or USING clause.
 | 
|  |    265 | **
 | 
|  |    266 | ** The Expr.iRightJoinTable tells the WHERE clause processing that the
 | 
|  |    267 | ** expression depends on table iRightJoinTable even if that table is not
 | 
|  |    268 | ** explicitly mentioned in the expression.  That information is needed
 | 
|  |    269 | ** for cases like this:
 | 
|  |    270 | **
 | 
|  |    271 | **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
 | 
|  |    272 | **
 | 
|  |    273 | ** The where clause needs to defer the handling of the t1.x=5
 | 
|  |    274 | ** term until after the t2 loop of the join.  In that way, a
 | 
|  |    275 | ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
 | 
|  |    276 | ** defer the handling of t1.x=5, it will be processed immediately
 | 
|  |    277 | ** after the t1 loop and rows with t1.x!=5 will never appear in
 | 
|  |    278 | ** the output, which is incorrect.
 | 
|  |    279 | */
 | 
|  |    280 | static void setJoinExpr(Expr *p, int iTable){
 | 
|  |    281 |   while( p ){
 | 
|  |    282 |     ExprSetProperty(p, EP_FromJoin);
 | 
|  |    283 |     p->iRightJoinTable = iTable;
 | 
|  |    284 |     setJoinExpr(p->pLeft, iTable);
 | 
|  |    285 |     p = p->pRight;
 | 
|  |    286 |   } 
 | 
|  |    287 | }
 | 
|  |    288 | 
 | 
|  |    289 | /*
 | 
|  |    290 | ** This routine processes the join information for a SELECT statement.
 | 
|  |    291 | ** ON and USING clauses are converted into extra terms of the WHERE clause.
 | 
|  |    292 | ** NATURAL joins also create extra WHERE clause terms.
 | 
|  |    293 | **
 | 
|  |    294 | ** The terms of a FROM clause are contained in the Select.pSrc structure.
 | 
|  |    295 | ** The left most table is the first entry in Select.pSrc.  The right-most
 | 
|  |    296 | ** table is the last entry.  The join operator is held in the entry to
 | 
|  |    297 | ** the left.  Thus entry 0 contains the join operator for the join between
 | 
|  |    298 | ** entries 0 and 1.  Any ON or USING clauses associated with the join are
 | 
|  |    299 | ** also attached to the left entry.
 | 
|  |    300 | **
 | 
|  |    301 | ** This routine returns the number of errors encountered.
 | 
|  |    302 | */
 | 
|  |    303 | static int sqliteProcessJoin(Parse *pParse, Select *p){
 | 
|  |    304 |   SrcList *pSrc;                  /* All tables in the FROM clause */
 | 
|  |    305 |   int i, j;                       /* Loop counters */
 | 
|  |    306 |   SrcList::SrcList_item *pLeft;     /* Left table being joined */
 | 
|  |    307 |   SrcList::SrcList_item *pRight;    /* Right table being joined */
 | 
|  |    308 | 
 | 
|  |    309 |   pSrc = p->pSrc;
 | 
|  |    310 |   pLeft = &pSrc->a[0];
 | 
|  |    311 |   pRight = &pLeft[1];
 | 
|  |    312 |   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
 | 
|  |    313 |     Table *pLeftTab = pLeft->pTab;
 | 
|  |    314 |     Table *pRightTab = pRight->pTab;
 | 
|  |    315 | 
 | 
|  |    316 |     if( pLeftTab==0 || pRightTab==0 ) continue;
 | 
|  |    317 | 
 | 
|  |    318 |     /* When the NATURAL keyword is present, add WHERE clause terms for
 | 
|  |    319 |     ** every column that the two tables have in common.
 | 
|  |    320 |     */
 | 
|  |    321 |     if( pRight->jointype & JT_NATURAL ){
 | 
|  |    322 |       if( pRight->pOn || pRight->pUsing ){
 | 
|  |    323 |         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
 | 
|  |    324 |            "an ON or USING clause", 0);
 | 
|  |    325 |         return 1;
 | 
|  |    326 |       }
 | 
|  |    327 |       for(j=0; j<pLeftTab->nCol; j++){
 | 
|  |    328 |         char *zName = pLeftTab->aCol[j].zName;
 | 
|  |    329 |         if( columnIndex(pRightTab, zName)>=0 ){
 | 
|  |    330 |           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
 | 
|  |    331 |                               pRightTab, pRight->zAlias,
 | 
|  |    332 |                               pRight->iCursor, &p->pWhere);
 | 
|  |    333 |           
 | 
|  |    334 |         }
 | 
|  |    335 |       }
 | 
|  |    336 |     }
 | 
|  |    337 | 
 | 
|  |    338 |     /* Disallow both ON and USING clauses in the same join
 | 
|  |    339 |     */
 | 
|  |    340 |     if( pRight->pOn && pRight->pUsing ){
 | 
|  |    341 |       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
 | 
|  |    342 |         "clauses in the same join");
 | 
|  |    343 |       return 1;
 | 
|  |    344 |     }
 | 
|  |    345 | 
 | 
|  |    346 |     /* Add the ON clause to the end of the WHERE clause, connected by
 | 
|  |    347 |     ** an AND operator.
 | 
|  |    348 |     */
 | 
|  |    349 |     if( pRight->pOn ){
 | 
|  |    350 |       setJoinExpr(pRight->pOn, pRight->iCursor);
 | 
|  |    351 |       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
 | 
|  |    352 |       pRight->pOn = 0;
 | 
|  |    353 |     }
 | 
|  |    354 | 
 | 
|  |    355 |     /* Create extra terms on the WHERE clause for each column named
 | 
|  |    356 |     ** in the USING clause.  Example: If the two tables to be joined are 
 | 
|  |    357 |     ** A and B and the USING clause names X, Y, and Z, then add this
 | 
|  |    358 |     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
 | 
|  |    359 |     ** Report an error if any column mentioned in the USING clause is
 | 
|  |    360 |     ** not contained in both tables to be joined.
 | 
|  |    361 |     */
 | 
|  |    362 |     if( pRight->pUsing ){
 | 
|  |    363 |       IdList *pList = pRight->pUsing;
 | 
|  |    364 |       for(j=0; j<pList->nId; j++){
 | 
|  |    365 |         char *zName = pList->a[j].zName;
 | 
|  |    366 |         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
 | 
|  |    367 |           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
 | 
|  |    368 |             "not present in both tables", zName);
 | 
|  |    369 |           return 1;
 | 
|  |    370 |         }
 | 
|  |    371 |         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
 | 
|  |    372 |                             pRightTab, pRight->zAlias,
 | 
|  |    373 |                             pRight->iCursor, &p->pWhere);
 | 
|  |    374 |       }
 | 
|  |    375 |     }
 | 
|  |    376 |   }
 | 
|  |    377 |   return 0;
 | 
|  |    378 | }
 | 
|  |    379 | 
 | 
|  |    380 | /*
 | 
|  |    381 | ** Insert code into "v" that will push the record on the top of the
 | 
|  |    382 | ** stack into the sorter.
 | 
|  |    383 | */
 | 
|  |    384 | static void pushOntoSorter(
 | 
|  |    385 |   Parse *pParse,         /* Parser context */
 | 
|  |    386 |   ExprList *pOrderBy,    /* The ORDER BY clause */
 | 
|  |    387 |   Select *pSelect        /* The whole SELECT statement */
 | 
|  |    388 | ){
 | 
|  |    389 |   Vdbe *v = pParse->pVdbe;
 | 
|  |    390 |   sqlite3ExprCodeExprList(pParse, pOrderBy);
 | 
|  |    391 |   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
 | 
|  |    392 |   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
 | 
|  |    393 |   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
 | 
|  |    394 |   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
 | 
|  |    395 |   if( pSelect->iLimit>=0 ){
 | 
|  |    396 |     int addr1, addr2;
 | 
|  |    397 |     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
 | 
|  |    398 |     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
 | 
|  |    399 |     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | 
|  |    400 |     sqlite3VdbeJumpHere(v, addr1);
 | 
|  |    401 |     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
 | 
|  |    402 |     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
 | 
|  |    403 |     sqlite3VdbeJumpHere(v, addr2);
 | 
|  |    404 |     pSelect->iLimit = -1;
 | 
|  |    405 |   }
 | 
|  |    406 | }
 | 
|  |    407 | 
 | 
|  |    408 | /*
 | 
|  |    409 | ** Add code to implement the OFFSET
 | 
|  |    410 | */
 | 
|  |    411 | static void codeOffset(
 | 
|  |    412 |   Vdbe *v,          /* Generate code into this VM */
 | 
|  |    413 |   Select *p,        /* The SELECT statement being coded */
 | 
|  |    414 |   int iContinue,    /* Jump here to skip the current record */
 | 
|  |    415 |   int nPop          /* Number of times to pop stack when jumping */
 | 
|  |    416 | ){
 | 
|  |    417 |   if( p->iOffset>=0 && iContinue!=0 ){
 | 
|  |    418 |     int addr;
 | 
|  |    419 |     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
 | 
|  |    420 |     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
 | 
|  |    421 |     if( nPop>0 ){
 | 
|  |    422 |       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
 | 
|  |    423 |     }
 | 
|  |    424 |     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
 | 
|  |    425 |     VdbeComment((v, "# skip OFFSET records"));
 | 
|  |    426 |     sqlite3VdbeJumpHere(v, addr);
 | 
|  |    427 |   }
 | 
|  |    428 | }
 | 
|  |    429 | 
 | 
|  |    430 | /*
 | 
|  |    431 | ** Add code that will check to make sure the top N elements of the
 | 
|  |    432 | ** stack are distinct.  iTab is a sorting index that holds previously
 | 
|  |    433 | ** seen combinations of the N values.  A new entry is made in iTab
 | 
|  |    434 | ** if the current N values are new.
 | 
|  |    435 | **
 | 
|  |    436 | ** A jump to addrRepeat is made and the N+1 values are popped from the
 | 
|  |    437 | ** stack if the top N elements are not distinct.
 | 
|  |    438 | */
 | 
|  |    439 | static void codeDistinct(
 | 
|  |    440 |   Vdbe *v,           /* Generate code into this VM */
 | 
|  |    441 |   int iTab,          /* A sorting index used to test for distinctness */
 | 
|  |    442 |   int addrRepeat,    /* Jump to here if not distinct */
 | 
|  |    443 |   int N              /* The top N elements of the stack must be distinct */
 | 
|  |    444 | ){
 | 
|  |    445 |   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
 | 
|  |    446 |   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
 | 
|  |    447 |   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
 | 
|  |    448 |   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
 | 
|  |    449 |   VdbeComment((v, "# skip indistinct records"));
 | 
|  |    450 |   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
 | 
|  |    451 | }
 | 
|  |    452 | 
 | 
|  |    453 | /*
 | 
|  |    454 | ** Generate an error message when a SELECT is used within a subexpression
 | 
|  |    455 | ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
 | 
|  |    456 | ** column.  We do this in a subroutine because the error occurs in multiple
 | 
|  |    457 | ** places.
 | 
|  |    458 | */
 | 
|  |    459 | static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
 | 
|  |    460 |   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
 | 
|  |    461 |     sqlite3ErrorMsg(pParse, "only a single result allowed for "
 | 
|  |    462 |        "a SELECT that is part of an expression");
 | 
|  |    463 |     return 1;
 | 
|  |    464 |   }else{
 | 
|  |    465 |     return 0;
 | 
|  |    466 |   }
 | 
|  |    467 | }
 | 
|  |    468 | 
 | 
|  |    469 | /*
 | 
|  |    470 | ** This routine generates the code for the inside of the inner loop
 | 
|  |    471 | ** of a SELECT.
 | 
|  |    472 | **
 | 
|  |    473 | ** If srcTab and nColumn are both zero, then the pEList expressions
 | 
|  |    474 | ** are evaluated in order to get the data for this row.  If nColumn>0
 | 
|  |    475 | ** then data is pulled from srcTab and pEList is used only to get the
 | 
|  |    476 | ** datatypes for each column.
 | 
|  |    477 | */
 | 
|  |    478 | static int selectInnerLoop(
 | 
|  |    479 |   Parse *pParse,          /* The parser context */
 | 
|  |    480 |   Select *p,              /* The complete select statement being coded */
 | 
|  |    481 |   ExprList *pEList,       /* List of values being extracted */
 | 
|  |    482 |   int srcTab,             /* Pull data from this table */
 | 
|  |    483 |   int nColumn,            /* Number of columns in the source table */
 | 
|  |    484 |   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
 | 
|  |    485 |   int distinct,           /* If >=0, make sure results are distinct */
 | 
|  |    486 |   int eDest,              /* How to dispose of the results */
 | 
|  |    487 |   int iParm,              /* An argument to the disposal method */
 | 
|  |    488 |   int iContinue,          /* Jump here to continue with next row */
 | 
|  |    489 |   int iBreak,             /* Jump here to break out of the inner loop */
 | 
|  |    490 |   char *aff               /* affinity string if eDest is SRT_Union */
 | 
|  |    491 | ){
 | 
|  |    492 |   Vdbe *v = pParse->pVdbe;
 | 
|  |    493 |   int i;
 | 
|  |    494 |   int hasDistinct;        /* True if the DISTINCT keyword is present */
 | 
|  |    495 | 
 | 
|  |    496 |   if( v==0 ) return 0;
 | 
|  |    497 |   assert( pEList!=0 );
 | 
|  |    498 | 
 | 
|  |    499 |   /* If there was a LIMIT clause on the SELECT statement, then do the check
 | 
|  |    500 |   ** to see if this row should be output.
 | 
|  |    501 |   */
 | 
|  |    502 |   hasDistinct = distinct>=0 && pEList->nExpr>0;
 | 
|  |    503 |   if( pOrderBy==0 && !hasDistinct ){
 | 
|  |    504 |     codeOffset(v, p, iContinue, 0);
 | 
|  |    505 |   }
 | 
|  |    506 | 
 | 
|  |    507 |   /* Pull the requested columns.
 | 
|  |    508 |   */
 | 
|  |    509 |   if( nColumn>0 ){
 | 
|  |    510 |     for(i=0; i<nColumn; i++){
 | 
|  |    511 |       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
 | 
|  |    512 |     }
 | 
|  |    513 |   }else{
 | 
|  |    514 |     nColumn = pEList->nExpr;
 | 
|  |    515 |     sqlite3ExprCodeExprList(pParse, pEList);
 | 
|  |    516 |   }
 | 
|  |    517 | 
 | 
|  |    518 |   /* If the DISTINCT keyword was present on the SELECT statement
 | 
|  |    519 |   ** and this row has been seen before, then do not make this row
 | 
|  |    520 |   ** part of the result.
 | 
|  |    521 |   */
 | 
|  |    522 |   if( hasDistinct ){
 | 
|  |    523 |     assert( pEList!=0 );
 | 
|  |    524 |     assert( pEList->nExpr==nColumn );
 | 
|  |    525 |     codeDistinct(v, distinct, iContinue, nColumn);
 | 
|  |    526 |     if( pOrderBy==0 ){
 | 
|  |    527 |       codeOffset(v, p, iContinue, nColumn);
 | 
|  |    528 |     }
 | 
|  |    529 |   }
 | 
|  |    530 | 
 | 
|  |    531 |   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
 | 
|  |    532 |     return 0;
 | 
|  |    533 |   }
 | 
|  |    534 | 
 | 
|  |    535 |   switch( eDest ){
 | 
|  |    536 |     /* In this mode, write each query result to the key of the temporary
 | 
|  |    537 |     ** table iParm.
 | 
|  |    538 |     */
 | 
|  |    539 | #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | 
|  |    540 |     case SRT_Union: {
 | 
|  |    541 |       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
|  |    542 |       if( aff ){
 | 
|  |    543 |         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
 | 
|  |    544 |       }
 | 
|  |    545 |       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
 | 
|  |    546 |       break;
 | 
|  |    547 |     }
 | 
|  |    548 | 
 | 
|  |    549 |     /* Construct a record from the query result, but instead of
 | 
|  |    550 |     ** saving that record, use it as a key to delete elements from
 | 
|  |    551 |     ** the temporary table iParm.
 | 
|  |    552 |     */
 | 
|  |    553 |     case SRT_Except: {
 | 
|  |    554 |       int addr;
 | 
|  |    555 |       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
|  |    556 |       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
 | 
|  |    557 |       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
 | 
|  |    558 |       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
 | 
|  |    559 |       break;
 | 
|  |    560 |     }
 | 
|  |    561 | #endif
 | 
|  |    562 | 
 | 
|  |    563 |     /* Store the result as data using a unique key.
 | 
|  |    564 |     */
 | 
|  |    565 |     case SRT_Table:
 | 
|  |    566 |     case SRT_EphemTab: {
 | 
|  |    567 |       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
|  |    568 |       if( pOrderBy ){
 | 
|  |    569 |         pushOntoSorter(pParse, pOrderBy, p);
 | 
|  |    570 |       }else{
 | 
|  |    571 |         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
 | 
|  |    572 |         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | 
|  |    573 |         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
 | 
|  |    574 |       }
 | 
|  |    575 |       break;
 | 
|  |    576 |     }
 | 
|  |    577 | 
 | 
|  |    578 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |    579 |     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
 | 
|  |    580 |     ** then there should be a single item on the stack.  Write this
 | 
|  |    581 |     ** item into the set table with bogus data.
 | 
|  |    582 |     */
 | 
|  |    583 |     case SRT_Set: {
 | 
|  |    584 |       int addr1 = sqlite3VdbeCurrentAddr(v);
 | 
|  |    585 |       int addr2;
 | 
|  |    586 | 
 | 
|  |    587 |       assert( nColumn==1 );
 | 
|  |    588 |       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
 | 
|  |    589 |       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |    590 |       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | 
|  |    591 |       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
 | 
|  |    592 |       if( pOrderBy ){
 | 
|  |    593 |         /* At first glance you would think we could optimize out the
 | 
|  |    594 |         ** ORDER BY in this case since the order of entries in the set
 | 
|  |    595 |         ** does not matter.  But there might be a LIMIT clause, in which
 | 
|  |    596 |         ** case the order does matter */
 | 
|  |    597 |         pushOntoSorter(pParse, pOrderBy, p);
 | 
|  |    598 |       }else{
 | 
|  |    599 |         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
 | 
|  |    600 |         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
 | 
|  |    601 |       }
 | 
|  |    602 |       sqlite3VdbeJumpHere(v, addr2);
 | 
|  |    603 |       break;
 | 
|  |    604 |     }
 | 
|  |    605 | 
 | 
|  |    606 |     /* If any row exist in the result set, record that fact and abort.
 | 
|  |    607 |     */
 | 
|  |    608 |     case SRT_Exists: {
 | 
|  |    609 |       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
 | 
|  |    610 |       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
 | 
|  |    611 |       /* The LIMIT clause will terminate the loop for us */
 | 
|  |    612 |       break;
 | 
|  |    613 |     }
 | 
|  |    614 | 
 | 
|  |    615 |     /* If this is a scalar select that is part of an expression, then
 | 
|  |    616 |     ** store the results in the appropriate memory cell and break out
 | 
|  |    617 |     ** of the scan loop.
 | 
|  |    618 |     */
 | 
|  |    619 |     case SRT_Mem: {
 | 
|  |    620 |       assert( nColumn==1 );
 | 
|  |    621 |       if( pOrderBy ){
 | 
|  |    622 |         pushOntoSorter(pParse, pOrderBy, p);
 | 
|  |    623 |       }else{
 | 
|  |    624 |         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
 | 
|  |    625 |         /* The LIMIT clause will jump out of the loop for us */
 | 
|  |    626 |       }
 | 
|  |    627 |       break;
 | 
|  |    628 |     }
 | 
|  |    629 | #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
 | 
|  |    630 | 
 | 
|  |    631 |     /* Send the data to the callback function or to a subroutine.  In the
 | 
|  |    632 |     ** case of a subroutine, the subroutine itself is responsible for
 | 
|  |    633 |     ** popping the data from the stack.
 | 
|  |    634 |     */
 | 
|  |    635 |     case SRT_Subroutine:
 | 
|  |    636 |     case SRT_Callback: {
 | 
|  |    637 |       if( pOrderBy ){
 | 
|  |    638 |         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
|  |    639 |         pushOntoSorter(pParse, pOrderBy, p);
 | 
|  |    640 |       }else if( eDest==SRT_Subroutine ){
 | 
|  |    641 |         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
 | 
|  |    642 |       }else{
 | 
|  |    643 |         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
 | 
|  |    644 |       }
 | 
|  |    645 |       break;
 | 
|  |    646 |     }
 | 
|  |    647 | 
 | 
|  |    648 | #if !defined(SQLITE_OMIT_TRIGGER)
 | 
|  |    649 |     /* Discard the results.  This is used for SELECT statements inside
 | 
|  |    650 |     ** the body of a TRIGGER.  The purpose of such selects is to call
 | 
|  |    651 |     ** user-defined functions that have side effects.  We do not care
 | 
|  |    652 |     ** about the actual results of the select.
 | 
|  |    653 |     */
 | 
|  |    654 |     default: {
 | 
|  |    655 |       assert( eDest==SRT_Discard );
 | 
|  |    656 |       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
 | 
|  |    657 |       break;
 | 
|  |    658 |     }
 | 
|  |    659 | #endif
 | 
|  |    660 |   }
 | 
|  |    661 | 
 | 
|  |    662 |   /* Jump to the end of the loop if the LIMIT is reached.
 | 
|  |    663 |   */
 | 
|  |    664 |   if( p->iLimit>=0 && pOrderBy==0 ){
 | 
|  |    665 |     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
 | 
|  |    666 |     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
 | 
|  |    667 |   }
 | 
|  |    668 |   return 0;
 | 
|  |    669 | }
 | 
|  |    670 | 
 | 
|  |    671 | /*
 | 
|  |    672 | ** Given an expression list, generate a KeyInfo structure that records
 | 
|  |    673 | ** the collating sequence for each expression in that expression list.
 | 
|  |    674 | **
 | 
|  |    675 | ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
 | 
|  |    676 | ** KeyInfo structure is appropriate for initializing a virtual index to
 | 
|  |    677 | ** implement that clause.  If the ExprList is the result set of a SELECT
 | 
|  |    678 | ** then the KeyInfo structure is appropriate for initializing a virtual
 | 
|  |    679 | ** index to implement a DISTINCT test.
 | 
|  |    680 | **
 | 
|  |    681 | ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
 | 
|  |    682 | ** function is responsible for seeing that this structure is eventually
 | 
|  |    683 | ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
 | 
|  |    684 | ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
 | 
|  |    685 | */
 | 
|  |    686 | static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
 | 
|  |    687 |   sqlite3 *db = pParse->db;
 | 
|  |    688 |   int nExpr;
 | 
|  |    689 |   KeyInfo *pInfo;
 | 
|  |    690 |   ExprList::ExprList_item *pItem;
 | 
|  |    691 |   int i;
 | 
|  |    692 | 
 | 
|  |    693 |   nExpr = pList->nExpr;
 | 
|  |    694 |   pInfo = (KeyInfo*)sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
 | 
|  |    695 |   if( pInfo ){
 | 
|  |    696 |     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
 | 
|  |    697 |     pInfo->nField = nExpr;
 | 
|  |    698 |     pInfo->enc = ENC(db);
 | 
|  |    699 |     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
 | 
|  |    700 |       CollSeq *pColl;
 | 
|  |    701 |       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
 | 
|  |    702 |       if( !pColl ){
 | 
|  |    703 |         pColl = db->pDfltColl;
 | 
|  |    704 |       }
 | 
|  |    705 |       pInfo->aColl[i] = pColl;
 | 
|  |    706 |       pInfo->aSortOrder[i] = pItem->sortOrder;
 | 
|  |    707 |     }
 | 
|  |    708 |   }
 | 
|  |    709 |   return pInfo;
 | 
|  |    710 | }
 | 
|  |    711 | 
 | 
|  |    712 | 
 | 
|  |    713 | /*
 | 
|  |    714 | ** If the inner loop was generated using a non-null pOrderBy argument,
 | 
|  |    715 | ** then the results were placed in a sorter.  After the loop is terminated
 | 
|  |    716 | ** we need to run the sorter and output the results.  The following
 | 
|  |    717 | ** routine generates the code needed to do that.
 | 
|  |    718 | */
 | 
|  |    719 | static void generateSortTail(
 | 
|  |    720 |   Parse *pParse,   /* Parsing context */
 | 
|  |    721 |   Select *p,       /* The SELECT statement */
 | 
|  |    722 |   Vdbe *v,         /* Generate code into this VDBE */
 | 
|  |    723 |   int nColumn,     /* Number of columns of data */
 | 
|  |    724 |   int eDest,       /* Write the sorted results here */
 | 
|  |    725 |   int iParm        /* Optional parameter associated with eDest */
 | 
|  |    726 | ){
 | 
|  |    727 |   int brk = sqlite3VdbeMakeLabel(v);
 | 
|  |    728 |   int cont = sqlite3VdbeMakeLabel(v);
 | 
|  |    729 |   int addr;
 | 
|  |    730 |   int iTab;
 | 
|  |    731 |   int pseudoTab = 0;
 | 
|  |    732 |   ExprList *pOrderBy = p->pOrderBy;
 | 
|  |    733 | 
 | 
|  |    734 |   iTab = pOrderBy->iECursor;
 | 
|  |    735 |   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | 
|  |    736 |     pseudoTab = pParse->nTab++;
 | 
|  |    737 |     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
 | 
|  |    738 |     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
 | 
|  |    739 |   }
 | 
|  |    740 |   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
 | 
|  |    741 |   codeOffset(v, p, cont, 0);
 | 
|  |    742 |   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | 
|  |    743 |     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
 | 
|  |    744 |   }
 | 
|  |    745 |   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
 | 
|  |    746 |   switch( eDest ){
 | 
|  |    747 |     case SRT_Table:
 | 
|  |    748 |     case SRT_EphemTab: {
 | 
|  |    749 |       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
 | 
|  |    750 |       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | 
|  |    751 |       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
 | 
|  |    752 |       break;
 | 
|  |    753 |     }
 | 
|  |    754 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |    755 |     case SRT_Set: {
 | 
|  |    756 |       assert( nColumn==1 );
 | 
|  |    757 |       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
 | 
|  |    758 |       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |    759 |       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
 | 
|  |    760 |       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
 | 
|  |    761 |       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
 | 
|  |    762 |       break;
 | 
|  |    763 |     }
 | 
|  |    764 |     case SRT_Mem: {
 | 
|  |    765 |       assert( nColumn==1 );
 | 
|  |    766 |       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
 | 
|  |    767 |       /* The LIMIT clause will terminate the loop for us */
 | 
|  |    768 |       break;
 | 
|  |    769 |     }
 | 
|  |    770 | #endif
 | 
|  |    771 |     case SRT_Callback:
 | 
|  |    772 |     case SRT_Subroutine: {
 | 
|  |    773 |       int i;
 | 
|  |    774 |       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
 | 
|  |    775 |       for(i=0; i<nColumn; i++){
 | 
|  |    776 |         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
 | 
|  |    777 |       }
 | 
|  |    778 |       if( eDest==SRT_Callback ){
 | 
|  |    779 |         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
 | 
|  |    780 |       }else{
 | 
|  |    781 |         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
 | 
|  |    782 |       }
 | 
|  |    783 |       break;
 | 
|  |    784 |     }
 | 
|  |    785 |     default: {
 | 
|  |    786 |       /* Do nothing */
 | 
|  |    787 |       break;
 | 
|  |    788 |     }
 | 
|  |    789 |   }
 | 
|  |    790 | 
 | 
|  |    791 |   /* Jump to the end of the loop when the LIMIT is reached
 | 
|  |    792 |   */
 | 
|  |    793 |   if( p->iLimit>=0 ){
 | 
|  |    794 |     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
 | 
|  |    795 |     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
 | 
|  |    796 |   }
 | 
|  |    797 | 
 | 
|  |    798 |   /* The bottom of the loop
 | 
|  |    799 |   */
 | 
|  |    800 |   sqlite3VdbeResolveLabel(v, cont);
 | 
|  |    801 |   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
 | 
|  |    802 |   sqlite3VdbeResolveLabel(v, brk);
 | 
|  |    803 |   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | 
|  |    804 |     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
 | 
|  |    805 |   }
 | 
|  |    806 | 
 | 
|  |    807 | }
 | 
|  |    808 | 
 | 
|  |    809 | /*
 | 
|  |    810 | ** Return a pointer to a string containing the 'declaration type' of the
 | 
|  |    811 | ** expression pExpr. The string may be treated as static by the caller.
 | 
|  |    812 | **
 | 
|  |    813 | ** The declaration type is the exact datatype definition extracted from the
 | 
|  |    814 | ** original CREATE TABLE statement if the expression is a column. The
 | 
|  |    815 | ** declaration type for a ROWID field is INTEGER. Exactly when an expression
 | 
|  |    816 | ** is considered a column can be complex in the presence of subqueries. The
 | 
|  |    817 | ** result-set expression in all of the following SELECT statements is 
 | 
|  |    818 | ** considered a column by this function.
 | 
|  |    819 | **
 | 
|  |    820 | **   SELECT col FROM tbl;
 | 
|  |    821 | **   SELECT (SELECT col FROM tbl;
 | 
|  |    822 | **   SELECT (SELECT col FROM tbl);
 | 
|  |    823 | **   SELECT abc FROM (SELECT col AS abc FROM tbl);
 | 
|  |    824 | ** 
 | 
|  |    825 | ** The declaration type for any expression other than a column is NULL.
 | 
|  |    826 | */
 | 
|  |    827 | static const char *columnType(
 | 
|  |    828 |   NameContext *pNC, 
 | 
|  |    829 |   Expr *pExpr,
 | 
|  |    830 |   const char **pzOriginDb,
 | 
|  |    831 |   const char **pzOriginTab,
 | 
|  |    832 |   const char **pzOriginCol
 | 
|  |    833 | ){
 | 
|  |    834 |   char const *zType = 0;
 | 
|  |    835 |   char const *zOriginDb = 0;
 | 
|  |    836 |   char const *zOriginTab = 0;
 | 
|  |    837 |   char const *zOriginCol = 0;
 | 
|  |    838 |   int j;
 | 
|  |    839 |   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
 | 
|  |    840 | 
 | 
|  |    841 |   switch( pExpr->op ){
 | 
|  |    842 |     case TK_AGG_COLUMN:
 | 
|  |    843 |     case TK_COLUMN: {
 | 
|  |    844 |       /* The expression is a column. Locate the table the column is being
 | 
|  |    845 |       ** extracted from in NameContext.pSrcList. This table may be real
 | 
|  |    846 |       ** database table or a subquery.
 | 
|  |    847 |       */
 | 
|  |    848 |       Table *pTab = 0;            /* Table structure column is extracted from */
 | 
|  |    849 |       Select *pS = 0;             /* Select the column is extracted from */
 | 
|  |    850 |       int iCol = pExpr->iColumn;  /* Index of column in pTab */
 | 
|  |    851 |       while( pNC && !pTab ){
 | 
|  |    852 |         SrcList *pTabList = pNC->pSrcList;
 | 
|  |    853 |         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
 | 
|  |    854 |         if( j<pTabList->nSrc ){
 | 
|  |    855 |           pTab = pTabList->a[j].pTab;
 | 
|  |    856 |           pS = pTabList->a[j].pSelect;
 | 
|  |    857 |         }else{
 | 
|  |    858 |           pNC = pNC->pNext;
 | 
|  |    859 |         }
 | 
|  |    860 |       }
 | 
|  |    861 | 
 | 
|  |    862 |       if( pTab==0 ){
 | 
|  |    863 |         /* FIX ME:
 | 
|  |    864 |         ** This can occurs if you have something like "SELECT new.x;" inside
 | 
|  |    865 |         ** a trigger.  In other words, if you reference the special "new"
 | 
|  |    866 |         ** table in the result set of a select.  We do not have a good way
 | 
|  |    867 |         ** to find the actual table type, so call it "TEXT".  This is really
 | 
|  |    868 |         ** something of a bug, but I do not know how to fix it.
 | 
|  |    869 |         **
 | 
|  |    870 |         ** This code does not produce the correct answer - it just prevents
 | 
|  |    871 |         ** a segfault.  See ticket #1229.
 | 
|  |    872 |         */
 | 
|  |    873 |         zType = "TEXT";
 | 
|  |    874 |         break;
 | 
|  |    875 |       }
 | 
|  |    876 | 
 | 
|  |    877 |       assert( pTab );
 | 
|  |    878 |       if( pS ){
 | 
|  |    879 |         /* The "table" is actually a sub-select or a view in the FROM clause
 | 
|  |    880 |         ** of the SELECT statement. Return the declaration type and origin
 | 
|  |    881 |         ** data for the result-set column of the sub-select.
 | 
|  |    882 |         */
 | 
|  |    883 |         if( iCol>=0 && iCol<pS->pEList->nExpr ){
 | 
|  |    884 |           /* If iCol is less than zero, then the expression requests the
 | 
|  |    885 |           ** rowid of the sub-select or view. This expression is legal (see 
 | 
|  |    886 |           ** test case misc2.2.2) - it always evaluates to NULL.
 | 
|  |    887 |           */
 | 
|  |    888 |           NameContext sNC;
 | 
|  |    889 |           Expr *p = pS->pEList->a[iCol].pExpr;
 | 
|  |    890 |           sNC.pSrcList = pS->pSrc;
 | 
|  |    891 |           sNC.pNext = 0;
 | 
|  |    892 |           sNC.pParse = pNC->pParse;
 | 
|  |    893 |           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 | 
|  |    894 |         }
 | 
|  |    895 |       }else if( pTab->pSchema ){
 | 
|  |    896 |         /* A real table */
 | 
|  |    897 |         assert( !pS );
 | 
|  |    898 |         if( iCol<0 ) iCol = pTab->iPKey;
 | 
|  |    899 |         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | 
|  |    900 |         if( iCol<0 ){
 | 
|  |    901 |           zType = "INTEGER";
 | 
|  |    902 |           zOriginCol = "rowid";
 | 
|  |    903 |         }else{
 | 
|  |    904 |           zType = pTab->aCol[iCol].zType;
 | 
|  |    905 |           zOriginCol = pTab->aCol[iCol].zName;
 | 
|  |    906 |         }
 | 
|  |    907 |         zOriginTab = pTab->zName;
 | 
|  |    908 |         if( pNC->pParse ){
 | 
|  |    909 |           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
 | 
|  |    910 |           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
 | 
|  |    911 |         }
 | 
|  |    912 |       }
 | 
|  |    913 |       break;
 | 
|  |    914 |     }
 | 
|  |    915 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |    916 |     case TK_SELECT: {
 | 
|  |    917 |       /* The expression is a sub-select. Return the declaration type and
 | 
|  |    918 |       ** origin info for the single column in the result set of the SELECT
 | 
|  |    919 |       ** statement.
 | 
|  |    920 |       */
 | 
|  |    921 |       NameContext sNC;
 | 
|  |    922 |       Select *pS = pExpr->pSelect;
 | 
|  |    923 |       Expr *p = pS->pEList->a[0].pExpr;
 | 
|  |    924 |       sNC.pSrcList = pS->pSrc;
 | 
|  |    925 |       sNC.pNext = pNC;
 | 
|  |    926 |       sNC.pParse = pNC->pParse;
 | 
|  |    927 |       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 | 
|  |    928 |       break;
 | 
|  |    929 |     }
 | 
|  |    930 | #endif
 | 
|  |    931 |   }
 | 
|  |    932 |   
 | 
|  |    933 |   if( pzOriginDb ){
 | 
|  |    934 |     assert( pzOriginTab && pzOriginCol );
 | 
|  |    935 |     *pzOriginDb = zOriginDb;
 | 
|  |    936 |     *pzOriginTab = zOriginTab;
 | 
|  |    937 |     *pzOriginCol = zOriginCol;
 | 
|  |    938 |   }
 | 
|  |    939 |   return zType;
 | 
|  |    940 | }
 | 
|  |    941 | 
 | 
|  |    942 | /*
 | 
|  |    943 | ** Generate code that will tell the VDBE the declaration types of columns
 | 
|  |    944 | ** in the result set.
 | 
|  |    945 | */
 | 
|  |    946 | static void generateColumnTypes(
 | 
|  |    947 |   Parse *pParse,      /* Parser context */
 | 
|  |    948 |   SrcList *pTabList,  /* List of tables */
 | 
|  |    949 |   ExprList *pEList    /* Expressions defining the result set */
 | 
|  |    950 | ){
 | 
|  |    951 |   Vdbe *v = pParse->pVdbe;
 | 
|  |    952 |   int i;
 | 
|  |    953 |   NameContext sNC;
 | 
|  |    954 |   sNC.pSrcList = pTabList;
 | 
|  |    955 |   sNC.pParse = pParse;
 | 
|  |    956 |   for(i=0; i<pEList->nExpr; i++){
 | 
|  |    957 |     Expr *p = pEList->a[i].pExpr;
 | 
|  |    958 |     const char *zOrigDb = 0;
 | 
|  |    959 |     const char *zOrigTab = 0;
 | 
|  |    960 |     const char *zOrigCol = 0;
 | 
|  |    961 |     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
 | 
|  |    962 | 
 | 
|  |    963 |     /* The vdbe must make its own copy of the column-type and other 
 | 
|  |    964 |     ** column specific strings, in case the schema is reset before this
 | 
|  |    965 |     ** virtual machine is deleted.
 | 
|  |    966 |     */
 | 
|  |    967 |     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
 | 
|  |    968 |     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
 | 
|  |    969 |     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
 | 
|  |    970 |     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
 | 
|  |    971 |   }
 | 
|  |    972 | }
 | 
|  |    973 | 
 | 
|  |    974 | /*
 | 
|  |    975 | ** Generate code that will tell the VDBE the names of columns
 | 
|  |    976 | ** in the result set.  This information is used to provide the
 | 
|  |    977 | ** azCol[] values in the callback.
 | 
|  |    978 | */
 | 
|  |    979 | static void generateColumnNames(
 | 
|  |    980 |   Parse *pParse,      /* Parser context */
 | 
|  |    981 |   SrcList *pTabList,  /* List of tables */
 | 
|  |    982 |   ExprList *pEList    /* Expressions defining the result set */
 | 
|  |    983 | ){
 | 
|  |    984 |   Vdbe *v = pParse->pVdbe;
 | 
|  |    985 |   int i, j;
 | 
|  |    986 |   sqlite3 *db = pParse->db;
 | 
|  |    987 |   int fullNames, shortNames;
 | 
|  |    988 | 
 | 
|  |    989 | #ifndef SQLITE_OMIT_EXPLAIN
 | 
|  |    990 |   /* If this is an EXPLAIN, skip this step */
 | 
|  |    991 |   if( pParse->explain ){
 | 
|  |    992 |     return;
 | 
|  |    993 |   }
 | 
|  |    994 | #endif
 | 
|  |    995 | 
 | 
|  |    996 |   assert( v!=0 );
 | 
|  |    997 |   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
 | 
|  |    998 |   pParse->colNamesSet = 1;
 | 
|  |    999 |   fullNames = (db->flags & SQLITE_FullColNames)!=0;
 | 
|  |   1000 |   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
 | 
|  |   1001 |   sqlite3VdbeSetNumCols(v, pEList->nExpr);
 | 
|  |   1002 |   for(i=0; i<pEList->nExpr; i++){
 | 
|  |   1003 |     Expr *p;
 | 
|  |   1004 |     p = pEList->a[i].pExpr;
 | 
|  |   1005 |     if( p==0 ) continue;
 | 
|  |   1006 |     if( pEList->a[i].zName ){
 | 
|  |   1007 |       char *zName = pEList->a[i].zName;
 | 
|  |   1008 |       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
 | 
|  |   1009 |       continue;
 | 
|  |   1010 |     }
 | 
|  |   1011 |     if( p->op==TK_COLUMN && pTabList ){
 | 
|  |   1012 |       Table *pTab;
 | 
|  |   1013 |       char *zCol;
 | 
|  |   1014 |       int iCol = p->iColumn;
 | 
|  |   1015 |       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
 | 
|  |   1016 |       assert( j<pTabList->nSrc );
 | 
|  |   1017 |       pTab = pTabList->a[j].pTab;
 | 
|  |   1018 |       if( iCol<0 ) iCol = pTab->iPKey;
 | 
|  |   1019 |       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | 
|  |   1020 |       if( iCol<0 ){
 | 
|  |   1021 |         zCol = "rowid";
 | 
|  |   1022 |       }else{
 | 
|  |   1023 |         zCol = pTab->aCol[iCol].zName;
 | 
|  |   1024 |       }
 | 
|  |   1025 |       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
 | 
|  |   1026 |         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
 | 
|  |   1027 |       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
 | 
|  |   1028 |         char *zName = 0;
 | 
|  |   1029 |         char *zTab;
 | 
|  |   1030 |  
 | 
|  |   1031 |         zTab = pTabList->a[j].zAlias;
 | 
|  |   1032 |         if( fullNames || zTab==0 ) zTab = pTab->zName;
 | 
|  |   1033 |         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
 | 
|  |   1034 |         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
 | 
|  |   1035 |       }else{
 | 
|  |   1036 |         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
 | 
|  |   1037 |       }
 | 
|  |   1038 |     }else if( p->span.z && p->span.z[0] ){
 | 
|  |   1039 |       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
 | 
|  |   1040 |       /* sqlite3VdbeCompressSpace(v, addr); */
 | 
|  |   1041 |     }else{
 | 
|  |   1042 |       char zName[30];
 | 
|  |   1043 |       assert( p->op!=TK_COLUMN || pTabList==0 );
 | 
|  |   1044 |       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
 | 
|  |   1045 |       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
 | 
|  |   1046 |     }
 | 
|  |   1047 |   }
 | 
|  |   1048 |   generateColumnTypes(pParse, pTabList, pEList);
 | 
|  |   1049 | }
 | 
|  |   1050 | 
 | 
|  |   1051 | #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | 
|  |   1052 | /*
 | 
|  |   1053 | ** Name of the connection operator, used for error messages.
 | 
|  |   1054 | */
 | 
|  |   1055 | static const char *selectOpName(int id){
 | 
|  |   1056 |   char *z;
 | 
|  |   1057 |   switch( id ){
 | 
|  |   1058 |     case TK_ALL:       z = "UNION ALL";   break;
 | 
|  |   1059 |     case TK_INTERSECT: z = "INTERSECT";   break;
 | 
|  |   1060 |     case TK_EXCEPT:    z = "EXCEPT";      break;
 | 
|  |   1061 |     default:           z = "UNION";       break;
 | 
|  |   1062 |   }
 | 
|  |   1063 |   return z;
 | 
|  |   1064 | }
 | 
|  |   1065 | #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | 
|  |   1066 | 
 | 
|  |   1067 | /*
 | 
|  |   1068 | ** Forward declaration
 | 
|  |   1069 | */
 | 
|  |   1070 | static int prepSelectStmt(Parse*, Select*);
 | 
|  |   1071 | 
 | 
|  |   1072 | /*
 | 
|  |   1073 | ** Given a SELECT statement, generate a Table structure that describes
 | 
|  |   1074 | ** the result set of that SELECT.
 | 
|  |   1075 | */
 | 
|  |   1076 | Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
 | 
|  |   1077 |   Table *pTab;
 | 
|  |   1078 |   int i, j;
 | 
|  |   1079 |   ExprList *pEList;
 | 
|  |   1080 |   Column *aCol, *pCol;
 | 
|  |   1081 |   sqlite3 *db = pParse->db;
 | 
|  |   1082 | 
 | 
|  |   1083 |   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
 | 
|  |   1084 |   if( prepSelectStmt(pParse, pSelect) ){
 | 
|  |   1085 |     return 0;
 | 
|  |   1086 |   }
 | 
|  |   1087 |   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
 | 
|  |   1088 |     return 0;
 | 
|  |   1089 |   }
 | 
|  |   1090 |   pTab = (Table*)sqlite3DbMallocZero(db, sizeof(Table) );
 | 
|  |   1091 |   if( pTab==0 ){
 | 
|  |   1092 |     return 0;
 | 
|  |   1093 |   }
 | 
|  |   1094 |   pTab->nRef = 1;
 | 
|  |   1095 |   pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
 | 
|  |   1096 |   pEList = pSelect->pEList;
 | 
|  |   1097 |   pTab->nCol = pEList->nExpr;
 | 
|  |   1098 |   assert( pTab->nCol>0 );
 | 
|  |   1099 |   pTab->aCol = aCol = (Column*)sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
 | 
|  |   1100 |   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
 | 
|  |   1101 |     Expr *p, *pR;
 | 
|  |   1102 |     char *zType;
 | 
|  |   1103 |     char *zName;
 | 
|  |   1104 |     int nName;
 | 
|  |   1105 |     CollSeq *pColl;
 | 
|  |   1106 |     int cnt;
 | 
|  |   1107 |     NameContext sNC;
 | 
|  |   1108 |     
 | 
|  |   1109 |     /* Get an appropriate name for the column
 | 
|  |   1110 |     */
 | 
|  |   1111 |     p = pEList->a[i].pExpr;
 | 
|  |   1112 |     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
 | 
|  |   1113 |     if( (zName = pEList->a[i].zName)!=0 ){
 | 
|  |   1114 |       /* If the column contains an "AS <name>" phrase, use <name> as the name */
 | 
|  |   1115 |       zName = sqlite3DbStrDup(db, zName);
 | 
|  |   1116 |     }else if( p->op==TK_DOT 
 | 
|  |   1117 |               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
 | 
|  |   1118 |       /* For columns of the from A.B use B as the name */
 | 
|  |   1119 |       zName = sqlite3MPrintf(db, "%T", &pR->token);
 | 
|  |   1120 |     }else if( p->span.z && p->span.z[0] ){
 | 
|  |   1121 |       /* Use the original text of the column expression as its name */
 | 
|  |   1122 |       zName = sqlite3MPrintf(db, "%T", &p->span);
 | 
|  |   1123 |     }else{
 | 
|  |   1124 |       /* If all else fails, make up a name */
 | 
|  |   1125 |       zName = sqlite3MPrintf(db, "column%d", i+1);
 | 
|  |   1126 |     }
 | 
|  |   1127 |     if( !zName || db->mallocFailed ){
 | 
|  |   1128 |       db->mallocFailed = 1;
 | 
|  |   1129 |       sqlite3_free(zName);
 | 
|  |   1130 |       sqlite3DeleteTable(pTab);
 | 
|  |   1131 |       return 0;
 | 
|  |   1132 |     }
 | 
|  |   1133 |     sqlite3Dequote(zName);
 | 
|  |   1134 | 
 | 
|  |   1135 |     /* Make sure the column name is unique.  If the name is not unique,
 | 
|  |   1136 |     ** append a integer to the name so that it becomes unique.
 | 
|  |   1137 |     */
 | 
|  |   1138 |     nName = strlen(zName);
 | 
|  |   1139 |     for(j=cnt=0; j<i; j++){
 | 
|  |   1140 |       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
 | 
|  |   1141 |         zName[nName] = 0;
 | 
|  |   1142 |         zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
 | 
|  |   1143 |         j = -1;
 | 
|  |   1144 |         if( zName==0 ) break;
 | 
|  |   1145 |       }
 | 
|  |   1146 |     }
 | 
|  |   1147 |     pCol->zName = zName;
 | 
|  |   1148 | 
 | 
|  |   1149 |     /* Get the typename, type affinity, and collating sequence for the
 | 
|  |   1150 |     ** column.
 | 
|  |   1151 |     */
 | 
|  |   1152 |     memset(&sNC, 0, sizeof(sNC));
 | 
|  |   1153 |     sNC.pSrcList = pSelect->pSrc;
 | 
|  |   1154 |     zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
 | 
|  |   1155 |     pCol->zType = zType;
 | 
|  |   1156 |     pCol->affinity = sqlite3ExprAffinity(p);
 | 
|  |   1157 |     pColl = sqlite3ExprCollSeq(pParse, p);
 | 
|  |   1158 |     if( pColl ){
 | 
|  |   1159 |       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
 | 
|  |   1160 |     }
 | 
|  |   1161 |   }
 | 
|  |   1162 |   pTab->iPKey = -1;
 | 
|  |   1163 |   return pTab;
 | 
|  |   1164 | }
 | 
|  |   1165 | 
 | 
|  |   1166 | /*
 | 
|  |   1167 | ** Prepare a SELECT statement for processing by doing the following
 | 
|  |   1168 | ** things:
 | 
|  |   1169 | **
 | 
|  |   1170 | **    (1)  Make sure VDBE cursor numbers have been assigned to every
 | 
|  |   1171 | **         element of the FROM clause.
 | 
|  |   1172 | **
 | 
|  |   1173 | **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
 | 
|  |   1174 | **         defines FROM clause.  When views appear in the FROM clause,
 | 
|  |   1175 | **         fill pTabList->a[].pSelect with a copy of the SELECT statement
 | 
|  |   1176 | **         that implements the view.  A copy is made of the view's SELECT
 | 
|  |   1177 | **         statement so that we can freely modify or delete that statement
 | 
|  |   1178 | **         without worrying about messing up the presistent representation
 | 
|  |   1179 | **         of the view.
 | 
|  |   1180 | **
 | 
|  |   1181 | **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
 | 
|  |   1182 | **         on joins and the ON and USING clause of joins.
 | 
|  |   1183 | **
 | 
|  |   1184 | **    (4)  Scan the list of columns in the result set (pEList) looking
 | 
|  |   1185 | **         for instances of the "*" operator or the TABLE.* operator.
 | 
|  |   1186 | **         If found, expand each "*" to be every column in every table
 | 
|  |   1187 | **         and TABLE.* to be every column in TABLE.
 | 
|  |   1188 | **
 | 
|  |   1189 | ** Return 0 on success.  If there are problems, leave an error message
 | 
|  |   1190 | ** in pParse and return non-zero.
 | 
|  |   1191 | */
 | 
|  |   1192 | static int prepSelectStmt(Parse *pParse, Select *p){
 | 
|  |   1193 |   int i, j, k, rc;
 | 
|  |   1194 |   SrcList *pTabList;
 | 
|  |   1195 |   ExprList *pEList;
 | 
|  |   1196 |   SrcList::SrcList_item *pFrom;
 | 
|  |   1197 |   sqlite3 *db = pParse->db;
 | 
|  |   1198 | 
 | 
|  |   1199 |   if( p==0 || p->pSrc==0 || db->mallocFailed ){
 | 
|  |   1200 |     return 1;
 | 
|  |   1201 |   }
 | 
|  |   1202 |   pTabList = p->pSrc;
 | 
|  |   1203 |   pEList = p->pEList;
 | 
|  |   1204 | 
 | 
|  |   1205 |   /* Make sure cursor numbers have been assigned to all entries in
 | 
|  |   1206 |   ** the FROM clause of the SELECT statement.
 | 
|  |   1207 |   */
 | 
|  |   1208 |   sqlite3SrcListAssignCursors(pParse, p->pSrc);
 | 
|  |   1209 | 
 | 
|  |   1210 |   /* Look up every table named in the FROM clause of the select.  If
 | 
|  |   1211 |   ** an entry of the FROM clause is a subquery instead of a table or view,
 | 
|  |   1212 |   ** then create a transient table structure to describe the subquery.
 | 
|  |   1213 |   */
 | 
|  |   1214 |      Table *pTab;
 | 
|  |   1215 |  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 | 
|  |   1216 |     if( pFrom->pTab!=0 ){
 | 
|  |   1217 |       /* This statement has already been prepared.  There is no need
 | 
|  |   1218 |       ** to go further. */
 | 
|  |   1219 |       assert( i==0 );
 | 
|  |   1220 |       return 0;
 | 
|  |   1221 |     }
 | 
|  |   1222 |     if( pFrom->zName==0 ){
 | 
|  |   1223 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   1224 |       /* A sub-query in the FROM clause of a SELECT */
 | 
|  |   1225 |       assert( pFrom->pSelect!=0 );
 | 
|  |   1226 |       if( pFrom->zAlias==0 ){
 | 
|  |   1227 |         pFrom->zAlias =
 | 
|  |   1228 |           sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
 | 
|  |   1229 |       }
 | 
|  |   1230 |       assert( pFrom->pTab==0 );
 | 
|  |   1231 |       pFrom->pTab = pTab = 
 | 
|  |   1232 |         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
 | 
|  |   1233 |       if( pTab==0 ){
 | 
|  |   1234 |         return 1;
 | 
|  |   1235 |       }
 | 
|  |   1236 |       /* The isEphem flag indicates that the Table structure has been
 | 
|  |   1237 |       ** dynamically allocated and may be freed at any time.  In other words,
 | 
|  |   1238 |       ** pTab is not pointing to a persistent table structure that defines
 | 
|  |   1239 |       ** part of the schema. */
 | 
|  |   1240 |       pTab->isEphem = 1;
 | 
|  |   1241 | #endif
 | 
|  |   1242 |     }else{
 | 
|  |   1243 |       /* An ordinary table or view name in the FROM clause */
 | 
|  |   1244 |       assert( pFrom->pTab==0 );
 | 
|  |   1245 |       pFrom->pTab = pTab = 
 | 
|  |   1246 |         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
 | 
|  |   1247 |       if( pTab==0 ){
 | 
|  |   1248 |         return 1;
 | 
|  |   1249 |       }
 | 
|  |   1250 |       pTab->nRef++;
 | 
|  |   1251 | #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
 | 
|  |   1252 |       if( pTab->pSelect || IsVirtual(pTab) ){
 | 
|  |   1253 |         /* We reach here if the named table is a really a view */
 | 
|  |   1254 |         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | 
|  |   1255 |           return 1;
 | 
|  |   1256 |         }
 | 
|  |   1257 |         /* If pFrom->pSelect!=0 it means we are dealing with a
 | 
|  |   1258 |         ** view within a view.  The SELECT structure has already been
 | 
|  |   1259 |         ** copied by the outer view so we can skip the copy step here
 | 
|  |   1260 |         ** in the inner view.
 | 
|  |   1261 |         */
 | 
|  |   1262 |         if( pFrom->pSelect==0 ){
 | 
|  |   1263 |           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
 | 
|  |   1264 |         }
 | 
|  |   1265 |       }
 | 
|  |   1266 | #endif
 | 
|  |   1267 |     }
 | 
|  |   1268 |   }
 | 
|  |   1269 | 
 | 
|  |   1270 |   /* Process NATURAL keywords, and ON and USING clauses of joins.
 | 
|  |   1271 |   */
 | 
|  |   1272 |   if( sqliteProcessJoin(pParse, p) ) return 1;
 | 
|  |   1273 | 
 | 
|  |   1274 |   /* For every "*" that occurs in the column list, insert the names of
 | 
|  |   1275 |   ** all columns in all tables.  And for every TABLE.* insert the names
 | 
|  |   1276 |   ** of all columns in TABLE.  The parser inserted a special expression
 | 
|  |   1277 |   ** with the TK_ALL operator for each "*" that it found in the column list.
 | 
|  |   1278 |   ** The following code just has to locate the TK_ALL expressions and expand
 | 
|  |   1279 |   ** each one to the list of all columns in all tables.
 | 
|  |   1280 |   **
 | 
|  |   1281 |   ** The first loop just checks to see if there are any "*" operators
 | 
|  |   1282 |   ** that need expanding.
 | 
|  |   1283 |   */
 | 
|  |   1284 |   for(k=0; k<pEList->nExpr; k++){
 | 
|  |   1285 |     Expr *pE = pEList->a[k].pExpr;
 | 
|  |   1286 |     if( pE->op==TK_ALL ) break;
 | 
|  |   1287 |     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
 | 
|  |   1288 |          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
 | 
|  |   1289 |   }
 | 
|  |   1290 |   rc = 0;
 | 
|  |   1291 |   if( k<pEList->nExpr ){
 | 
|  |   1292 |     /*
 | 
|  |   1293 |     ** If we get here it means the result set contains one or more "*"
 | 
|  |   1294 |     ** operators that need to be expanded.  Loop through each expression
 | 
|  |   1295 |     ** in the result set and expand them one by one.
 | 
|  |   1296 |     */
 | 
|  |   1297 | 	  ExprList::ExprList_item *a = pEList->a;
 | 
|  |   1298 |     ExprList *pNew = 0;
 | 
|  |   1299 |     int flags = pParse->db->flags;
 | 
|  |   1300 |     int longNames = (flags & SQLITE_FullColNames)!=0 &&
 | 
|  |   1301 |                       (flags & SQLITE_ShortColNames)==0;
 | 
|  |   1302 | 
 | 
|  |   1303 |     for(k=0; k<pEList->nExpr; k++){
 | 
|  |   1304 |       Expr *pE = a[k].pExpr;
 | 
|  |   1305 |       if( pE->op!=TK_ALL &&
 | 
|  |   1306 |            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
 | 
|  |   1307 |         /* This particular expression does not need to be expanded.
 | 
|  |   1308 |         */
 | 
|  |   1309 |         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
 | 
|  |   1310 |         if( pNew ){
 | 
|  |   1311 |           pNew->a[pNew->nExpr-1].zName = a[k].zName;
 | 
|  |   1312 |         }else{
 | 
|  |   1313 |           rc = 1;
 | 
|  |   1314 |         }
 | 
|  |   1315 |         a[k].pExpr = 0;
 | 
|  |   1316 |         a[k].zName = 0;
 | 
|  |   1317 |       }else{
 | 
|  |   1318 |         /* This expression is a "*" or a "TABLE.*" and needs to be
 | 
|  |   1319 |         ** expanded. */
 | 
|  |   1320 |         int tableSeen = 0;      /* Set to 1 when TABLE matches */
 | 
|  |   1321 |         char *zTName;            /* text of name of TABLE */
 | 
|  |   1322 |         if( pE->op==TK_DOT && pE->pLeft ){
 | 
|  |   1323 |           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
 | 
|  |   1324 |         }else{
 | 
|  |   1325 |           zTName = 0;
 | 
|  |   1326 |         }
 | 
|  |   1327 |         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 | 
|  |   1328 |           Table *pTab = pFrom->pTab;
 | 
|  |   1329 |           char *zTabName = pFrom->zAlias;
 | 
|  |   1330 |           if( zTabName==0 || zTabName[0]==0 ){ 
 | 
|  |   1331 |             zTabName = pTab->zName;
 | 
|  |   1332 |           }
 | 
|  |   1333 |           if( zTName && (zTabName==0 || zTabName[0]==0 || 
 | 
|  |   1334 |                  sqlite3StrICmp(zTName, zTabName)!=0) ){
 | 
|  |   1335 |             continue;
 | 
|  |   1336 |           }
 | 
|  |   1337 |           tableSeen = 1;
 | 
|  |   1338 |           for(j=0; j<pTab->nCol; j++){
 | 
|  |   1339 |             Expr *pExpr, *pRight;
 | 
|  |   1340 |             char *zName = pTab->aCol[j].zName;
 | 
|  |   1341 | 
 | 
|  |   1342 |             /* If a column is marked as 'hidden' (currently only possible
 | 
|  |   1343 |             ** for virtual tables), do not include it in the expanded
 | 
|  |   1344 |             ** result-set list.
 | 
|  |   1345 |             */
 | 
|  |   1346 |             if( IsHiddenColumn(&pTab->aCol[j]) ){
 | 
|  |   1347 |               assert(IsVirtual(pTab));
 | 
|  |   1348 |               continue;
 | 
|  |   1349 |             }
 | 
|  |   1350 | 
 | 
|  |   1351 |             if( i>0 ){
 | 
|  |   1352 | 				SrcList::SrcList_item *pLeft = &pTabList->a[i-1];
 | 
|  |   1353 |               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
 | 
|  |   1354 |                         columnIndex(pLeft->pTab, zName)>=0 ){
 | 
|  |   1355 |                 /* In a NATURAL join, omit the join columns from the 
 | 
|  |   1356 |                 ** table on the right */
 | 
|  |   1357 |                 continue;
 | 
|  |   1358 |               }
 | 
|  |   1359 |               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
 | 
|  |   1360 |                 /* In a join with a USING clause, omit columns in the
 | 
|  |   1361 |                 ** using clause from the table on the right. */
 | 
|  |   1362 |                 continue;
 | 
|  |   1363 |               }
 | 
|  |   1364 |             }
 | 
|  |   1365 |             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
 | 
|  |   1366 |             if( pRight==0 ) break;
 | 
|  |   1367 |             setQuotedToken(pParse, &pRight->token, zName);
 | 
|  |   1368 |             if( zTabName && (longNames || pTabList->nSrc>1) ){
 | 
|  |   1369 |               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
 | 
|  |   1370 |               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
 | 
|  |   1371 |               if( pExpr==0 ) break;
 | 
|  |   1372 |               setQuotedToken(pParse, &pLeft->token, zTabName);
 | 
|  |   1373 |               setToken(&pExpr->span, 
 | 
|  |   1374 |                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
 | 
|  |   1375 |               pExpr->span.dyn = 1;
 | 
|  |   1376 |               pExpr->token.z = 0;
 | 
|  |   1377 |               pExpr->token.n = 0;
 | 
|  |   1378 |               pExpr->token.dyn = 0;
 | 
|  |   1379 |             }else{
 | 
|  |   1380 |               pExpr = pRight;
 | 
|  |   1381 |               pExpr->span = pExpr->token;
 | 
|  |   1382 |               pExpr->span.dyn = 0;
 | 
|  |   1383 |             }
 | 
|  |   1384 |             if( longNames ){
 | 
|  |   1385 |               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
 | 
|  |   1386 |             }else{
 | 
|  |   1387 |               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
 | 
|  |   1388 |             }
 | 
|  |   1389 |           }
 | 
|  |   1390 |         }
 | 
|  |   1391 |         if( !tableSeen ){
 | 
|  |   1392 |           if( zTName ){
 | 
|  |   1393 |             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
 | 
|  |   1394 |           }else{
 | 
|  |   1395 |             sqlite3ErrorMsg(pParse, "no tables specified");
 | 
|  |   1396 |           }
 | 
|  |   1397 |           rc = 1;
 | 
|  |   1398 |         }
 | 
|  |   1399 |         sqlite3_free(zTName);
 | 
|  |   1400 |       }
 | 
|  |   1401 |     }
 | 
|  |   1402 |     sqlite3ExprListDelete(pEList);
 | 
|  |   1403 |     p->pEList = pNew;
 | 
|  |   1404 |   }
 | 
|  |   1405 |   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
 | 
|  |   1406 |     sqlite3ErrorMsg(pParse, "too many columns in result set");
 | 
|  |   1407 |     rc = SQLITE_ERROR;
 | 
|  |   1408 |   }
 | 
|  |   1409 |   if( db->mallocFailed ){
 | 
|  |   1410 |     rc = SQLITE_NOMEM;
 | 
|  |   1411 |   }
 | 
|  |   1412 |   return rc;
 | 
|  |   1413 | }
 | 
|  |   1414 | 
 | 
|  |   1415 | /*
 | 
|  |   1416 | ** pE is a pointer to an expression which is a single term in
 | 
|  |   1417 | ** ORDER BY or GROUP BY clause.
 | 
|  |   1418 | **
 | 
|  |   1419 | ** If pE evaluates to an integer constant i, then return i.
 | 
|  |   1420 | ** This is an indication to the caller that it should sort
 | 
|  |   1421 | ** by the i-th column of the result set.
 | 
|  |   1422 | **
 | 
|  |   1423 | ** If pE is a well-formed expression and the SELECT statement
 | 
|  |   1424 | ** is not compound, then return 0.  This indicates to the
 | 
|  |   1425 | ** caller that it should sort by the value of the ORDER BY
 | 
|  |   1426 | ** expression.
 | 
|  |   1427 | **
 | 
|  |   1428 | ** If the SELECT is compound, then attempt to match pE against
 | 
|  |   1429 | ** result set columns in the left-most SELECT statement.  Return
 | 
|  |   1430 | ** the index i of the matching column, as an indication to the 
 | 
|  |   1431 | ** caller that it should sort by the i-th column.  If there is
 | 
|  |   1432 | ** no match, return -1 and leave an error message in pParse.
 | 
|  |   1433 | */
 | 
|  |   1434 | static int matchOrderByTermToExprList(
 | 
|  |   1435 |   Parse *pParse,     /* Parsing context for error messages */
 | 
|  |   1436 |   Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
 | 
|  |   1437 |   Expr *pE,          /* The specific ORDER BY term */
 | 
|  |   1438 |   int idx,           /* When ORDER BY term is this */
 | 
|  |   1439 |   int isCompound,    /* True if this is a compound SELECT */
 | 
|  |   1440 |   u8 *pHasAgg        /* True if expression contains aggregate functions */
 | 
|  |   1441 | ){
 | 
|  |   1442 |   int i;             /* Loop counter */
 | 
|  |   1443 |   ExprList *pEList;  /* The columns of the result set */
 | 
|  |   1444 |   NameContext nc;    /* Name context for resolving pE */
 | 
|  |   1445 | 
 | 
|  |   1446 | 
 | 
|  |   1447 |   /* If the term is an integer constant, return the value of that
 | 
|  |   1448 |   ** constant */
 | 
|  |   1449 |   pEList = pSelect->pEList;
 | 
|  |   1450 |   if( sqlite3ExprIsInteger(pE, &i) ){
 | 
|  |   1451 |     if( i<=0 ){
 | 
|  |   1452 |       /* If i is too small, make it too big.  That way the calling
 | 
|  |   1453 |       ** function still sees a value that is out of range, but does
 | 
|  |   1454 |       ** not confuse the column number with 0 or -1 result code.
 | 
|  |   1455 |       */
 | 
|  |   1456 |       i = pEList->nExpr+1;
 | 
|  |   1457 |     }
 | 
|  |   1458 |     return i;
 | 
|  |   1459 |   }
 | 
|  |   1460 | 
 | 
|  |   1461 |   /* If the term is a simple identifier that try to match that identifier
 | 
|  |   1462 |   ** against a column name in the result set.
 | 
|  |   1463 |   */
 | 
|  |   1464 |   if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
 | 
|  |   1465 |     sqlite3 *db = pParse->db;
 | 
|  |   1466 |     char *zCol = sqlite3NameFromToken(db, &pE->token);
 | 
|  |   1467 |     if( zCol==0 ){
 | 
|  |   1468 |       return -1;
 | 
|  |   1469 |     }
 | 
|  |   1470 |     for(i=0; i<pEList->nExpr; i++){
 | 
|  |   1471 |       char *zAs = pEList->a[i].zName;
 | 
|  |   1472 |       if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
 | 
|  |   1473 |         sqlite3_free(zCol);
 | 
|  |   1474 |         return i+1;
 | 
|  |   1475 |       }
 | 
|  |   1476 |     }
 | 
|  |   1477 |     sqlite3_free(zCol);
 | 
|  |   1478 |   }
 | 
|  |   1479 | 
 | 
|  |   1480 |   /* Resolve all names in the ORDER BY term expression
 | 
|  |   1481 |   */
 | 
|  |   1482 |   memset(&nc, 0, sizeof(nc));
 | 
|  |   1483 |   nc.pParse = pParse;
 | 
|  |   1484 |   nc.pSrcList = pSelect->pSrc;
 | 
|  |   1485 |   nc.pEList = pEList;
 | 
|  |   1486 |   nc.allowAgg = 1;
 | 
|  |   1487 |   nc.nErr = 0;
 | 
|  |   1488 |   if( sqlite3ExprResolveNames(&nc, pE) ){
 | 
|  |   1489 |     if( isCompound ){
 | 
|  |   1490 |       sqlite3ErrorClear(pParse);
 | 
|  |   1491 |       return 0;
 | 
|  |   1492 |     }else{
 | 
|  |   1493 |       return -1;
 | 
|  |   1494 |     }
 | 
|  |   1495 |   }
 | 
|  |   1496 |   if( nc.hasAgg && pHasAgg ){
 | 
|  |   1497 |     *pHasAgg = 1;
 | 
|  |   1498 |   }
 | 
|  |   1499 | 
 | 
|  |   1500 |   /* For a compound SELECT, we need to try to match the ORDER BY
 | 
|  |   1501 |   ** expression against an expression in the result set
 | 
|  |   1502 |   */
 | 
|  |   1503 |   if( isCompound ){
 | 
|  |   1504 |     for(i=0; i<pEList->nExpr; i++){
 | 
|  |   1505 |       if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
 | 
|  |   1506 |         return i+1;
 | 
|  |   1507 |       }
 | 
|  |   1508 |     }
 | 
|  |   1509 |   }
 | 
|  |   1510 |   return 0;
 | 
|  |   1511 | }
 | 
|  |   1512 | 
 | 
|  |   1513 | 
 | 
|  |   1514 | /*
 | 
|  |   1515 | ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
 | 
|  |   1516 | ** Return the number of errors seen.
 | 
|  |   1517 | **
 | 
|  |   1518 | ** Every term of the ORDER BY or GROUP BY clause needs to be an
 | 
|  |   1519 | ** expression.  If any expression is an integer constant, then
 | 
|  |   1520 | ** that expression is replaced by the corresponding 
 | 
|  |   1521 | ** expression from the result set.
 | 
|  |   1522 | */
 | 
|  |   1523 | static int processOrderGroupBy(
 | 
|  |   1524 |   Parse *pParse,        /* Parsing context.  Leave error messages here */
 | 
|  |   1525 |   Select *pSelect,      /* The SELECT statement containing the clause */
 | 
|  |   1526 |   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
 | 
|  |   1527 |   int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
 | 
|  |   1528 |   u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
 | 
|  |   1529 | ){
 | 
|  |   1530 |   int i;
 | 
|  |   1531 |   sqlite3 *db = pParse->db;
 | 
|  |   1532 |   ExprList *pEList;
 | 
|  |   1533 | 
 | 
|  |   1534 |   if( pOrderBy==0 ) return 0;
 | 
|  |   1535 |   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
 | 
|  |   1536 |     const char *zType = isOrder ? "ORDER" : "GROUP";
 | 
|  |   1537 |     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
 | 
|  |   1538 |     return 1;
 | 
|  |   1539 |   }
 | 
|  |   1540 |   pEList = pSelect->pEList;
 | 
|  |   1541 |   if( pEList==0 ){
 | 
|  |   1542 |     return 0;
 | 
|  |   1543 |   }
 | 
|  |   1544 |   for(i=0; i<pOrderBy->nExpr; i++){
 | 
|  |   1545 |     int iCol;
 | 
|  |   1546 |     Expr *pE = pOrderBy->a[i].pExpr;
 | 
|  |   1547 |     iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
 | 
|  |   1548 |     if( iCol<0 ){
 | 
|  |   1549 |       return 1;
 | 
|  |   1550 |     }
 | 
|  |   1551 |     if( iCol>pEList->nExpr ){
 | 
|  |   1552 |       const char *zType = isOrder ? "ORDER" : "GROUP";
 | 
|  |   1553 |       sqlite3ErrorMsg(pParse, 
 | 
|  |   1554 |          "%r %s BY term out of range - should be "
 | 
|  |   1555 |          "between 1 and %d", i+1, zType, pEList->nExpr);
 | 
|  |   1556 |       return 1;
 | 
|  |   1557 |     }
 | 
|  |   1558 |     if( iCol>0 ){
 | 
|  |   1559 |       CollSeq *pColl = pE->pColl;
 | 
|  |   1560 |       int flags = pE->flags & EP_ExpCollate;
 | 
|  |   1561 |       sqlite3ExprDelete(pE);
 | 
|  |   1562 |       pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
 | 
|  |   1563 |       pOrderBy->a[i].pExpr = pE;
 | 
|  |   1564 |       if( pColl && flags ){
 | 
|  |   1565 |         pE->pColl = pColl;
 | 
|  |   1566 |         pE->flags |= flags;
 | 
|  |   1567 |       }
 | 
|  |   1568 |     }
 | 
|  |   1569 |   }
 | 
|  |   1570 |   return 0;
 | 
|  |   1571 | }
 | 
|  |   1572 | 
 | 
|  |   1573 | /*
 | 
|  |   1574 | ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
 | 
|  |   1575 | ** the number of errors seen.
 | 
|  |   1576 | **
 | 
|  |   1577 | ** The processing depends on whether the SELECT is simple or compound.
 | 
|  |   1578 | ** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
 | 
|  |   1579 | ** clause needs to be an expression.  If any expression is an integer
 | 
|  |   1580 | ** constant, then that expression is replaced by the corresponding 
 | 
|  |   1581 | ** expression from the result set.
 | 
|  |   1582 | **
 | 
|  |   1583 | ** For compound SELECT statements, every expression needs to be of
 | 
|  |   1584 | ** type TK_COLUMN with a iTable value as given in the 4th parameter.
 | 
|  |   1585 | ** If any expression is an integer, that becomes the column number.
 | 
|  |   1586 | ** Otherwise, match the expression against result set columns from
 | 
|  |   1587 | ** the left-most SELECT.
 | 
|  |   1588 | */
 | 
|  |   1589 | static int processCompoundOrderBy(
 | 
|  |   1590 |   Parse *pParse,        /* Parsing context.  Leave error messages here */
 | 
|  |   1591 |   Select *pSelect,      /* The SELECT statement containing the ORDER BY */
 | 
|  |   1592 |   int iTable            /* Output table for compound SELECT statements */
 | 
|  |   1593 | ){
 | 
|  |   1594 |   int i;
 | 
|  |   1595 |   ExprList *pOrderBy;
 | 
|  |   1596 |   ExprList *pEList;
 | 
|  |   1597 |   sqlite3 *db;
 | 
|  |   1598 |   int moreToDo = 1;
 | 
|  |   1599 | 
 | 
|  |   1600 |   pOrderBy = pSelect->pOrderBy;
 | 
|  |   1601 |   if( pOrderBy==0 ) return 0;
 | 
|  |   1602 |   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
 | 
|  |   1603 |     sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
 | 
|  |   1604 |     return 1;
 | 
|  |   1605 |   }
 | 
|  |   1606 |   db = pParse->db;
 | 
|  |   1607 |   for(i=0; i<pOrderBy->nExpr; i++){
 | 
|  |   1608 |     pOrderBy->a[i].done = 0;
 | 
|  |   1609 |   }
 | 
|  |   1610 |   while( pSelect->pPrior ){
 | 
|  |   1611 |     pSelect = pSelect->pPrior;
 | 
|  |   1612 |   }
 | 
|  |   1613 |   while( pSelect && moreToDo ){
 | 
|  |   1614 |     moreToDo = 0;
 | 
|  |   1615 |     for(i=0; i<pOrderBy->nExpr; i++){
 | 
|  |   1616 |       int iCol;
 | 
|  |   1617 |       Expr *pE, *pDup;
 | 
|  |   1618 |       if( pOrderBy->a[i].done ) continue;
 | 
|  |   1619 |       pE = pOrderBy->a[i].pExpr;
 | 
|  |   1620 |       pDup = sqlite3ExprDup(db, pE);
 | 
|  |   1621 |       if( pDup==0 ){
 | 
|  |   1622 |         return 1;
 | 
|  |   1623 |       }
 | 
|  |   1624 |       iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
 | 
|  |   1625 |       sqlite3ExprDelete(pDup);
 | 
|  |   1626 |       if( iCol<0 ){
 | 
|  |   1627 |         return 1;
 | 
|  |   1628 |       }
 | 
|  |   1629 |       pEList = pSelect->pEList;
 | 
|  |   1630 |       if( pEList==0 ){
 | 
|  |   1631 |         return 1;
 | 
|  |   1632 |       }
 | 
|  |   1633 |       if( iCol>pEList->nExpr ){
 | 
|  |   1634 |         sqlite3ErrorMsg(pParse, 
 | 
|  |   1635 |            "%r ORDER BY term out of range - should be "
 | 
|  |   1636 |            "between 1 and %d", i+1, pEList->nExpr);
 | 
|  |   1637 |         return 1;
 | 
|  |   1638 |       }
 | 
|  |   1639 |       if( iCol>0 ){
 | 
|  |   1640 |         pE->op = TK_COLUMN;
 | 
|  |   1641 |         pE->iTable = iTable;
 | 
|  |   1642 |         pE->iAgg = -1;
 | 
|  |   1643 |         pE->iColumn = iCol-1;
 | 
|  |   1644 |         pE->pTab = 0;
 | 
|  |   1645 |         pOrderBy->a[i].done = 1;
 | 
|  |   1646 |       }else{
 | 
|  |   1647 |         moreToDo = 1;
 | 
|  |   1648 |       }
 | 
|  |   1649 |     }
 | 
|  |   1650 |     pSelect = pSelect->pNext;
 | 
|  |   1651 |   }
 | 
|  |   1652 |   for(i=0; i<pOrderBy->nExpr; i++){
 | 
|  |   1653 |     if( pOrderBy->a[i].done==0 ){
 | 
|  |   1654 |       sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
 | 
|  |   1655 |             "column in the result set", i+1);
 | 
|  |   1656 |       return 1;
 | 
|  |   1657 |     }
 | 
|  |   1658 |   }
 | 
|  |   1659 |   return 0;
 | 
|  |   1660 | }
 | 
|  |   1661 | 
 | 
|  |   1662 | /*
 | 
|  |   1663 | ** Get a VDBE for the given parser context.  Create a new one if necessary.
 | 
|  |   1664 | ** If an error occurs, return NULL and leave a message in pParse.
 | 
|  |   1665 | */
 | 
|  |   1666 | Vdbe *sqlite3GetVdbe(Parse *pParse){
 | 
|  |   1667 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   1668 |   if( v==0 ){
 | 
|  |   1669 |     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
 | 
|  |   1670 |   }
 | 
|  |   1671 |   return v;
 | 
|  |   1672 | }
 | 
|  |   1673 | 
 | 
|  |   1674 | 
 | 
|  |   1675 | /*
 | 
|  |   1676 | ** Compute the iLimit and iOffset fields of the SELECT based on the
 | 
|  |   1677 | ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
 | 
|  |   1678 | ** that appear in the original SQL statement after the LIMIT and OFFSET
 | 
|  |   1679 | ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
 | 
|  |   1680 | ** are the integer memory register numbers for counters used to compute 
 | 
|  |   1681 | ** the limit and offset.  If there is no limit and/or offset, then 
 | 
|  |   1682 | ** iLimit and iOffset are negative.
 | 
|  |   1683 | **
 | 
|  |   1684 | ** This routine changes the values of iLimit and iOffset only if
 | 
|  |   1685 | ** a limit or offset is defined by pLimit and pOffset.  iLimit and
 | 
|  |   1686 | ** iOffset should have been preset to appropriate default values
 | 
|  |   1687 | ** (usually but not always -1) prior to calling this routine.
 | 
|  |   1688 | ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
 | 
|  |   1689 | ** redefined.  The UNION ALL operator uses this property to force
 | 
|  |   1690 | ** the reuse of the same limit and offset registers across multiple
 | 
|  |   1691 | ** SELECT statements.
 | 
|  |   1692 | */
 | 
|  |   1693 | static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
 | 
|  |   1694 |   Vdbe *v = 0;
 | 
|  |   1695 |   int iLimit = 0;
 | 
|  |   1696 |   int iOffset;
 | 
|  |   1697 |   int addr1, addr2;
 | 
|  |   1698 | 
 | 
|  |   1699 |   /* 
 | 
|  |   1700 |   ** "LIMIT -1" always shows all rows.  There is some
 | 
|  |   1701 |   ** contraversy about what the correct behavior should be.
 | 
|  |   1702 |   ** The current implementation interprets "LIMIT 0" to mean
 | 
|  |   1703 |   ** no rows.
 | 
|  |   1704 |   */
 | 
|  |   1705 |   if( p->pLimit ){
 | 
|  |   1706 |     p->iLimit = iLimit = pParse->nMem;
 | 
|  |   1707 |     pParse->nMem += 2;
 | 
|  |   1708 |     v = sqlite3GetVdbe(pParse);
 | 
|  |   1709 |     if( v==0 ) return;
 | 
|  |   1710 |     sqlite3ExprCode(pParse, p->pLimit);
 | 
|  |   1711 |     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | 
|  |   1712 |     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
 | 
|  |   1713 |     VdbeComment((v, "# LIMIT counter"));
 | 
|  |   1714 |     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
 | 
|  |   1715 |     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
 | 
|  |   1716 |   }
 | 
|  |   1717 |   if( p->pOffset ){
 | 
|  |   1718 |     p->iOffset = iOffset = pParse->nMem++;
 | 
|  |   1719 |     v = sqlite3GetVdbe(pParse);
 | 
|  |   1720 |     if( v==0 ) return;
 | 
|  |   1721 |     sqlite3ExprCode(pParse, p->pOffset);
 | 
|  |   1722 |     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | 
|  |   1723 |     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
 | 
|  |   1724 |     VdbeComment((v, "# OFFSET counter"));
 | 
|  |   1725 |     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
 | 
|  |   1726 |     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |   1727 |     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
 | 
|  |   1728 |     sqlite3VdbeJumpHere(v, addr1);
 | 
|  |   1729 |     if( p->pLimit ){
 | 
|  |   1730 |       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
 | 
|  |   1731 |     }
 | 
|  |   1732 |   }
 | 
|  |   1733 |   if( p->pLimit ){
 | 
|  |   1734 |     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
 | 
|  |   1735 |     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |   1736 |     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
 | 
|  |   1737 |     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | 
|  |   1738 |     sqlite3VdbeJumpHere(v, addr1);
 | 
|  |   1739 |     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
 | 
|  |   1740 |     VdbeComment((v, "# LIMIT+OFFSET"));
 | 
|  |   1741 |     sqlite3VdbeJumpHere(v, addr2);
 | 
|  |   1742 |   }
 | 
|  |   1743 | }
 | 
|  |   1744 | 
 | 
|  |   1745 | /*
 | 
|  |   1746 | ** Allocate a virtual index to use for sorting.
 | 
|  |   1747 | */
 | 
|  |   1748 | static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
 | 
|  |   1749 |   if( pOrderBy ){
 | 
|  |   1750 |     int addr;
 | 
|  |   1751 |     assert( pOrderBy->iECursor==0 );
 | 
|  |   1752 |     pOrderBy->iECursor = pParse->nTab++;
 | 
|  |   1753 |     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
 | 
|  |   1754 |                             pOrderBy->iECursor, pOrderBy->nExpr+1);
 | 
|  |   1755 |     assert( p->addrOpenEphm[2] == -1 );
 | 
|  |   1756 |     p->addrOpenEphm[2] = addr;
 | 
|  |   1757 |   }
 | 
|  |   1758 | }
 | 
|  |   1759 | 
 | 
|  |   1760 | #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | 
|  |   1761 | /*
 | 
|  |   1762 | ** Return the appropriate collating sequence for the iCol-th column of
 | 
|  |   1763 | ** the result set for the compound-select statement "p".  Return NULL if
 | 
|  |   1764 | ** the column has no default collating sequence.
 | 
|  |   1765 | **
 | 
|  |   1766 | ** The collating sequence for the compound select is taken from the
 | 
|  |   1767 | ** left-most term of the select that has a collating sequence.
 | 
|  |   1768 | */
 | 
|  |   1769 | static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
 | 
|  |   1770 |   CollSeq *pRet;
 | 
|  |   1771 |   if( p->pPrior ){
 | 
|  |   1772 |     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
 | 
|  |   1773 |   }else{
 | 
|  |   1774 |     pRet = 0;
 | 
|  |   1775 |   }
 | 
|  |   1776 |   if( pRet==0 ){
 | 
|  |   1777 |     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
 | 
|  |   1778 |   }
 | 
|  |   1779 |   return pRet;
 | 
|  |   1780 | }
 | 
|  |   1781 | #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | 
|  |   1782 | 
 | 
|  |   1783 | #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | 
|  |   1784 | /*
 | 
|  |   1785 | ** This routine is called to process a query that is really the union
 | 
|  |   1786 | ** or intersection of two or more separate queries.
 | 
|  |   1787 | **
 | 
|  |   1788 | ** "p" points to the right-most of the two queries.  the query on the
 | 
|  |   1789 | ** left is p->pPrior.  The left query could also be a compound query
 | 
|  |   1790 | ** in which case this routine will be called recursively. 
 | 
|  |   1791 | **
 | 
|  |   1792 | ** The results of the total query are to be written into a destination
 | 
|  |   1793 | ** of type eDest with parameter iParm.
 | 
|  |   1794 | **
 | 
|  |   1795 | ** Example 1:  Consider a three-way compound SQL statement.
 | 
|  |   1796 | **
 | 
|  |   1797 | **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
 | 
|  |   1798 | **
 | 
|  |   1799 | ** This statement is parsed up as follows:
 | 
|  |   1800 | **
 | 
|  |   1801 | **     SELECT c FROM t3
 | 
|  |   1802 | **      |
 | 
|  |   1803 | **      `----->  SELECT b FROM t2
 | 
|  |   1804 | **                |
 | 
|  |   1805 | **                `------>  SELECT a FROM t1
 | 
|  |   1806 | **
 | 
|  |   1807 | ** The arrows in the diagram above represent the Select.pPrior pointer.
 | 
|  |   1808 | ** So if this routine is called with p equal to the t3 query, then
 | 
|  |   1809 | ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
 | 
|  |   1810 | **
 | 
|  |   1811 | ** Notice that because of the way SQLite parses compound SELECTs, the
 | 
|  |   1812 | ** individual selects always group from left to right.
 | 
|  |   1813 | */
 | 
|  |   1814 | static int multiSelect(
 | 
|  |   1815 |   Parse *pParse,        /* Parsing context */
 | 
|  |   1816 |   Select *p,            /* The right-most of SELECTs to be coded */
 | 
|  |   1817 |   int eDest,            /* \___  Store query results as specified */
 | 
|  |   1818 |   int iParm,            /* /     by these two parameters.         */
 | 
|  |   1819 |   char *aff             /* If eDest is SRT_Union, the affinity string */
 | 
|  |   1820 | ){
 | 
|  |   1821 |   int rc = SQLITE_OK;   /* Success code from a subroutine */
 | 
|  |   1822 |   Select *pPrior;       /* Another SELECT immediately to our left */
 | 
|  |   1823 |   Vdbe *v;              /* Generate code to this VDBE */
 | 
|  |   1824 |   int nCol;             /* Number of columns in the result set */
 | 
|  |   1825 |   ExprList *pOrderBy;   /* The ORDER BY clause on p */
 | 
|  |   1826 |   int aSetP2[2];        /* Set P2 value of these op to number of columns */
 | 
|  |   1827 |   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
 | 
|  |   1828 | 
 | 
|  |   1829 |   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
 | 
|  |   1830 |   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
 | 
|  |   1831 |   */
 | 
|  |   1832 |   if( p==0 || p->pPrior==0 ){
 | 
|  |   1833 |     rc = 1;
 | 
|  |   1834 |     goto multi_select_end;
 | 
|  |   1835 |   }
 | 
|  |   1836 |   pPrior = p->pPrior;
 | 
|  |   1837 |   assert( pPrior->pRightmost!=pPrior );
 | 
|  |   1838 |   assert( pPrior->pRightmost==p->pRightmost );
 | 
|  |   1839 |   if( pPrior->pOrderBy ){
 | 
|  |   1840 |     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
 | 
|  |   1841 |       selectOpName(p->op));
 | 
|  |   1842 |     rc = 1;
 | 
|  |   1843 |     goto multi_select_end;
 | 
|  |   1844 |   }
 | 
|  |   1845 |   if( pPrior->pLimit ){
 | 
|  |   1846 |     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
 | 
|  |   1847 |       selectOpName(p->op));
 | 
|  |   1848 |     rc = 1;
 | 
|  |   1849 |     goto multi_select_end;
 | 
|  |   1850 |   }
 | 
|  |   1851 | 
 | 
|  |   1852 |   /* Make sure we have a valid query engine.  If not, create a new one.
 | 
|  |   1853 |   */
 | 
|  |   1854 |   v = sqlite3GetVdbe(pParse);
 | 
|  |   1855 |   if( v==0 ){
 | 
|  |   1856 |     rc = 1;
 | 
|  |   1857 |     goto multi_select_end;
 | 
|  |   1858 |   }
 | 
|  |   1859 | 
 | 
|  |   1860 |   /* Create the destination temporary table if necessary
 | 
|  |   1861 |   */
 | 
|  |   1862 |   if( eDest==SRT_EphemTab ){
 | 
|  |   1863 |     assert( p->pEList );
 | 
|  |   1864 |     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
 | 
|  |   1865 |     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
 | 
|  |   1866 |     eDest = SRT_Table;
 | 
|  |   1867 |   }
 | 
|  |   1868 | 
 | 
|  |   1869 |   /* Generate code for the left and right SELECT statements.
 | 
|  |   1870 |   */
 | 
|  |   1871 |   pOrderBy = p->pOrderBy;
 | 
|  |   1872 |   switch( p->op ){
 | 
|  |   1873 |     case TK_ALL: {
 | 
|  |   1874 |       if( pOrderBy==0 ){
 | 
|  |   1875 |         int addr = 0;
 | 
|  |   1876 |         assert( !pPrior->pLimit );
 | 
|  |   1877 |         pPrior->pLimit = p->pLimit;
 | 
|  |   1878 |         pPrior->pOffset = p->pOffset;
 | 
|  |   1879 |         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
 | 
|  |   1880 |         p->pLimit = 0;
 | 
|  |   1881 |         p->pOffset = 0;
 | 
|  |   1882 |         if( rc ){
 | 
|  |   1883 |           goto multi_select_end;
 | 
|  |   1884 |         }
 | 
|  |   1885 |         p->pPrior = 0;
 | 
|  |   1886 |         p->iLimit = pPrior->iLimit;
 | 
|  |   1887 |         p->iOffset = pPrior->iOffset;
 | 
|  |   1888 |         if( p->iLimit>=0 ){
 | 
|  |   1889 |           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
 | 
|  |   1890 |           VdbeComment((v, "# Jump ahead if LIMIT reached"));
 | 
|  |   1891 |         }
 | 
|  |   1892 |         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
 | 
|  |   1893 |         p->pPrior = pPrior;
 | 
|  |   1894 |         if( rc ){
 | 
|  |   1895 |           goto multi_select_end;
 | 
|  |   1896 |         }
 | 
|  |   1897 |         if( addr ){
 | 
|  |   1898 |           sqlite3VdbeJumpHere(v, addr);
 | 
|  |   1899 |         }
 | 
|  |   1900 |         break;
 | 
|  |   1901 |       }
 | 
|  |   1902 |       /* For UNION ALL ... ORDER BY fall through to the next case */
 | 
|  |   1903 |     }
 | 
|  |   1904 |     case TK_EXCEPT:
 | 
|  |   1905 |     case TK_UNION: {
 | 
|  |   1906 |       int unionTab;    /* Cursor number of the temporary table holding result */
 | 
|  |   1907 |       int op = 0;      /* One of the SRT_ operations to apply to self */
 | 
|  |   1908 |       int priorOp;     /* The SRT_ operation to apply to prior selects */
 | 
|  |   1909 |       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
 | 
|  |   1910 |       int addr;
 | 
|  |   1911 | 
 | 
|  |   1912 |       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
 | 
|  |   1913 |       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
 | 
|  |   1914 |         /* We can reuse a temporary table generated by a SELECT to our
 | 
|  |   1915 |         ** right.
 | 
|  |   1916 |         */
 | 
|  |   1917 |         unionTab = iParm;
 | 
|  |   1918 |       }else{
 | 
|  |   1919 |         /* We will need to create our own temporary table to hold the
 | 
|  |   1920 |         ** intermediate results.
 | 
|  |   1921 |         */
 | 
|  |   1922 |         unionTab = pParse->nTab++;
 | 
|  |   1923 |         if( processCompoundOrderBy(pParse, p, unionTab) ){
 | 
|  |   1924 |           rc = 1;
 | 
|  |   1925 |           goto multi_select_end;
 | 
|  |   1926 |         }
 | 
|  |   1927 |         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
 | 
|  |   1928 |         if( priorOp==SRT_Table ){
 | 
|  |   1929 |           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
 | 
|  |   1930 |           aSetP2[nSetP2++] = addr;
 | 
|  |   1931 |         }else{
 | 
|  |   1932 |           assert( p->addrOpenEphm[0] == -1 );
 | 
|  |   1933 |           p->addrOpenEphm[0] = addr;
 | 
|  |   1934 |           p->pRightmost->usesEphm = 1;
 | 
|  |   1935 |         }
 | 
|  |   1936 |         createSortingIndex(pParse, p, pOrderBy);
 | 
|  |   1937 |         assert( p->pEList );
 | 
|  |   1938 |       }
 | 
|  |   1939 | 
 | 
|  |   1940 |       /* Code the SELECT statements to our left
 | 
|  |   1941 |       */
 | 
|  |   1942 |       assert( !pPrior->pOrderBy );
 | 
|  |   1943 |       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
 | 
|  |   1944 |       if( rc ){
 | 
|  |   1945 |         goto multi_select_end;
 | 
|  |   1946 |       }
 | 
|  |   1947 | 
 | 
|  |   1948 |       /* Code the current SELECT statement
 | 
|  |   1949 |       */
 | 
|  |   1950 |       switch( p->op ){
 | 
|  |   1951 |          case TK_EXCEPT:  op = SRT_Except;   break;
 | 
|  |   1952 |          case TK_UNION:   op = SRT_Union;    break;
 | 
|  |   1953 |          case TK_ALL:     op = SRT_Table;    break;
 | 
|  |   1954 |       }
 | 
|  |   1955 |       p->pPrior = 0;
 | 
|  |   1956 |       p->pOrderBy = 0;
 | 
|  |   1957 |       p->disallowOrderBy = pOrderBy!=0;
 | 
|  |   1958 |       pLimit = p->pLimit;
 | 
|  |   1959 |       p->pLimit = 0;
 | 
|  |   1960 |       pOffset = p->pOffset;
 | 
|  |   1961 |       p->pOffset = 0;
 | 
|  |   1962 |       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
 | 
|  |   1963 |       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
 | 
|  |   1964 |       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
 | 
|  |   1965 |       sqlite3ExprListDelete(p->pOrderBy);
 | 
|  |   1966 |       p->pPrior = pPrior;
 | 
|  |   1967 |       p->pOrderBy = pOrderBy;
 | 
|  |   1968 |       sqlite3ExprDelete(p->pLimit);
 | 
|  |   1969 |       p->pLimit = pLimit;
 | 
|  |   1970 |       p->pOffset = pOffset;
 | 
|  |   1971 |       p->iLimit = -1;
 | 
|  |   1972 |       p->iOffset = -1;
 | 
|  |   1973 |       if( rc ){
 | 
|  |   1974 |         goto multi_select_end;
 | 
|  |   1975 |       }
 | 
|  |   1976 | 
 | 
|  |   1977 | 
 | 
|  |   1978 |       /* Convert the data in the temporary table into whatever form
 | 
|  |   1979 |       ** it is that we currently need.
 | 
|  |   1980 |       */      
 | 
|  |   1981 |       if( eDest!=priorOp || unionTab!=iParm ){
 | 
|  |   1982 |         int iCont, iBreak, iStart;
 | 
|  |   1983 |         assert( p->pEList );
 | 
|  |   1984 |         if( eDest==SRT_Callback ){
 | 
|  |   1985 |           Select *pFirst = p;
 | 
|  |   1986 |           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 | 
|  |   1987 |           generateColumnNames(pParse, 0, pFirst->pEList);
 | 
|  |   1988 |         }
 | 
|  |   1989 |         iBreak = sqlite3VdbeMakeLabel(v);
 | 
|  |   1990 |         iCont = sqlite3VdbeMakeLabel(v);
 | 
|  |   1991 |         computeLimitRegisters(pParse, p, iBreak);
 | 
|  |   1992 |         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
 | 
|  |   1993 |         iStart = sqlite3VdbeCurrentAddr(v);
 | 
|  |   1994 |         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
 | 
|  |   1995 |                              pOrderBy, -1, eDest, iParm, 
 | 
|  |   1996 |                              iCont, iBreak, 0);
 | 
|  |   1997 |         if( rc ){
 | 
|  |   1998 |           rc = 1;
 | 
|  |   1999 |           goto multi_select_end;
 | 
|  |   2000 |         }
 | 
|  |   2001 |         sqlite3VdbeResolveLabel(v, iCont);
 | 
|  |   2002 |         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
 | 
|  |   2003 |         sqlite3VdbeResolveLabel(v, iBreak);
 | 
|  |   2004 |         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
 | 
|  |   2005 |       }
 | 
|  |   2006 |       break;
 | 
|  |   2007 |     }
 | 
|  |   2008 |     case TK_INTERSECT: {
 | 
|  |   2009 |       int tab1, tab2;
 | 
|  |   2010 |       int iCont, iBreak, iStart;
 | 
|  |   2011 |       Expr *pLimit, *pOffset;
 | 
|  |   2012 |       int addr;
 | 
|  |   2013 | 
 | 
|  |   2014 |       /* INTERSECT is different from the others since it requires
 | 
|  |   2015 |       ** two temporary tables.  Hence it has its own case.  Begin
 | 
|  |   2016 |       ** by allocating the tables we will need.
 | 
|  |   2017 |       */
 | 
|  |   2018 |       tab1 = pParse->nTab++;
 | 
|  |   2019 |       tab2 = pParse->nTab++;
 | 
|  |   2020 |       if( processCompoundOrderBy(pParse, p, tab1) ){
 | 
|  |   2021 |         rc = 1;
 | 
|  |   2022 |         goto multi_select_end;
 | 
|  |   2023 |       }
 | 
|  |   2024 |       createSortingIndex(pParse, p, pOrderBy);
 | 
|  |   2025 | 
 | 
|  |   2026 |       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
 | 
|  |   2027 |       assert( p->addrOpenEphm[0] == -1 );
 | 
|  |   2028 |       p->addrOpenEphm[0] = addr;
 | 
|  |   2029 |       p->pRightmost->usesEphm = 1;
 | 
|  |   2030 |       assert( p->pEList );
 | 
|  |   2031 | 
 | 
|  |   2032 |       /* Code the SELECTs to our left into temporary table "tab1".
 | 
|  |   2033 |       */
 | 
|  |   2034 |       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
 | 
|  |   2035 |       if( rc ){
 | 
|  |   2036 |         goto multi_select_end;
 | 
|  |   2037 |       }
 | 
|  |   2038 | 
 | 
|  |   2039 |       /* Code the current SELECT into temporary table "tab2"
 | 
|  |   2040 |       */
 | 
|  |   2041 |       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
 | 
|  |   2042 |       assert( p->addrOpenEphm[1] == -1 );
 | 
|  |   2043 |       p->addrOpenEphm[1] = addr;
 | 
|  |   2044 |       p->pPrior = 0;
 | 
|  |   2045 |       pLimit = p->pLimit;
 | 
|  |   2046 |       p->pLimit = 0;
 | 
|  |   2047 |       pOffset = p->pOffset;
 | 
|  |   2048 |       p->pOffset = 0;
 | 
|  |   2049 |       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
 | 
|  |   2050 |       p->pPrior = pPrior;
 | 
|  |   2051 |       sqlite3ExprDelete(p->pLimit);
 | 
|  |   2052 |       p->pLimit = pLimit;
 | 
|  |   2053 |       p->pOffset = pOffset;
 | 
|  |   2054 |       if( rc ){
 | 
|  |   2055 |         goto multi_select_end;
 | 
|  |   2056 |       }
 | 
|  |   2057 | 
 | 
|  |   2058 |       /* Generate code to take the intersection of the two temporary
 | 
|  |   2059 |       ** tables.
 | 
|  |   2060 |       */
 | 
|  |   2061 |       assert( p->pEList );
 | 
|  |   2062 |       if( eDest==SRT_Callback ){
 | 
|  |   2063 |         Select *pFirst = p;
 | 
|  |   2064 |         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 | 
|  |   2065 |         generateColumnNames(pParse, 0, pFirst->pEList);
 | 
|  |   2066 |       }
 | 
|  |   2067 |       iBreak = sqlite3VdbeMakeLabel(v);
 | 
|  |   2068 |       iCont = sqlite3VdbeMakeLabel(v);
 | 
|  |   2069 |       computeLimitRegisters(pParse, p, iBreak);
 | 
|  |   2070 |       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
 | 
|  |   2071 |       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
 | 
|  |   2072 |       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
 | 
|  |   2073 |       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
 | 
|  |   2074 |                              pOrderBy, -1, eDest, iParm, 
 | 
|  |   2075 |                              iCont, iBreak, 0);
 | 
|  |   2076 |       if( rc ){
 | 
|  |   2077 |         rc = 1;
 | 
|  |   2078 |         goto multi_select_end;
 | 
|  |   2079 |       }
 | 
|  |   2080 |       sqlite3VdbeResolveLabel(v, iCont);
 | 
|  |   2081 |       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
 | 
|  |   2082 |       sqlite3VdbeResolveLabel(v, iBreak);
 | 
|  |   2083 |       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
 | 
|  |   2084 |       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
 | 
|  |   2085 |       break;
 | 
|  |   2086 |     }
 | 
|  |   2087 |   }
 | 
|  |   2088 | 
 | 
|  |   2089 |   /* Make sure all SELECTs in the statement have the same number of elements
 | 
|  |   2090 |   ** in their result sets.
 | 
|  |   2091 |   */
 | 
|  |   2092 |   assert( p->pEList && pPrior->pEList );
 | 
|  |   2093 |   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
 | 
|  |   2094 |     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
 | 
|  |   2095 |       " do not have the same number of result columns", selectOpName(p->op));
 | 
|  |   2096 |     rc = 1;
 | 
|  |   2097 |     goto multi_select_end;
 | 
|  |   2098 |   }
 | 
|  |   2099 | 
 | 
|  |   2100 |   /* Set the number of columns in temporary tables
 | 
|  |   2101 |   */
 | 
|  |   2102 |   nCol = p->pEList->nExpr;
 | 
|  |   2103 |   while( nSetP2 ){
 | 
|  |   2104 |     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
 | 
|  |   2105 |   }
 | 
|  |   2106 | 
 | 
|  |   2107 |   /* Compute collating sequences used by either the ORDER BY clause or
 | 
|  |   2108 |   ** by any temporary tables needed to implement the compound select.
 | 
|  |   2109 |   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
 | 
|  |   2110 |   ** ORDER BY processing if there is an ORDER BY clause.
 | 
|  |   2111 |   **
 | 
|  |   2112 |   ** This section is run by the right-most SELECT statement only.
 | 
|  |   2113 |   ** SELECT statements to the left always skip this part.  The right-most
 | 
|  |   2114 |   ** SELECT might also skip this part if it has no ORDER BY clause and
 | 
|  |   2115 |   ** no temp tables are required.
 | 
|  |   2116 |   */
 | 
|  |   2117 |   if( pOrderBy || p->usesEphm ){
 | 
|  |   2118 |     int i;                        /* Loop counter */
 | 
|  |   2119 |     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
 | 
|  |   2120 |     Select *pLoop;                /* For looping through SELECT statements */
 | 
|  |   2121 |     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
 | 
|  |   2122 |     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
 | 
|  |   2123 |     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
 | 
|  |   2124 | 
 | 
|  |   2125 |     assert( p->pRightmost==p );
 | 
|  |   2126 |     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
 | 
|  |   2127 |     pKeyInfo = (KeyInfo*)sqlite3DbMallocZero(pParse->db,
 | 
|  |   2128 |                        sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
 | 
|  |   2129 |     if( !pKeyInfo ){
 | 
|  |   2130 |       rc = SQLITE_NOMEM;
 | 
|  |   2131 |       goto multi_select_end;
 | 
|  |   2132 |     }
 | 
|  |   2133 | 
 | 
|  |   2134 |     pKeyInfo->enc = ENC(pParse->db);
 | 
|  |   2135 |     pKeyInfo->nField = nCol;
 | 
|  |   2136 | 
 | 
|  |   2137 |     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
 | 
|  |   2138 |       *apColl = multiSelectCollSeq(pParse, p, i);
 | 
|  |   2139 |       if( 0==*apColl ){
 | 
|  |   2140 |         *apColl = pParse->db->pDfltColl;
 | 
|  |   2141 |       }
 | 
|  |   2142 |     }
 | 
|  |   2143 | 
 | 
|  |   2144 |     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
 | 
|  |   2145 |       for(i=0; i<2; i++){
 | 
|  |   2146 |         int addr = pLoop->addrOpenEphm[i];
 | 
|  |   2147 |         if( addr<0 ){
 | 
|  |   2148 |           /* If [0] is unused then [1] is also unused.  So we can
 | 
|  |   2149 |           ** always safely abort as soon as the first unused slot is found */
 | 
|  |   2150 |           assert( pLoop->addrOpenEphm[1]<0 );
 | 
|  |   2151 |           break;
 | 
|  |   2152 |         }
 | 
|  |   2153 |         sqlite3VdbeChangeP2(v, addr, nCol);
 | 
|  |   2154 |         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
 | 
|  |   2155 |         pLoop->addrOpenEphm[i] = -1;
 | 
|  |   2156 |       }
 | 
|  |   2157 |     }
 | 
|  |   2158 | 
 | 
|  |   2159 |     if( pOrderBy ){
 | 
|  |   2160 | 		ExprList::ExprList_item *pOTerm = pOrderBy->a;
 | 
|  |   2161 |       int nOrderByExpr = pOrderBy->nExpr;
 | 
|  |   2162 |       int addr;
 | 
|  |   2163 |       u8 *pSortOrder;
 | 
|  |   2164 | 
 | 
|  |   2165 |       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
 | 
|  |   2166 |       ** the compound select statements.  Except we have to change out the
 | 
|  |   2167 |       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
 | 
|  |   2168 |       ** reused when constructing the pKeyInfo for the ORDER BY, so make
 | 
|  |   2169 |       ** a copy.  Sufficient space to hold both the nCol entries for
 | 
|  |   2170 |       ** the compound select and the nOrderbyExpr entries for the ORDER BY
 | 
|  |   2171 |       ** was allocated above.  But we need to move the compound select
 | 
|  |   2172 |       ** entries out of the way before constructing the ORDER BY entries.
 | 
|  |   2173 |       ** Move the compound select entries into aCopy[] where they can be
 | 
|  |   2174 |       ** accessed and reused when constructing the ORDER BY entries.
 | 
|  |   2175 |       ** Because nCol might be greater than or less than nOrderByExpr
 | 
|  |   2176 |       ** we have to use memmove() when doing the copy.
 | 
|  |   2177 |       */
 | 
|  |   2178 |       aCopy = &pKeyInfo->aColl[nOrderByExpr];
 | 
|  |   2179 |       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
 | 
|  |   2180 |       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
 | 
|  |   2181 | 
 | 
|  |   2182 |       apColl = pKeyInfo->aColl;
 | 
|  |   2183 |       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
 | 
|  |   2184 |         Expr *pExpr = pOTerm->pExpr;
 | 
|  |   2185 |         if( (pExpr->flags & EP_ExpCollate) ){
 | 
|  |   2186 |           assert( pExpr->pColl!=0 );
 | 
|  |   2187 |           *apColl = pExpr->pColl;
 | 
|  |   2188 |         }else{
 | 
|  |   2189 |           *apColl = aCopy[pExpr->iColumn];
 | 
|  |   2190 |         }
 | 
|  |   2191 |         *pSortOrder = pOTerm->sortOrder;
 | 
|  |   2192 |       }
 | 
|  |   2193 |       assert( p->pRightmost==p );
 | 
|  |   2194 |       assert( p->addrOpenEphm[2]>=0 );
 | 
|  |   2195 |       addr = p->addrOpenEphm[2];
 | 
|  |   2196 |       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
 | 
|  |   2197 |       pKeyInfo->nField = nOrderByExpr;
 | 
|  |   2198 |       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | 
|  |   2199 |       pKeyInfo = 0;
 | 
|  |   2200 |       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
 | 
|  |   2201 |     }
 | 
|  |   2202 | 
 | 
|  |   2203 |     sqlite3_free(pKeyInfo);
 | 
|  |   2204 |   }
 | 
|  |   2205 | 
 | 
|  |   2206 | multi_select_end:
 | 
|  |   2207 |   return rc;
 | 
|  |   2208 | }
 | 
|  |   2209 | #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | 
|  |   2210 | 
 | 
|  |   2211 | #ifndef SQLITE_OMIT_VIEW
 | 
|  |   2212 | /* Forward Declarations */
 | 
|  |   2213 | static void substExprList(sqlite3*, ExprList*, int, ExprList*);
 | 
|  |   2214 | static void substSelect(sqlite3*, Select *, int, ExprList *);
 | 
|  |   2215 | 
 | 
|  |   2216 | /*
 | 
|  |   2217 | ** Scan through the expression pExpr.  Replace every reference to
 | 
|  |   2218 | ** a column in table number iTable with a copy of the iColumn-th
 | 
|  |   2219 | ** entry in pEList.  (But leave references to the ROWID column 
 | 
|  |   2220 | ** unchanged.)
 | 
|  |   2221 | **
 | 
|  |   2222 | ** This routine is part of the flattening procedure.  A subquery
 | 
|  |   2223 | ** whose result set is defined by pEList appears as entry in the
 | 
|  |   2224 | ** FROM clause of a SELECT such that the VDBE cursor assigned to that
 | 
|  |   2225 | ** FORM clause entry is iTable.  This routine make the necessary 
 | 
|  |   2226 | ** changes to pExpr so that it refers directly to the source table
 | 
|  |   2227 | ** of the subquery rather the result set of the subquery.
 | 
|  |   2228 | */
 | 
|  |   2229 | static void substExpr(
 | 
|  |   2230 |   sqlite3 *db,        /* Report malloc errors to this connection */
 | 
|  |   2231 |   Expr *pExpr,        /* Expr in which substitution occurs */
 | 
|  |   2232 |   int iTable,         /* Table to be substituted */
 | 
|  |   2233 |   ExprList *pEList    /* Substitute expressions */
 | 
|  |   2234 | ){
 | 
|  |   2235 |   if( pExpr==0 ) return;
 | 
|  |   2236 |   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
 | 
|  |   2237 |     if( pExpr->iColumn<0 ){
 | 
|  |   2238 |       pExpr->op = TK_NULL;
 | 
|  |   2239 |     }else{
 | 
|  |   2240 |       Expr *pNew;
 | 
|  |   2241 |       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
 | 
|  |   2242 |       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
 | 
|  |   2243 |       pNew = pEList->a[pExpr->iColumn].pExpr;
 | 
|  |   2244 |       assert( pNew!=0 );
 | 
|  |   2245 |       pExpr->op = pNew->op;
 | 
|  |   2246 |       assert( pExpr->pLeft==0 );
 | 
|  |   2247 |       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
 | 
|  |   2248 |       assert( pExpr->pRight==0 );
 | 
|  |   2249 |       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
 | 
|  |   2250 |       assert( pExpr->pList==0 );
 | 
|  |   2251 |       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
 | 
|  |   2252 |       pExpr->iTable = pNew->iTable;
 | 
|  |   2253 |       pExpr->pTab = pNew->pTab;
 | 
|  |   2254 |       pExpr->iColumn = pNew->iColumn;
 | 
|  |   2255 |       pExpr->iAgg = pNew->iAgg;
 | 
|  |   2256 |       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
 | 
|  |   2257 |       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
 | 
|  |   2258 |       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
 | 
|  |   2259 |       pExpr->flags = pNew->flags;
 | 
|  |   2260 |     }
 | 
|  |   2261 |   }else{
 | 
|  |   2262 |     substExpr(db, pExpr->pLeft, iTable, pEList);
 | 
|  |   2263 |     substExpr(db, pExpr->pRight, iTable, pEList);
 | 
|  |   2264 |     substSelect(db, pExpr->pSelect, iTable, pEList);
 | 
|  |   2265 |     substExprList(db, pExpr->pList, iTable, pEList);
 | 
|  |   2266 |   }
 | 
|  |   2267 | }
 | 
|  |   2268 | static void substExprList(
 | 
|  |   2269 |   sqlite3 *db,         /* Report malloc errors here */
 | 
|  |   2270 |   ExprList *pList,     /* List to scan and in which to make substitutes */
 | 
|  |   2271 |   int iTable,          /* Table to be substituted */
 | 
|  |   2272 |   ExprList *pEList     /* Substitute values */
 | 
|  |   2273 | ){
 | 
|  |   2274 |   int i;
 | 
|  |   2275 |   if( pList==0 ) return;
 | 
|  |   2276 |   for(i=0; i<pList->nExpr; i++){
 | 
|  |   2277 |     substExpr(db, pList->a[i].pExpr, iTable, pEList);
 | 
|  |   2278 |   }
 | 
|  |   2279 | }
 | 
|  |   2280 | static void substSelect(
 | 
|  |   2281 |   sqlite3 *db,         /* Report malloc errors here */
 | 
|  |   2282 |   Select *p,           /* SELECT statement in which to make substitutions */
 | 
|  |   2283 |   int iTable,          /* Table to be replaced */
 | 
|  |   2284 |   ExprList *pEList     /* Substitute values */
 | 
|  |   2285 | ){
 | 
|  |   2286 |   if( !p ) return;
 | 
|  |   2287 |   substExprList(db, p->pEList, iTable, pEList);
 | 
|  |   2288 |   substExprList(db, p->pGroupBy, iTable, pEList);
 | 
|  |   2289 |   substExprList(db, p->pOrderBy, iTable, pEList);
 | 
|  |   2290 |   substExpr(db, p->pHaving, iTable, pEList);
 | 
|  |   2291 |   substExpr(db, p->pWhere, iTable, pEList);
 | 
|  |   2292 |   substSelect(db, p->pPrior, iTable, pEList);
 | 
|  |   2293 | }
 | 
|  |   2294 | #endif /* !defined(SQLITE_OMIT_VIEW) */
 | 
|  |   2295 | 
 | 
|  |   2296 | #ifndef SQLITE_OMIT_VIEW
 | 
|  |   2297 | /*
 | 
|  |   2298 | ** This routine attempts to flatten subqueries in order to speed
 | 
|  |   2299 | ** execution.  It returns 1 if it makes changes and 0 if no flattening
 | 
|  |   2300 | ** occurs.
 | 
|  |   2301 | **
 | 
|  |   2302 | ** To understand the concept of flattening, consider the following
 | 
|  |   2303 | ** query:
 | 
|  |   2304 | **
 | 
|  |   2305 | **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
 | 
|  |   2306 | **
 | 
|  |   2307 | ** The default way of implementing this query is to execute the
 | 
|  |   2308 | ** subquery first and store the results in a temporary table, then
 | 
|  |   2309 | ** run the outer query on that temporary table.  This requires two
 | 
|  |   2310 | ** passes over the data.  Furthermore, because the temporary table
 | 
|  |   2311 | ** has no indices, the WHERE clause on the outer query cannot be
 | 
|  |   2312 | ** optimized.
 | 
|  |   2313 | **
 | 
|  |   2314 | ** This routine attempts to rewrite queries such as the above into
 | 
|  |   2315 | ** a single flat select, like this:
 | 
|  |   2316 | **
 | 
|  |   2317 | **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
 | 
|  |   2318 | **
 | 
|  |   2319 | ** The code generated for this simpification gives the same result
 | 
|  |   2320 | ** but only has to scan the data once.  And because indices might 
 | 
|  |   2321 | ** exist on the table t1, a complete scan of the data might be
 | 
|  |   2322 | ** avoided.
 | 
|  |   2323 | **
 | 
|  |   2324 | ** Flattening is only attempted if all of the following are true:
 | 
|  |   2325 | **
 | 
|  |   2326 | **   (1)  The subquery and the outer query do not both use aggregates.
 | 
|  |   2327 | **
 | 
|  |   2328 | **   (2)  The subquery is not an aggregate or the outer query is not a join.
 | 
|  |   2329 | **
 | 
|  |   2330 | **   (3)  The subquery is not the right operand of a left outer join, or
 | 
|  |   2331 | **        the subquery is not itself a join.  (Ticket #306)
 | 
|  |   2332 | **
 | 
|  |   2333 | **   (4)  The subquery is not DISTINCT or the outer query is not a join.
 | 
|  |   2334 | **
 | 
|  |   2335 | **   (5)  The subquery is not DISTINCT or the outer query does not use
 | 
|  |   2336 | **        aggregates.
 | 
|  |   2337 | **
 | 
|  |   2338 | **   (6)  The subquery does not use aggregates or the outer query is not
 | 
|  |   2339 | **        DISTINCT.
 | 
|  |   2340 | **
 | 
|  |   2341 | **   (7)  The subquery has a FROM clause.
 | 
|  |   2342 | **
 | 
|  |   2343 | **   (8)  The subquery does not use LIMIT or the outer query is not a join.
 | 
|  |   2344 | **
 | 
|  |   2345 | **   (9)  The subquery does not use LIMIT or the outer query does not use
 | 
|  |   2346 | **        aggregates.
 | 
|  |   2347 | **
 | 
|  |   2348 | **  (10)  The subquery does not use aggregates or the outer query does not
 | 
|  |   2349 | **        use LIMIT.
 | 
|  |   2350 | **
 | 
|  |   2351 | **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
 | 
|  |   2352 | **
 | 
|  |   2353 | **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
 | 
|  |   2354 | **        subquery has no WHERE clause.  (added by ticket #350)
 | 
|  |   2355 | **
 | 
|  |   2356 | **  (13)  The subquery and outer query do not both use LIMIT
 | 
|  |   2357 | **
 | 
|  |   2358 | **  (14)  The subquery does not use OFFSET
 | 
|  |   2359 | **
 | 
|  |   2360 | **  (15)  The outer query is not part of a compound select or the
 | 
|  |   2361 | **        subquery does not have both an ORDER BY and a LIMIT clause.
 | 
|  |   2362 | **        (See ticket #2339)
 | 
|  |   2363 | **
 | 
|  |   2364 | ** In this routine, the "p" parameter is a pointer to the outer query.
 | 
|  |   2365 | ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
 | 
|  |   2366 | ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
 | 
|  |   2367 | **
 | 
|  |   2368 | ** If flattening is not attempted, this routine is a no-op and returns 0.
 | 
|  |   2369 | ** If flattening is attempted this routine returns 1.
 | 
|  |   2370 | **
 | 
|  |   2371 | ** All of the expression analysis must occur on both the outer query and
 | 
|  |   2372 | ** the subquery before this routine runs.
 | 
|  |   2373 | */
 | 
|  |   2374 | static int flattenSubquery(
 | 
|  |   2375 |   sqlite3 *db,         /* Database connection */
 | 
|  |   2376 |   Select *p,           /* The parent or outer SELECT statement */
 | 
|  |   2377 |   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
 | 
|  |   2378 |   int isAgg,           /* True if outer SELECT uses aggregate functions */
 | 
|  |   2379 |   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
 | 
|  |   2380 | ){
 | 
|  |   2381 |   Select *pSub;       /* The inner query or "subquery" */
 | 
|  |   2382 |   SrcList *pSrc;      /* The FROM clause of the outer query */
 | 
|  |   2383 |   SrcList *pSubSrc;   /* The FROM clause of the subquery */
 | 
|  |   2384 |   ExprList *pList;    /* The result set of the outer query */
 | 
|  |   2385 |   int iParent;        /* VDBE cursor number of the pSub result set temp table */
 | 
|  |   2386 |   int i;              /* Loop counter */
 | 
|  |   2387 |   Expr *pWhere;                    /* The WHERE clause */
 | 
|  |   2388 |   SrcList::SrcList_item *pSubitem;   /* The subquery */
 | 
|  |   2389 | 
 | 
|  |   2390 |   /* Check to see if flattening is permitted.  Return 0 if not.
 | 
|  |   2391 |   */
 | 
|  |   2392 |   if( p==0 ) return 0;
 | 
|  |   2393 |   pSrc = p->pSrc;
 | 
|  |   2394 |   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
 | 
|  |   2395 |   pSubitem = &pSrc->a[iFrom];
 | 
|  |   2396 |   pSub = pSubitem->pSelect;
 | 
|  |   2397 |   assert( pSub!=0 );
 | 
|  |   2398 |   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
 | 
|  |   2399 |   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
 | 
|  |   2400 |   pSubSrc = pSub->pSrc;
 | 
|  |   2401 |   assert( pSubSrc );
 | 
|  |   2402 |   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
 | 
|  |   2403 |   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
 | 
|  |   2404 |   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
 | 
|  |   2405 |   ** became arbitrary expressions, we were forced to add restrictions (13)
 | 
|  |   2406 |   ** and (14). */
 | 
|  |   2407 |   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
 | 
|  |   2408 |   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
 | 
|  |   2409 |   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
 | 
|  |   2410 |     return 0;                                            /* Restriction (15) */
 | 
|  |   2411 |   }
 | 
|  |   2412 |   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
 | 
|  |   2413 |   if( (pSub->isDistinct || pSub->pLimit) 
 | 
|  |   2414 |          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
 | 
|  |   2415 |      return 0;       
 | 
|  |   2416 |   }
 | 
|  |   2417 |   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
 | 
|  |   2418 |   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
 | 
|  |   2419 |      return 0;                                           /* Restriction (11) */
 | 
|  |   2420 |   }
 | 
|  |   2421 | 
 | 
|  |   2422 |   /* Restriction 3:  If the subquery is a join, make sure the subquery is 
 | 
|  |   2423 |   ** not used as the right operand of an outer join.  Examples of why this
 | 
|  |   2424 |   ** is not allowed:
 | 
|  |   2425 |   **
 | 
|  |   2426 |   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
 | 
|  |   2427 |   **
 | 
|  |   2428 |   ** If we flatten the above, we would get
 | 
|  |   2429 |   **
 | 
|  |   2430 |   **         (t1 LEFT OUTER JOIN t2) JOIN t3
 | 
|  |   2431 |   **
 | 
|  |   2432 |   ** which is not at all the same thing.
 | 
|  |   2433 |   */
 | 
|  |   2434 |   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
 | 
|  |   2435 |     return 0;
 | 
|  |   2436 |   }
 | 
|  |   2437 | 
 | 
|  |   2438 |   /* Restriction 12:  If the subquery is the right operand of a left outer
 | 
|  |   2439 |   ** join, make sure the subquery has no WHERE clause.
 | 
|  |   2440 |   ** An examples of why this is not allowed:
 | 
|  |   2441 |   **
 | 
|  |   2442 |   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
 | 
|  |   2443 |   **
 | 
|  |   2444 |   ** If we flatten the above, we would get
 | 
|  |   2445 |   **
 | 
|  |   2446 |   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
 | 
|  |   2447 |   **
 | 
|  |   2448 |   ** But the t2.x>0 test will always fail on a NULL row of t2, which
 | 
|  |   2449 |   ** effectively converts the OUTER JOIN into an INNER JOIN.
 | 
|  |   2450 |   */
 | 
|  |   2451 |   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
 | 
|  |   2452 |     return 0;
 | 
|  |   2453 |   }
 | 
|  |   2454 | 
 | 
|  |   2455 |   /* If we reach this point, it means flattening is permitted for the
 | 
|  |   2456 |   ** iFrom-th entry of the FROM clause in the outer query.
 | 
|  |   2457 |   */
 | 
|  |   2458 | 
 | 
|  |   2459 |   /* Move all of the FROM elements of the subquery into the
 | 
|  |   2460 |   ** the FROM clause of the outer query.  Before doing this, remember
 | 
|  |   2461 |   ** the cursor number for the original outer query FROM element in
 | 
|  |   2462 |   ** iParent.  The iParent cursor will never be used.  Subsequent code
 | 
|  |   2463 |   ** will scan expressions looking for iParent references and replace
 | 
|  |   2464 |   ** those references with expressions that resolve to the subquery FROM
 | 
|  |   2465 |   ** elements we are now copying in.
 | 
|  |   2466 |   */
 | 
|  |   2467 |   iParent = pSubitem->iCursor;
 | 
|  |   2468 |   {
 | 
|  |   2469 |     int nSubSrc = pSubSrc->nSrc;
 | 
|  |   2470 |     int jointype = pSubitem->jointype;
 | 
|  |   2471 | 
 | 
|  |   2472 |     sqlite3DeleteTable(pSubitem->pTab);
 | 
|  |   2473 |     sqlite3_free(pSubitem->zDatabase);
 | 
|  |   2474 |     sqlite3_free(pSubitem->zName);
 | 
|  |   2475 |     sqlite3_free(pSubitem->zAlias);
 | 
|  |   2476 |     pSubitem->pTab = 0;
 | 
|  |   2477 |     pSubitem->zDatabase = 0;
 | 
|  |   2478 |     pSubitem->zName = 0;
 | 
|  |   2479 |     pSubitem->zAlias = 0;
 | 
|  |   2480 |     if( nSubSrc>1 ){
 | 
|  |   2481 |       int extra = nSubSrc - 1;
 | 
|  |   2482 |       for(i=1; i<nSubSrc; i++){
 | 
|  |   2483 |         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
 | 
|  |   2484 |         if( pSrc==0 ){
 | 
|  |   2485 |           p->pSrc = 0;
 | 
|  |   2486 |           return 1;
 | 
|  |   2487 |         }
 | 
|  |   2488 |       }
 | 
|  |   2489 |       p->pSrc = pSrc;
 | 
|  |   2490 |       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
 | 
|  |   2491 |         pSrc->a[i] = pSrc->a[i-extra];
 | 
|  |   2492 |       }
 | 
|  |   2493 |     }
 | 
|  |   2494 |     for(i=0; i<nSubSrc; i++){
 | 
|  |   2495 |       pSrc->a[i+iFrom] = pSubSrc->a[i];
 | 
|  |   2496 |       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
 | 
|  |   2497 |     }
 | 
|  |   2498 |     pSrc->a[iFrom].jointype = jointype;
 | 
|  |   2499 |   }
 | 
|  |   2500 | 
 | 
|  |   2501 |   /* Now begin substituting subquery result set expressions for 
 | 
|  |   2502 |   ** references to the iParent in the outer query.
 | 
|  |   2503 |   ** 
 | 
|  |   2504 |   ** Example:
 | 
|  |   2505 |   **
 | 
|  |   2506 |   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
 | 
|  |   2507 |   **   \                     \_____________ subquery __________/          /
 | 
|  |   2508 |   **    \_____________________ outer query ______________________________/
 | 
|  |   2509 |   **
 | 
|  |   2510 |   ** We look at every expression in the outer query and every place we see
 | 
|  |   2511 |   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
 | 
|  |   2512 |   */
 | 
|  |   2513 |   pList = p->pEList;
 | 
|  |   2514 |   for(i=0; i<pList->nExpr; i++){
 | 
|  |   2515 |     Expr *pExpr;
 | 
|  |   2516 |     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
 | 
|  |   2517 |       pList->a[i].zName = 
 | 
|  |   2518 |              sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
 | 
|  |   2519 |     }
 | 
|  |   2520 |   }
 | 
|  |   2521 |   substExprList(db, p->pEList, iParent, pSub->pEList);
 | 
|  |   2522 |   if( isAgg ){
 | 
|  |   2523 |     substExprList(db, p->pGroupBy, iParent, pSub->pEList);
 | 
|  |   2524 |     substExpr(db, p->pHaving, iParent, pSub->pEList);
 | 
|  |   2525 |   }
 | 
|  |   2526 |   if( pSub->pOrderBy ){
 | 
|  |   2527 |     assert( p->pOrderBy==0 );
 | 
|  |   2528 |     p->pOrderBy = pSub->pOrderBy;
 | 
|  |   2529 |     pSub->pOrderBy = 0;
 | 
|  |   2530 |   }else if( p->pOrderBy ){
 | 
|  |   2531 |     substExprList(db, p->pOrderBy, iParent, pSub->pEList);
 | 
|  |   2532 |   }
 | 
|  |   2533 |   if( pSub->pWhere ){
 | 
|  |   2534 |     pWhere = sqlite3ExprDup(db, pSub->pWhere);
 | 
|  |   2535 |   }else{
 | 
|  |   2536 |     pWhere = 0;
 | 
|  |   2537 |   }
 | 
|  |   2538 |   if( subqueryIsAgg ){
 | 
|  |   2539 |     assert( p->pHaving==0 );
 | 
|  |   2540 |     p->pHaving = p->pWhere;
 | 
|  |   2541 |     p->pWhere = pWhere;
 | 
|  |   2542 |     substExpr(db, p->pHaving, iParent, pSub->pEList);
 | 
|  |   2543 |     p->pHaving = sqlite3ExprAnd(db, p->pHaving, 
 | 
|  |   2544 |                                 sqlite3ExprDup(db, pSub->pHaving));
 | 
|  |   2545 |     assert( p->pGroupBy==0 );
 | 
|  |   2546 |     p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
 | 
|  |   2547 |   }else{
 | 
|  |   2548 |     substExpr(db, p->pWhere, iParent, pSub->pEList);
 | 
|  |   2549 |     p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
 | 
|  |   2550 |   }
 | 
|  |   2551 | 
 | 
|  |   2552 |   /* The flattened query is distinct if either the inner or the
 | 
|  |   2553 |   ** outer query is distinct. 
 | 
|  |   2554 |   */
 | 
|  |   2555 |   p->isDistinct = p->isDistinct || pSub->isDistinct;
 | 
|  |   2556 | 
 | 
|  |   2557 |   /*
 | 
|  |   2558 |   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
 | 
|  |   2559 |   **
 | 
|  |   2560 |   ** One is tempted to try to add a and b to combine the limits.  But this
 | 
|  |   2561 |   ** does not work if either limit is negative.
 | 
|  |   2562 |   */
 | 
|  |   2563 |   if( pSub->pLimit ){
 | 
|  |   2564 |     p->pLimit = pSub->pLimit;
 | 
|  |   2565 |     pSub->pLimit = 0;
 | 
|  |   2566 |   }
 | 
|  |   2567 | 
 | 
|  |   2568 |   /* Finially, delete what is left of the subquery and return
 | 
|  |   2569 |   ** success.
 | 
|  |   2570 |   */
 | 
|  |   2571 |   sqlite3SelectDelete(pSub);
 | 
|  |   2572 |   return 1;
 | 
|  |   2573 | }
 | 
|  |   2574 | #endif /* SQLITE_OMIT_VIEW */
 | 
|  |   2575 | 
 | 
|  |   2576 | /*
 | 
|  |   2577 | ** Analyze the SELECT statement passed in as an argument to see if it
 | 
|  |   2578 | ** is a simple min() or max() query.  If it is and this query can be
 | 
|  |   2579 | ** satisfied using a single seek to the beginning or end of an index,
 | 
|  |   2580 | ** then generate the code for this SELECT and return 1.  If this is not a 
 | 
|  |   2581 | ** simple min() or max() query, then return 0;
 | 
|  |   2582 | **
 | 
|  |   2583 | ** A simply min() or max() query looks like this:
 | 
|  |   2584 | **
 | 
|  |   2585 | **    SELECT min(a) FROM table;
 | 
|  |   2586 | **    SELECT max(a) FROM table;
 | 
|  |   2587 | **
 | 
|  |   2588 | ** The query may have only a single table in its FROM argument.  There
 | 
|  |   2589 | ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
 | 
|  |   2590 | ** be the min() or max() of a single column of the table.  The column
 | 
|  |   2591 | ** in the min() or max() function must be indexed.
 | 
|  |   2592 | **
 | 
|  |   2593 | ** The parameters to this routine are the same as for sqlite3Select().
 | 
|  |   2594 | ** See the header comment on that routine for additional information.
 | 
|  |   2595 | */
 | 
|  |   2596 | static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
 | 
|  |   2597 |   Expr *pExpr;
 | 
|  |   2598 |   int iCol;
 | 
|  |   2599 |   Table *pTab;
 | 
|  |   2600 |   Index *pIdx;
 | 
|  |   2601 |   int base;
 | 
|  |   2602 |   Vdbe *v;
 | 
|  |   2603 |   int seekOp;
 | 
|  |   2604 |   ExprList *pEList, *pList, eList;
 | 
|  |   2605 |   ExprList::ExprList_item eListItem;
 | 
|  |   2606 |   SrcList *pSrc;
 | 
|  |   2607 |   int brk;
 | 
|  |   2608 |   int iDb;
 | 
|  |   2609 | 
 | 
|  |   2610 |   /* Check to see if this query is a simple min() or max() query.  Return
 | 
|  |   2611 |   ** zero if it is  not.
 | 
|  |   2612 |   */
 | 
|  |   2613 |   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
 | 
|  |   2614 |   pSrc = p->pSrc;
 | 
|  |   2615 |   if( pSrc->nSrc!=1 ) return 0;
 | 
|  |   2616 |   pEList = p->pEList;
 | 
|  |   2617 |   if( pEList->nExpr!=1 ) return 0;
 | 
|  |   2618 |   pExpr = pEList->a[0].pExpr;
 | 
|  |   2619 |   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
 | 
|  |   2620 |   pList = pExpr->pList;
 | 
|  |   2621 |   if( pList==0 || pList->nExpr!=1 ) return 0;
 | 
|  |   2622 |   if( pExpr->token.n!=3 ) return 0;
 | 
|  |   2623 |   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
 | 
|  |   2624 |     seekOp = OP_Rewind;
 | 
|  |   2625 |   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
 | 
|  |   2626 |     seekOp = OP_Last;
 | 
|  |   2627 |   }else{
 | 
|  |   2628 |     return 0;
 | 
|  |   2629 |   }
 | 
|  |   2630 |   pExpr = pList->a[0].pExpr;
 | 
|  |   2631 |   if( pExpr->op!=TK_COLUMN ) return 0;
 | 
|  |   2632 |   iCol = pExpr->iColumn;
 | 
|  |   2633 |   pTab = pSrc->a[0].pTab;
 | 
|  |   2634 | 
 | 
|  |   2635 |   /* This optimization cannot be used with virtual tables. */
 | 
|  |   2636 |   if( IsVirtual(pTab) ) return 0;
 | 
|  |   2637 | 
 | 
|  |   2638 |   /* If we get to here, it means the query is of the correct form.
 | 
|  |   2639 |   ** Check to make sure we have an index and make pIdx point to the
 | 
|  |   2640 |   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
 | 
|  |   2641 |   ** key column, no index is necessary so set pIdx to NULL.  If no
 | 
|  |   2642 |   ** usable index is found, return 0.
 | 
|  |   2643 |   */
 | 
|  |   2644 |   if( iCol<0 ){
 | 
|  |   2645 |     pIdx = 0;
 | 
|  |   2646 |   }else{
 | 
|  |   2647 |     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
 | 
|  |   2648 |     if( pColl==0 ) return 0;
 | 
|  |   2649 |     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | 
|  |   2650 |       assert( pIdx->nColumn>=1 );
 | 
|  |   2651 |       if( pIdx->aiColumn[0]==iCol && 
 | 
|  |   2652 |           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
 | 
|  |   2653 |         break;
 | 
|  |   2654 |       }
 | 
|  |   2655 |     }
 | 
|  |   2656 |     if( pIdx==0 ) return 0;
 | 
|  |   2657 |   }
 | 
|  |   2658 | 
 | 
|  |   2659 |   /* Identify column types if we will be using the callback.  This
 | 
|  |   2660 |   ** step is skipped if the output is going to a table or a memory cell.
 | 
|  |   2661 |   ** The column names have already been generated in the calling function.
 | 
|  |   2662 |   */
 | 
|  |   2663 |   v = sqlite3GetVdbe(pParse);
 | 
|  |   2664 |   if( v==0 ) return 0;
 | 
|  |   2665 | 
 | 
|  |   2666 |   /* If the output is destined for a temporary table, open that table.
 | 
|  |   2667 |   */
 | 
|  |   2668 |   if( eDest==SRT_EphemTab ){
 | 
|  |   2669 |     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
 | 
|  |   2670 |   }
 | 
|  |   2671 | 
 | 
|  |   2672 |   /* Generating code to find the min or the max.  Basically all we have
 | 
|  |   2673 |   ** to do is find the first or the last entry in the chosen index.  If
 | 
|  |   2674 |   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
 | 
|  |   2675 |   ** or last entry in the main table.
 | 
|  |   2676 |   */
 | 
|  |   2677 |   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | 
|  |   2678 |   assert( iDb>=0 || pTab->isEphem );
 | 
|  |   2679 |   sqlite3CodeVerifySchema(pParse, iDb);
 | 
|  |   2680 |   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | 
|  |   2681 |   base = pSrc->a[0].iCursor;
 | 
|  |   2682 |   brk = sqlite3VdbeMakeLabel(v);
 | 
|  |   2683 |   computeLimitRegisters(pParse, p, brk);
 | 
|  |   2684 |   if( pSrc->a[0].pSelect==0 ){
 | 
|  |   2685 |     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
 | 
|  |   2686 |   }
 | 
|  |   2687 |   if( pIdx==0 ){
 | 
|  |   2688 |     sqlite3VdbeAddOp(v, seekOp, base, 0);
 | 
|  |   2689 |   }else{
 | 
|  |   2690 |     /* Even though the cursor used to open the index here is closed
 | 
|  |   2691 |     ** as soon as a single value has been read from it, allocate it
 | 
|  |   2692 |     ** using (pParse->nTab++) to prevent the cursor id from being 
 | 
|  |   2693 |     ** reused. This is important for statements of the form 
 | 
|  |   2694 |     ** "INSERT INTO x SELECT max() FROM x".
 | 
|  |   2695 |     */
 | 
|  |   2696 |     int iIdx;
 | 
|  |   2697 |     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | 
|  |   2698 |     iIdx = pParse->nTab++;
 | 
|  |   2699 |     assert( pIdx->pSchema==pTab->pSchema );
 | 
|  |   2700 |     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
|  |   2701 |     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 
 | 
|  |   2702 |         (char*)pKey, P3_KEYINFO_HANDOFF);
 | 
|  |   2703 |     if( seekOp==OP_Rewind ){
 | 
|  |   2704 |       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |   2705 |       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
 | 
|  |   2706 |       seekOp = OP_MoveGt;
 | 
|  |   2707 |     }
 | 
|  |   2708 |     if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
 | 
|  |   2709 |       /* Ticket #2514: invert the seek operator if we are using
 | 
|  |   2710 |       ** a descending index. */
 | 
|  |   2711 |       if( seekOp==OP_Last ){
 | 
|  |   2712 |         seekOp = OP_Rewind;
 | 
|  |   2713 |       }else{
 | 
|  |   2714 |         assert( seekOp==OP_MoveGt );
 | 
|  |   2715 |         seekOp = OP_MoveLt;
 | 
|  |   2716 |       }
 | 
|  |   2717 |     }
 | 
|  |   2718 |     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
 | 
|  |   2719 |     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
 | 
|  |   2720 |     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
 | 
|  |   2721 |     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | 
|  |   2722 |   }
 | 
|  |   2723 |   eList.nExpr = 1;
 | 
|  |   2724 |   memset(&eListItem, 0, sizeof(eListItem));
 | 
|  |   2725 |   eList.a = &eListItem;
 | 
|  |   2726 |   eList.a[0].pExpr = pExpr;
 | 
|  |   2727 |   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
 | 
|  |   2728 |   sqlite3VdbeResolveLabel(v, brk);
 | 
|  |   2729 |   sqlite3VdbeAddOp(v, OP_Close, base, 0);
 | 
|  |   2730 |   
 | 
|  |   2731 |   return 1;
 | 
|  |   2732 | }
 | 
|  |   2733 | 
 | 
|  |   2734 | /*
 | 
|  |   2735 | ** This routine resolves any names used in the result set of the
 | 
|  |   2736 | ** supplied SELECT statement. If the SELECT statement being resolved
 | 
|  |   2737 | ** is a sub-select, then pOuterNC is a pointer to the NameContext 
 | 
|  |   2738 | ** of the parent SELECT.
 | 
|  |   2739 | */
 | 
|  |   2740 | int sqlite3SelectResolve(
 | 
|  |   2741 |   Parse *pParse,         /* The parser context */
 | 
|  |   2742 |   Select *p,             /* The SELECT statement being coded. */
 | 
|  |   2743 |   NameContext *pOuterNC  /* The outer name context. May be NULL. */
 | 
|  |   2744 | ){
 | 
|  |   2745 |   ExprList *pEList;          /* Result set. */
 | 
|  |   2746 |   int i;                     /* For-loop variable used in multiple places */
 | 
|  |   2747 |   NameContext sNC;           /* Local name-context */
 | 
|  |   2748 |   ExprList *pGroupBy;        /* The group by clause */
 | 
|  |   2749 | 
 | 
|  |   2750 |   /* If this routine has run before, return immediately. */
 | 
|  |   2751 |   if( p->isResolved ){
 | 
|  |   2752 |     assert( !pOuterNC );
 | 
|  |   2753 |     return SQLITE_OK;
 | 
|  |   2754 |   }
 | 
|  |   2755 |   p->isResolved = 1;
 | 
|  |   2756 | 
 | 
|  |   2757 |   /* If there have already been errors, do nothing. */
 | 
|  |   2758 |   if( pParse->nErr>0 ){
 | 
|  |   2759 |     return SQLITE_ERROR;
 | 
|  |   2760 |   }
 | 
|  |   2761 | 
 | 
|  |   2762 |   /* Prepare the select statement. This call will allocate all cursors
 | 
|  |   2763 |   ** required to handle the tables and subqueries in the FROM clause.
 | 
|  |   2764 |   */
 | 
|  |   2765 |   if( prepSelectStmt(pParse, p) ){
 | 
|  |   2766 |     return SQLITE_ERROR;
 | 
|  |   2767 |   }
 | 
|  |   2768 | 
 | 
|  |   2769 |   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
 | 
|  |   2770 |   ** are not allowed to refer to any names, so pass an empty NameContext.
 | 
|  |   2771 |   */
 | 
|  |   2772 |   memset(&sNC, 0, sizeof(sNC));
 | 
|  |   2773 |   sNC.pParse = pParse;
 | 
|  |   2774 |   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
 | 
|  |   2775 |       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
 | 
|  |   2776 |     return SQLITE_ERROR;
 | 
|  |   2777 |   }
 | 
|  |   2778 | 
 | 
|  |   2779 |   /* Set up the local name-context to pass to ExprResolveNames() to
 | 
|  |   2780 |   ** resolve the expression-list.
 | 
|  |   2781 |   */
 | 
|  |   2782 |   sNC.allowAgg = 1;
 | 
|  |   2783 |   sNC.pSrcList = p->pSrc;
 | 
|  |   2784 |   sNC.pNext = pOuterNC;
 | 
|  |   2785 | 
 | 
|  |   2786 |   /* Resolve names in the result set. */
 | 
|  |   2787 |   pEList = p->pEList;
 | 
|  |   2788 |   if( !pEList ) return SQLITE_ERROR;
 | 
|  |   2789 |   for(i=0; i<pEList->nExpr; i++){
 | 
|  |   2790 |     Expr *pX = pEList->a[i].pExpr;
 | 
|  |   2791 |     if( sqlite3ExprResolveNames(&sNC, pX) ){
 | 
|  |   2792 |       return SQLITE_ERROR;
 | 
|  |   2793 |     }
 | 
|  |   2794 |   }
 | 
|  |   2795 | 
 | 
|  |   2796 |   /* If there are no aggregate functions in the result-set, and no GROUP BY 
 | 
|  |   2797 |   ** expression, do not allow aggregates in any of the other expressions.
 | 
|  |   2798 |   */
 | 
|  |   2799 |   assert( !p->isAgg );
 | 
|  |   2800 |   pGroupBy = p->pGroupBy;
 | 
|  |   2801 |   if( pGroupBy || sNC.hasAgg ){
 | 
|  |   2802 |     p->isAgg = 1;
 | 
|  |   2803 |   }else{
 | 
|  |   2804 |     sNC.allowAgg = 0;
 | 
|  |   2805 |   }
 | 
|  |   2806 | 
 | 
|  |   2807 |   /* If a HAVING clause is present, then there must be a GROUP BY clause.
 | 
|  |   2808 |   */
 | 
|  |   2809 |   if( p->pHaving && !pGroupBy ){
 | 
|  |   2810 |     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
 | 
|  |   2811 |     return SQLITE_ERROR;
 | 
|  |   2812 |   }
 | 
|  |   2813 | 
 | 
|  |   2814 |   /* Add the expression list to the name-context before parsing the
 | 
|  |   2815 |   ** other expressions in the SELECT statement. This is so that
 | 
|  |   2816 |   ** expressions in the WHERE clause (etc.) can refer to expressions by
 | 
|  |   2817 |   ** aliases in the result set.
 | 
|  |   2818 |   **
 | 
|  |   2819 |   ** Minor point: If this is the case, then the expression will be
 | 
|  |   2820 |   ** re-evaluated for each reference to it.
 | 
|  |   2821 |   */
 | 
|  |   2822 |   sNC.pEList = p->pEList;
 | 
|  |   2823 |   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
 | 
|  |   2824 |      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
 | 
|  |   2825 |     return SQLITE_ERROR;
 | 
|  |   2826 |   }
 | 
|  |   2827 |   if( p->pPrior==0 ){
 | 
|  |   2828 |     if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
 | 
|  |   2829 |       return SQLITE_ERROR;
 | 
|  |   2830 |     }
 | 
|  |   2831 |   }
 | 
|  |   2832 |   if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
 | 
|  |   2833 |     return SQLITE_ERROR;
 | 
|  |   2834 |   }
 | 
|  |   2835 | 
 | 
|  |   2836 |   if( pParse->db->mallocFailed ){
 | 
|  |   2837 |     return SQLITE_NOMEM;
 | 
|  |   2838 |   }
 | 
|  |   2839 | 
 | 
|  |   2840 |   /* Make sure the GROUP BY clause does not contain aggregate functions.
 | 
|  |   2841 |   */
 | 
|  |   2842 |   if( pGroupBy ){
 | 
|  |   2843 | 	  ExprList::ExprList_item *pItem;
 | 
|  |   2844 |   
 | 
|  |   2845 |     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
 | 
|  |   2846 |       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
 | 
|  |   2847 |         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
 | 
|  |   2848 |             "the GROUP BY clause");
 | 
|  |   2849 |         return SQLITE_ERROR;
 | 
|  |   2850 |       }
 | 
|  |   2851 |     }
 | 
|  |   2852 |   }
 | 
|  |   2853 | 
 | 
|  |   2854 |   /* If this is one SELECT of a compound, be sure to resolve names
 | 
|  |   2855 |   ** in the other SELECTs.
 | 
|  |   2856 |   */
 | 
|  |   2857 |   if( p->pPrior ){
 | 
|  |   2858 |     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
 | 
|  |   2859 |   }else{
 | 
|  |   2860 |     return SQLITE_OK;
 | 
|  |   2861 |   }
 | 
|  |   2862 | }
 | 
|  |   2863 | 
 | 
|  |   2864 | /*
 | 
|  |   2865 | ** Reset the aggregate accumulator.
 | 
|  |   2866 | **
 | 
|  |   2867 | ** The aggregate accumulator is a set of memory cells that hold
 | 
|  |   2868 | ** intermediate results while calculating an aggregate.  This
 | 
|  |   2869 | ** routine simply stores NULLs in all of those memory cells.
 | 
|  |   2870 | */
 | 
|  |   2871 | static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
 | 
|  |   2872 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   2873 |   int i=0;
 | 
|  |   2874 |   AggInfo::AggInfo_func *pFunc;
 | 
|  |   2875 |   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
 | 
|  |   2876 |     return;
 | 
|  |   2877 |   }
 | 
|  |   2878 |   for(i=0; i<pAggInfo->nColumn; i++){
 | 
|  |   2879 |     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
 | 
|  |   2880 |   }
 | 
|  |   2881 |   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
 | 
|  |   2882 |     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
 | 
|  |   2883 |     if( pFunc->iDistinct>=0 ){
 | 
|  |   2884 |       Expr *pE = pFunc->pExpr;
 | 
|  |   2885 |       if( pE->pList==0 || pE->pList->nExpr!=1 ){
 | 
|  |   2886 |         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
 | 
|  |   2887 |            "by an expression");
 | 
|  |   2888 |         pFunc->iDistinct = -1;
 | 
|  |   2889 |       }else{
 | 
|  |   2890 |         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
 | 
|  |   2891 |         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 
 | 
|  |   2892 |                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | 
|  |   2893 |       }
 | 
|  |   2894 |     }
 | 
|  |   2895 |   }
 | 
|  |   2896 | }
 | 
|  |   2897 | 
 | 
|  |   2898 | /*
 | 
|  |   2899 | ** Invoke the OP_AggFinalize opcode for every aggregate function
 | 
|  |   2900 | ** in the AggInfo structure.
 | 
|  |   2901 | */
 | 
|  |   2902 | static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
 | 
|  |   2903 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   2904 |   int i;
 | 
|  |   2905 |   AggInfo::AggInfo_func *pF;
 | 
|  |   2906 |   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 | 
|  |   2907 |     ExprList *pList = pF->pExpr->pList;
 | 
|  |   2908 |     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
 | 
|  |   2909 |                       (const char*)pF->pFunc, P3_FUNCDEF);
 | 
|  |   2910 |   }
 | 
|  |   2911 | }
 | 
|  |   2912 | 
 | 
|  |   2913 | /*
 | 
|  |   2914 | ** Update the accumulator memory cells for an aggregate based on
 | 
|  |   2915 | ** the current cursor position.
 | 
|  |   2916 | */
 | 
|  |   2917 | static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
 | 
|  |   2918 |   Vdbe *v = pParse->pVdbe;
 | 
|  |   2919 |   int i;
 | 
|  |   2920 |   AggInfo::AggInfo_func *pF;
 | 
|  |   2921 |   AggInfo::AggInfo_col *pC;
 | 
|  |   2922 | 
 | 
|  |   2923 |   pAggInfo->directMode = 1;
 | 
|  |   2924 |   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 | 
|  |   2925 |     int nArg;
 | 
|  |   2926 |     int addrNext = 0;
 | 
|  |   2927 |     ExprList *pList = pF->pExpr->pList;
 | 
|  |   2928 |     if( pList ){
 | 
|  |   2929 |       nArg = pList->nExpr;
 | 
|  |   2930 |       sqlite3ExprCodeExprList(pParse, pList);
 | 
|  |   2931 |     }else{
 | 
|  |   2932 |       nArg = 0;
 | 
|  |   2933 |     }
 | 
|  |   2934 |     if( pF->iDistinct>=0 ){
 | 
|  |   2935 |       addrNext = sqlite3VdbeMakeLabel(v);
 | 
|  |   2936 |       assert( nArg==1 );
 | 
|  |   2937 |       codeDistinct(v, pF->iDistinct, addrNext, 1);
 | 
|  |   2938 |     }
 | 
|  |   2939 |     if( pF->pFunc->needCollSeq ){
 | 
|  |   2940 |       CollSeq *pColl = 0;
 | 
|  |   2941 | 	  ExprList::ExprList_item *pItem;
 | 
|  |   2942 |       int j;
 | 
|  |   2943 |       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
 | 
|  |   2944 |       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
 | 
|  |   2945 |         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
 | 
|  |   2946 |       }
 | 
|  |   2947 |       if( !pColl ){
 | 
|  |   2948 |         pColl = pParse->db->pDfltColl;
 | 
|  |   2949 |       }
 | 
|  |   2950 |       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
 | 
|  |   2951 |     }
 | 
|  |   2952 |     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (const char*)pF->pFunc, P3_FUNCDEF);
 | 
|  |   2953 |     if( addrNext ){
 | 
|  |   2954 |       sqlite3VdbeResolveLabel(v, addrNext);
 | 
|  |   2955 |     }
 | 
|  |   2956 |   }
 | 
|  |   2957 |   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
 | 
|  |   2958 |     sqlite3ExprCode(pParse, pC->pExpr);
 | 
|  |   2959 |     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
 | 
|  |   2960 |   }
 | 
|  |   2961 |   pAggInfo->directMode = 0;
 | 
|  |   2962 | }
 | 
|  |   2963 | 
 | 
|  |   2964 | 
 | 
|  |   2965 | /*
 | 
|  |   2966 | ** Generate code for the given SELECT statement.
 | 
|  |   2967 | **
 | 
|  |   2968 | ** The results are distributed in various ways depending on the
 | 
|  |   2969 | ** value of eDest and iParm.
 | 
|  |   2970 | **
 | 
|  |   2971 | **     eDest Value       Result
 | 
|  |   2972 | **     ------------    -------------------------------------------
 | 
|  |   2973 | **     SRT_Callback    Invoke the callback for each row of the result.
 | 
|  |   2974 | **
 | 
|  |   2975 | **     SRT_Mem         Store first result in memory cell iParm
 | 
|  |   2976 | **
 | 
|  |   2977 | **     SRT_Set         Store results as keys of table iParm.
 | 
|  |   2978 | **
 | 
|  |   2979 | **     SRT_Union       Store results as a key in a temporary table iParm
 | 
|  |   2980 | **
 | 
|  |   2981 | **     SRT_Except      Remove results from the temporary table iParm.
 | 
|  |   2982 | **
 | 
|  |   2983 | **     SRT_Table       Store results in temporary table iParm
 | 
|  |   2984 | **
 | 
|  |   2985 | ** The table above is incomplete.  Additional eDist value have be added
 | 
|  |   2986 | ** since this comment was written.  See the selectInnerLoop() function for
 | 
|  |   2987 | ** a complete listing of the allowed values of eDest and their meanings.
 | 
|  |   2988 | **
 | 
|  |   2989 | ** This routine returns the number of errors.  If any errors are
 | 
|  |   2990 | ** encountered, then an appropriate error message is left in
 | 
|  |   2991 | ** pParse->zErrMsg.
 | 
|  |   2992 | **
 | 
|  |   2993 | ** This routine does NOT free the Select structure passed in.  The
 | 
|  |   2994 | ** calling function needs to do that.
 | 
|  |   2995 | **
 | 
|  |   2996 | ** The pParent, parentTab, and *pParentAgg fields are filled in if this
 | 
|  |   2997 | ** SELECT is a subquery.  This routine may try to combine this SELECT
 | 
|  |   2998 | ** with its parent to form a single flat query.  In so doing, it might
 | 
|  |   2999 | ** change the parent query from a non-aggregate to an aggregate query.
 | 
|  |   3000 | ** For that reason, the pParentAgg flag is passed as a pointer, so it
 | 
|  |   3001 | ** can be changed.
 | 
|  |   3002 | **
 | 
|  |   3003 | ** Example 1:   The meaning of the pParent parameter.
 | 
|  |   3004 | **
 | 
|  |   3005 | **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
 | 
|  |   3006 | **    \                      \_______ subquery _______/        /
 | 
|  |   3007 | **     \                                                      /
 | 
|  |   3008 | **      \____________________ outer query ___________________/
 | 
|  |   3009 | **
 | 
|  |   3010 | ** This routine is called for the outer query first.   For that call,
 | 
|  |   3011 | ** pParent will be NULL.  During the processing of the outer query, this 
 | 
|  |   3012 | ** routine is called recursively to handle the subquery.  For the recursive
 | 
|  |   3013 | ** call, pParent will point to the outer query.  Because the subquery is
 | 
|  |   3014 | ** the second element in a three-way join, the parentTab parameter will
 | 
|  |   3015 | ** be 1 (the 2nd value of a 0-indexed array.)
 | 
|  |   3016 | */
 | 
|  |   3017 | int sqlite3Select(
 | 
|  |   3018 |   Parse *pParse,         /* The parser context */
 | 
|  |   3019 |   Select *p,             /* The SELECT statement being coded. */
 | 
|  |   3020 |   int eDest,             /* How to dispose of the results */
 | 
|  |   3021 |   int iParm,             /* A parameter used by the eDest disposal method */
 | 
|  |   3022 |   Select *pParent,       /* Another SELECT for which this is a sub-query */
 | 
|  |   3023 |   int parentTab,         /* Index in pParent->pSrc of this query */
 | 
|  |   3024 |   int *pParentAgg,       /* True if pParent uses aggregate functions */
 | 
|  |   3025 |   char *aff              /* If eDest is SRT_Union, the affinity string */
 | 
|  |   3026 | ){
 | 
|  |   3027 |   int i, j;              /* Loop counters */
 | 
|  |   3028 |   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
 | 
|  |   3029 |   Vdbe *v;               /* The virtual machine under construction */
 | 
|  |   3030 |   int isAgg;             /* True for select lists like "count(*)" */
 | 
|  |   3031 |   ExprList *pEList;      /* List of columns to extract. */
 | 
|  |   3032 |   SrcList *pTabList;     /* List of tables to select from */
 | 
|  |   3033 |   Expr *pWhere;          /* The WHERE clause.  May be NULL */
 | 
|  |   3034 |   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
 | 
|  |   3035 |   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
 | 
|  |   3036 |   Expr *pHaving;         /* The HAVING clause.  May be NULL */
 | 
|  |   3037 |   int isDistinct;        /* True if the DISTINCT keyword is present */
 | 
|  |   3038 |   int distinct;          /* Table to use for the distinct set */
 | 
|  |   3039 |   int rc = 1;            /* Value to return from this function */
 | 
|  |   3040 |   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
 | 
|  |   3041 |   AggInfo sAggInfo;      /* Information used by aggregate queries */
 | 
|  |   3042 |   int iEnd;              /* Address of the end of the query */
 | 
|  |   3043 |   sqlite3 *db;           /* The database connection */
 | 
|  |   3044 | 
 | 
|  |   3045 |   db = pParse->db;
 | 
|  |   3046 |   if( p==0 || db->mallocFailed || pParse->nErr ){
 | 
|  |   3047 |     return 1;
 | 
|  |   3048 |   }
 | 
|  |   3049 |   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
 | 
|  |   3050 |   memset(&sAggInfo, 0, sizeof(sAggInfo));
 | 
|  |   3051 | 
 | 
|  |   3052 |   pOrderBy = p->pOrderBy;
 | 
|  |   3053 |   if( IgnorableOrderby(eDest) ){
 | 
|  |   3054 |     p->pOrderBy = 0;
 | 
|  |   3055 |   }
 | 
|  |   3056 |   if( sqlite3SelectResolve(pParse, p, 0) ){
 | 
|  |   3057 |     goto select_end;
 | 
|  |   3058 |   }
 | 
|  |   3059 |   p->pOrderBy = pOrderBy;
 | 
|  |   3060 | 
 | 
|  |   3061 | #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | 
|  |   3062 |   /* If there is are a sequence of queries, do the earlier ones first.
 | 
|  |   3063 |   */
 | 
|  |   3064 |   if( p->pPrior ){
 | 
|  |   3065 |     if( p->pRightmost==0 ){
 | 
|  |   3066 |       Select *pLoop, *pRight = 0;
 | 
|  |   3067 |       int cnt = 0;
 | 
|  |   3068 |       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
 | 
|  |   3069 |         pLoop->pRightmost = p;
 | 
|  |   3070 |         pLoop->pNext = pRight;
 | 
|  |   3071 |         pRight = pLoop;
 | 
|  |   3072 |       }
 | 
|  |   3073 |       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
 | 
|  |   3074 |         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
 | 
|  |   3075 |         return 1;
 | 
|  |   3076 |       }
 | 
|  |   3077 |     }
 | 
|  |   3078 |     return multiSelect(pParse, p, eDest, iParm, aff);
 | 
|  |   3079 |   }
 | 
|  |   3080 | #endif
 | 
|  |   3081 | 
 | 
|  |   3082 |   /* Make local copies of the parameters for this query.
 | 
|  |   3083 |   */
 | 
|  |   3084 |   pTabList = p->pSrc;
 | 
|  |   3085 |   pWhere = p->pWhere;
 | 
|  |   3086 |   pGroupBy = p->pGroupBy;
 | 
|  |   3087 |   pHaving = p->pHaving;
 | 
|  |   3088 |   isAgg = p->isAgg;
 | 
|  |   3089 |   isDistinct = p->isDistinct;
 | 
|  |   3090 |   pEList = p->pEList;
 | 
|  |   3091 |   if( pEList==0 ) goto select_end;
 | 
|  |   3092 | 
 | 
|  |   3093 |   /* 
 | 
|  |   3094 |   ** Do not even attempt to generate any code if we have already seen
 | 
|  |   3095 |   ** errors before this routine starts.
 | 
|  |   3096 |   */
 | 
|  |   3097 |   if( pParse->nErr>0 ) goto select_end;
 | 
|  |   3098 | 
 | 
|  |   3099 |   /* If writing to memory or generating a set
 | 
|  |   3100 |   ** only a single column may be output.
 | 
|  |   3101 |   */
 | 
|  |   3102 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   3103 |   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
 | 
|  |   3104 |     goto select_end;
 | 
|  |   3105 |   }
 | 
|  |   3106 | #endif
 | 
|  |   3107 | 
 | 
|  |   3108 |   /* ORDER BY is ignored for some destinations.
 | 
|  |   3109 |   */
 | 
|  |   3110 |   if( IgnorableOrderby(eDest) ){
 | 
|  |   3111 |     pOrderBy = 0;
 | 
|  |   3112 |   }
 | 
|  |   3113 | 
 | 
|  |   3114 |   /* Begin generating code.
 | 
|  |   3115 |   */
 | 
|  |   3116 |   v = sqlite3GetVdbe(pParse);
 | 
|  |   3117 |   if( v==0 ) goto select_end;
 | 
|  |   3118 | 
 | 
|  |   3119 |   /* Generate code for all sub-queries in the FROM clause
 | 
|  |   3120 |   */
 | 
|  |   3121 | #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
 | 
|  |   3122 |   for(i=0; i<pTabList->nSrc; i++){
 | 
|  |   3123 |     const char *zSavedAuthContext = 0;
 | 
|  |   3124 |     int needRestoreContext;
 | 
|  |   3125 | 	SrcList::SrcList_item *pItem = &pTabList->a[i];
 | 
|  |   3126 | 
 | 
|  |   3127 |     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
 | 
|  |   3128 |     if( pItem->zName!=0 ){
 | 
|  |   3129 |       zSavedAuthContext = pParse->zAuthContext;
 | 
|  |   3130 |       pParse->zAuthContext = pItem->zName;
 | 
|  |   3131 |       needRestoreContext = 1;
 | 
|  |   3132 |     }else{
 | 
|  |   3133 |       needRestoreContext = 0;
 | 
|  |   3134 |     }
 | 
|  |   3135 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | 
|  |   3136 |     /* Increment Parse.nHeight by the height of the largest expression
 | 
|  |   3137 |     ** tree refered to by this, the parent select. The child select
 | 
|  |   3138 |     ** may contain expression trees of at most
 | 
|  |   3139 |     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
 | 
|  |   3140 |     ** more conservative than necessary, but much easier than enforcing
 | 
|  |   3141 |     ** an exact limit.
 | 
|  |   3142 |     */
 | 
|  |   3143 |     pParse->nHeight += sqlite3SelectExprHeight(p);
 | 
|  |   3144 | #endif
 | 
|  |   3145 |     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 
 | 
|  |   3146 |                  pItem->iCursor, p, i, &isAgg, 0);
 | 
|  |   3147 |     if( db->mallocFailed ){
 | 
|  |   3148 |       goto select_end;
 | 
|  |   3149 |     }
 | 
|  |   3150 | #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | 
|  |   3151 |     pParse->nHeight -= sqlite3SelectExprHeight(p);
 | 
|  |   3152 | #endif
 | 
|  |   3153 |     if( needRestoreContext ){
 | 
|  |   3154 |       pParse->zAuthContext = zSavedAuthContext;
 | 
|  |   3155 |     }
 | 
|  |   3156 |     pTabList = p->pSrc;
 | 
|  |   3157 |     pWhere = p->pWhere;
 | 
|  |   3158 |     if( !IgnorableOrderby(eDest) ){
 | 
|  |   3159 |       pOrderBy = p->pOrderBy;
 | 
|  |   3160 |     }
 | 
|  |   3161 |     pGroupBy = p->pGroupBy;
 | 
|  |   3162 |     pHaving = p->pHaving;
 | 
|  |   3163 |     isDistinct = p->isDistinct;
 | 
|  |   3164 |   }
 | 
|  |   3165 | #endif
 | 
|  |   3166 | 
 | 
|  |   3167 |   /* Check for the special case of a min() or max() function by itself
 | 
|  |   3168 |   ** in the result set.
 | 
|  |   3169 |   */
 | 
|  |   3170 |   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
 | 
|  |   3171 |     rc = 0;
 | 
|  |   3172 |     goto select_end;
 | 
|  |   3173 |   }
 | 
|  |   3174 | 
 | 
|  |   3175 |   /* Check to see if this is a subquery that can be "flattened" into its parent.
 | 
|  |   3176 |   ** If flattening is a possiblity, do so and return immediately.  
 | 
|  |   3177 |   */
 | 
|  |   3178 | #ifndef SQLITE_OMIT_VIEW
 | 
|  |   3179 |   if( pParent && pParentAgg &&
 | 
|  |   3180 |       flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
 | 
|  |   3181 |     if( isAgg ) *pParentAgg = 1;
 | 
|  |   3182 |     goto select_end;
 | 
|  |   3183 |   }
 | 
|  |   3184 | #endif
 | 
|  |   3185 | 
 | 
|  |   3186 |   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
 | 
|  |   3187 |   ** GROUP BY may use an index, DISTINCT never does.
 | 
|  |   3188 |   */
 | 
|  |   3189 |   if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
 | 
|  |   3190 |     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
 | 
|  |   3191 |     pGroupBy = p->pGroupBy;
 | 
|  |   3192 |     p->isDistinct = 0;
 | 
|  |   3193 |     isDistinct = 0;
 | 
|  |   3194 |   }
 | 
|  |   3195 | 
 | 
|  |   3196 |   /* If there is an ORDER BY clause, then this sorting
 | 
|  |   3197 |   ** index might end up being unused if the data can be 
 | 
|  |   3198 |   ** extracted in pre-sorted order.  If that is the case, then the
 | 
|  |   3199 |   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
 | 
|  |   3200 |   ** we figure out that the sorting index is not needed.  The addrSortIndex
 | 
|  |   3201 |   ** variable is used to facilitate that change.
 | 
|  |   3202 |   */
 | 
|  |   3203 |   if( pOrderBy ){
 | 
|  |   3204 |     KeyInfo *pKeyInfo;
 | 
|  |   3205 |     if( pParse->nErr ){
 | 
|  |   3206 |       goto select_end;
 | 
|  |   3207 |     }
 | 
|  |   3208 |     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
 | 
|  |   3209 |     pOrderBy->iECursor = pParse->nTab++;
 | 
|  |   3210 |     p->addrOpenEphm[2] = addrSortIndex =
 | 
|  |   3211 |       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | 
|  |   3212 |   }else{
 | 
|  |   3213 |     addrSortIndex = -1;
 | 
|  |   3214 |   }
 | 
|  |   3215 | 
 | 
|  |   3216 |   /* If the output is destined for a temporary table, open that table.
 | 
|  |   3217 |   */
 | 
|  |   3218 |   if( eDest==SRT_EphemTab ){
 | 
|  |   3219 |     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
 | 
|  |   3220 |   }
 | 
|  |   3221 | 
 | 
|  |   3222 |   /* Set the limiter.
 | 
|  |   3223 |   */
 | 
|  |   3224 |   iEnd = sqlite3VdbeMakeLabel(v);
 | 
|  |   3225 |   computeLimitRegisters(pParse, p, iEnd);
 | 
|  |   3226 | 
 | 
|  |   3227 |   /* Open a virtual index to use for the distinct set.
 | 
|  |   3228 |   */
 | 
|  |   3229 |   if( isDistinct ){
 | 
|  |   3230 |     KeyInfo *pKeyInfo;
 | 
|  |   3231 |     assert( isAgg || pGroupBy );
 | 
|  |   3232 |     distinct = pParse->nTab++;
 | 
|  |   3233 |     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
 | 
|  |   3234 |     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 
 | 
|  |   3235 |                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | 
|  |   3236 |   }else{
 | 
|  |   3237 |     distinct = -1;
 | 
|  |   3238 |   }
 | 
|  |   3239 | 
 | 
|  |   3240 |   /* Aggregate and non-aggregate queries are handled differently */
 | 
|  |   3241 |   if( !isAgg && pGroupBy==0 ){
 | 
|  |   3242 |     /* This case is for non-aggregate queries
 | 
|  |   3243 |     ** Begin the database scan
 | 
|  |   3244 |     */
 | 
|  |   3245 |     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
 | 
|  |   3246 |     if( pWInfo==0 ) goto select_end;
 | 
|  |   3247 | 
 | 
|  |   3248 |     /* If sorting index that was created by a prior OP_OpenEphemeral 
 | 
|  |   3249 |     ** instruction ended up not being needed, then change the OP_OpenEphemeral
 | 
|  |   3250 |     ** into an OP_Noop.
 | 
|  |   3251 |     */
 | 
|  |   3252 |     if( addrSortIndex>=0 && pOrderBy==0 ){
 | 
|  |   3253 |       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
 | 
|  |   3254 |       p->addrOpenEphm[2] = -1;
 | 
|  |   3255 |     }
 | 
|  |   3256 | 
 | 
|  |   3257 |     /* Use the standard inner loop
 | 
|  |   3258 |     */
 | 
|  |   3259 |     assert(!isDistinct);
 | 
|  |   3260 |     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, eDest,
 | 
|  |   3261 |                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
 | 
|  |   3262 |        goto select_end;
 | 
|  |   3263 |     }
 | 
|  |   3264 | 
 | 
|  |   3265 |     /* End the database scan loop.
 | 
|  |   3266 |     */
 | 
|  |   3267 |     sqlite3WhereEnd(pWInfo);
 | 
|  |   3268 |   }else{
 | 
|  |   3269 |     /* This is the processing for aggregate queries */
 | 
|  |   3270 |     NameContext sNC;    /* Name context for processing aggregate information */
 | 
|  |   3271 |     int iAMem;          /* First Mem address for storing current GROUP BY */
 | 
|  |   3272 |     int iBMem;          /* First Mem address for previous GROUP BY */
 | 
|  |   3273 |     int iUseFlag;       /* Mem address holding flag indicating that at least
 | 
|  |   3274 |                         ** one row of the input to the aggregator has been
 | 
|  |   3275 |                         ** processed */
 | 
|  |   3276 |     int iAbortFlag;     /* Mem address which causes query abort if positive */
 | 
|  |   3277 |     int groupBySort;    /* Rows come from source in GROUP BY order */
 | 
|  |   3278 | 
 | 
|  |   3279 | 
 | 
|  |   3280 |     /* The following variables hold addresses or labels for parts of the
 | 
|  |   3281 |     ** virtual machine program we are putting together */
 | 
|  |   3282 |     int addrOutputRow;      /* Start of subroutine that outputs a result row */
 | 
|  |   3283 |     int addrSetAbort;       /* Set the abort flag and return */
 | 
|  |   3284 |     int addrInitializeLoop; /* Start of code that initializes the input loop */
 | 
|  |   3285 |     int addrTopOfLoop;      /* Top of the input loop */
 | 
|  |   3286 |     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
 | 
|  |   3287 |     int addrProcessRow;     /* Code to process a single input row */
 | 
|  |   3288 |     int addrEnd;            /* End of all processing */
 | 
|  |   3289 |     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
 | 
|  |   3290 |     int addrReset;          /* Subroutine for resetting the accumulator */
 | 
|  |   3291 | 
 | 
|  |   3292 |     addrEnd = sqlite3VdbeMakeLabel(v);
 | 
|  |   3293 | 
 | 
|  |   3294 |     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
 | 
|  |   3295 |     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
 | 
|  |   3296 |     ** SELECT statement.
 | 
|  |   3297 |     */
 | 
|  |   3298 |     memset(&sNC, 0, sizeof(sNC));
 | 
|  |   3299 |     sNC.pParse = pParse;
 | 
|  |   3300 |     sNC.pSrcList = pTabList;
 | 
|  |   3301 |     sNC.pAggInfo = &sAggInfo;
 | 
|  |   3302 |     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
 | 
|  |   3303 |     sAggInfo.pGroupBy = pGroupBy;
 | 
|  |   3304 |     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
 | 
|  |   3305 |       goto select_end;
 | 
|  |   3306 |     }
 | 
|  |   3307 |     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
 | 
|  |   3308 |       goto select_end;
 | 
|  |   3309 |     }
 | 
|  |   3310 |     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
 | 
|  |   3311 |       goto select_end;
 | 
|  |   3312 |     }
 | 
|  |   3313 |     sAggInfo.nAccumulator = sAggInfo.nColumn;
 | 
|  |   3314 |     for(i=0; i<sAggInfo.nFunc; i++){
 | 
|  |   3315 |       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
 | 
|  |   3316 |         goto select_end;
 | 
|  |   3317 |       }
 | 
|  |   3318 |     }
 | 
|  |   3319 |     if( db->mallocFailed ) goto select_end;
 | 
|  |   3320 | 
 | 
|  |   3321 |     /* Processing for aggregates with GROUP BY is very different and
 | 
|  |   3322 |     ** much more complex than aggregates without a GROUP BY.
 | 
|  |   3323 |     */
 | 
|  |   3324 |     if( pGroupBy ){
 | 
|  |   3325 |       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
 | 
|  |   3326 | 
 | 
|  |   3327 |       /* Create labels that we will be needing
 | 
|  |   3328 |       */
 | 
|  |   3329 |      
 | 
|  |   3330 |       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
 | 
|  |   3331 |       addrGroupByChange = sqlite3VdbeMakeLabel(v);
 | 
|  |   3332 |       addrProcessRow = sqlite3VdbeMakeLabel(v);
 | 
|  |   3333 | 
 | 
|  |   3334 |       /* If there is a GROUP BY clause we might need a sorting index to
 | 
|  |   3335 |       ** implement it.  Allocate that sorting index now.  If it turns out
 | 
|  |   3336 |       ** that we do not need it after all, the OpenEphemeral instruction
 | 
|  |   3337 |       ** will be converted into a Noop.  
 | 
|  |   3338 |       */
 | 
|  |   3339 |       sAggInfo.sortingIdx = pParse->nTab++;
 | 
|  |   3340 |       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
 | 
|  |   3341 |       addrSortingIdx =
 | 
|  |   3342 |           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
 | 
|  |   3343 |                          sAggInfo.nSortingColumn,
 | 
|  |   3344 |                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
 | 
|  |   3345 | 
 | 
|  |   3346 |       /* Initialize memory locations used by GROUP BY aggregate processing
 | 
|  |   3347 |       */
 | 
|  |   3348 |       iUseFlag = pParse->nMem++;
 | 
|  |   3349 |       iAbortFlag = pParse->nMem++;
 | 
|  |   3350 |       iAMem = pParse->nMem;
 | 
|  |   3351 |       pParse->nMem += pGroupBy->nExpr;
 | 
|  |   3352 |       iBMem = pParse->nMem;
 | 
|  |   3353 |       pParse->nMem += pGroupBy->nExpr;
 | 
|  |   3354 |       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
 | 
|  |   3355 |       VdbeComment((v, "# clear abort flag"));
 | 
|  |   3356 |       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
 | 
|  |   3357 |       VdbeComment((v, "# indicate accumulator empty"));
 | 
|  |   3358 |       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
 | 
|  |   3359 | 
 | 
|  |   3360 |       /* Generate a subroutine that outputs a single row of the result
 | 
|  |   3361 |       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
 | 
|  |   3362 |       ** is less than or equal to zero, the subroutine is a no-op.  If
 | 
|  |   3363 |       ** the processing calls for the query to abort, this subroutine
 | 
|  |   3364 |       ** increments the iAbortFlag memory location before returning in
 | 
|  |   3365 |       ** order to signal the caller to abort.
 | 
|  |   3366 |       */
 | 
|  |   3367 |       addrSetAbort = sqlite3VdbeCurrentAddr(v);
 | 
|  |   3368 |       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
 | 
|  |   3369 |       VdbeComment((v, "# set abort flag"));
 | 
|  |   3370 |       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | 
|  |   3371 |       addrOutputRow = sqlite3VdbeCurrentAddr(v);
 | 
|  |   3372 |       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
 | 
|  |   3373 |       VdbeComment((v, "# Groupby result generator entry point"));
 | 
|  |   3374 |       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | 
|  |   3375 |       finalizeAggFunctions(pParse, &sAggInfo);
 | 
|  |   3376 |       if( pHaving ){
 | 
|  |   3377 |         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
 | 
|  |   3378 |       }
 | 
|  |   3379 |       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
 | 
|  |   3380 |                            distinct, eDest, iParm, 
 | 
|  |   3381 |                            addrOutputRow+1, addrSetAbort, aff);
 | 
|  |   3382 |       if( rc ){
 | 
|  |   3383 |         goto select_end;
 | 
|  |   3384 |       }
 | 
|  |   3385 |       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | 
|  |   3386 |       VdbeComment((v, "# end groupby result generator"));
 | 
|  |   3387 | 
 | 
|  |   3388 |       /* Generate a subroutine that will reset the group-by accumulator
 | 
|  |   3389 |       */
 | 
|  |   3390 |       addrReset = sqlite3VdbeCurrentAddr(v);
 | 
|  |   3391 |       resetAccumulator(pParse, &sAggInfo);
 | 
|  |   3392 |       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | 
|  |   3393 | 
 | 
|  |   3394 |       /* Begin a loop that will extract all source rows in GROUP BY order.
 | 
|  |   3395 |       ** This might involve two separate loops with an OP_Sort in between, or
 | 
|  |   3396 |       ** it might be a single loop that uses an index to extract information
 | 
|  |   3397 |       ** in the right order to begin with.
 | 
|  |   3398 |       */
 | 
|  |   3399 |       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
 | 
|  |   3400 |       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
 | 
|  |   3401 |       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
 | 
|  |   3402 |       if( pWInfo==0 ) goto select_end;
 | 
|  |   3403 |       if( pGroupBy==0 ){
 | 
|  |   3404 |         /* The optimizer is able to deliver rows in group by order so
 | 
|  |   3405 |         ** we do not have to sort.  The OP_OpenEphemeral table will be
 | 
|  |   3406 |         ** cancelled later because we still need to use the pKeyInfo
 | 
|  |   3407 |         */
 | 
|  |   3408 |         pGroupBy = p->pGroupBy;
 | 
|  |   3409 |         groupBySort = 0;
 | 
|  |   3410 |       }else{
 | 
|  |   3411 |         /* Rows are coming out in undetermined order.  We have to push
 | 
|  |   3412 |         ** each row into a sorting index, terminate the first loop,
 | 
|  |   3413 |         ** then loop over the sorting index in order to get the output
 | 
|  |   3414 |         ** in sorted order
 | 
|  |   3415 |         */
 | 
|  |   3416 |         groupBySort = 1;
 | 
|  |   3417 |         sqlite3ExprCodeExprList(pParse, pGroupBy);
 | 
|  |   3418 |         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
 | 
|  |   3419 |         j = pGroupBy->nExpr+1;
 | 
|  |   3420 |         for(i=0; i<sAggInfo.nColumn; i++){
 | 
|  |   3421 | 			AggInfo::AggInfo_col *pCol = &sAggInfo.aCol[i];
 | 
|  |   3422 |           if( pCol->iSorterColumn<j ) continue;
 | 
|  |   3423 |           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
 | 
|  |   3424 |           j++;
 | 
|  |   3425 |         }
 | 
|  |   3426 |         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
 | 
|  |   3427 |         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
 | 
|  |   3428 |         sqlite3WhereEnd(pWInfo);
 | 
|  |   3429 |         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
 | 
|  |   3430 |         VdbeComment((v, "# GROUP BY sort"));
 | 
|  |   3431 |         sAggInfo.useSortingIdx = 1;
 | 
|  |   3432 |       }
 | 
|  |   3433 | 
 | 
|  |   3434 |       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
 | 
|  |   3435 |       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
 | 
|  |   3436 |       ** Then compare the current GROUP BY terms against the GROUP BY terms
 | 
|  |   3437 |       ** from the previous row currently stored in a0, a1, a2...
 | 
|  |   3438 |       */
 | 
|  |   3439 |       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
 | 
|  |   3440 |       for(j=0; j<pGroupBy->nExpr; j++){
 | 
|  |   3441 |         if( groupBySort ){
 | 
|  |   3442 |           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
 | 
|  |   3443 |         }else{
 | 
|  |   3444 |           sAggInfo.directMode = 1;
 | 
|  |   3445 |           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
 | 
|  |   3446 |         }
 | 
|  |   3447 |         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
 | 
|  |   3448 |       }
 | 
|  |   3449 |       for(j=pGroupBy->nExpr-1; j>=0; j--){
 | 
|  |   3450 |         if( j<pGroupBy->nExpr-1 ){
 | 
|  |   3451 |           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
 | 
|  |   3452 |         }
 | 
|  |   3453 |         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
 | 
|  |   3454 |         if( j==0 ){
 | 
|  |   3455 |           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
 | 
|  |   3456 |         }else{
 | 
|  |   3457 |           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
 | 
|  |   3458 |         }
 | 
|  |   3459 |         sqlite3VdbeChangeP3(v, -1, (const char*)pKeyInfo->aColl[j], P3_COLLSEQ);
 | 
|  |   3460 |       }
 | 
|  |   3461 | 
 | 
|  |   3462 |       /* Generate code that runs whenever the GROUP BY changes.
 | 
|  |   3463 |       ** Change in the GROUP BY are detected by the previous code
 | 
|  |   3464 |       ** block.  If there were no changes, this block is skipped.
 | 
|  |   3465 |       **
 | 
|  |   3466 |       ** This code copies current group by terms in b0,b1,b2,...
 | 
|  |   3467 |       ** over to a0,a1,a2.  It then calls the output subroutine
 | 
|  |   3468 |       ** and resets the aggregate accumulator registers in preparation
 | 
|  |   3469 |       ** for the next GROUP BY batch.
 | 
|  |   3470 |       */
 | 
|  |   3471 |       sqlite3VdbeResolveLabel(v, addrGroupByChange);
 | 
|  |   3472 |       for(j=0; j<pGroupBy->nExpr; j++){
 | 
|  |   3473 |         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
 | 
|  |   3474 |       }
 | 
|  |   3475 |       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
 | 
|  |   3476 |       VdbeComment((v, "# output one row"));
 | 
|  |   3477 |       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
 | 
|  |   3478 |       VdbeComment((v, "# check abort flag"));
 | 
|  |   3479 |       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
 | 
|  |   3480 |       VdbeComment((v, "# reset accumulator"));
 | 
|  |   3481 | 
 | 
|  |   3482 |       /* Update the aggregate accumulators based on the content of
 | 
|  |   3483 |       ** the current row
 | 
|  |   3484 |       */
 | 
|  |   3485 |       sqlite3VdbeResolveLabel(v, addrProcessRow);
 | 
|  |   3486 |       updateAccumulator(pParse, &sAggInfo);
 | 
|  |   3487 |       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
 | 
|  |   3488 |       VdbeComment((v, "# indicate data in accumulator"));
 | 
|  |   3489 | 
 | 
|  |   3490 |       /* End of the loop
 | 
|  |   3491 |       */
 | 
|  |   3492 |       if( groupBySort ){
 | 
|  |   3493 |         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
 | 
|  |   3494 |       }else{
 | 
|  |   3495 |         sqlite3WhereEnd(pWInfo);
 | 
|  |   3496 |         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
 | 
|  |   3497 |       }
 | 
|  |   3498 | 
 | 
|  |   3499 |       /* Output the final row of result
 | 
|  |   3500 |       */
 | 
|  |   3501 |       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
 | 
|  |   3502 |       VdbeComment((v, "# output final row"));
 | 
|  |   3503 |       
 | 
|  |   3504 |     } /* endif pGroupBy */
 | 
|  |   3505 |     else {
 | 
|  |   3506 |       /* This case runs if the aggregate has no GROUP BY clause.  The
 | 
|  |   3507 |       ** processing is much simpler since there is only a single row
 | 
|  |   3508 |       ** of output.
 | 
|  |   3509 |       */
 | 
|  |   3510 |       resetAccumulator(pParse, &sAggInfo);
 | 
|  |   3511 |       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
 | 
|  |   3512 |       if( pWInfo==0 ) goto select_end;
 | 
|  |   3513 |       updateAccumulator(pParse, &sAggInfo);
 | 
|  |   3514 |       sqlite3WhereEnd(pWInfo);
 | 
|  |   3515 |       finalizeAggFunctions(pParse, &sAggInfo);
 | 
|  |   3516 |       pOrderBy = 0;
 | 
|  |   3517 |       if( pHaving ){
 | 
|  |   3518 |         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
 | 
|  |   3519 |       }
 | 
|  |   3520 |       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
 | 
|  |   3521 |                       eDest, iParm, addrEnd, addrEnd, aff);
 | 
|  |   3522 |     }
 | 
|  |   3523 |     sqlite3VdbeResolveLabel(v, addrEnd);
 | 
|  |   3524 |     
 | 
|  |   3525 |   } /* endif aggregate query */
 | 
|  |   3526 | 
 | 
|  |   3527 |   /* If there is an ORDER BY clause, then we need to sort the results
 | 
|  |   3528 |   ** and send them to the callback one by one.
 | 
|  |   3529 |   */
 | 
|  |   3530 |   if( pOrderBy ){
 | 
|  |   3531 |     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
 | 
|  |   3532 |   }
 | 
|  |   3533 | 
 | 
|  |   3534 | #ifndef SQLITE_OMIT_SUBQUERY
 | 
|  |   3535 |   /* If this was a subquery, we have now converted the subquery into a
 | 
|  |   3536 |   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
 | 
|  |   3537 |   ** this subquery from being evaluated again and to force the use of
 | 
|  |   3538 |   ** the temporary table.
 | 
|  |   3539 |   */
 | 
|  |   3540 |   if( pParent ){
 | 
|  |   3541 |     assert( pParent->pSrc->nSrc>parentTab );
 | 
|  |   3542 |     assert( pParent->pSrc->a[parentTab].pSelect==p );
 | 
|  |   3543 |     pParent->pSrc->a[parentTab].isPopulated = 1;
 | 
|  |   3544 |   }
 | 
|  |   3545 | #endif
 | 
|  |   3546 | 
 | 
|  |   3547 |   /* Jump here to skip this query
 | 
|  |   3548 |   */
 | 
|  |   3549 |   sqlite3VdbeResolveLabel(v, iEnd);
 | 
|  |   3550 | 
 | 
|  |   3551 |   /* The SELECT was successfully coded.   Set the return code to 0
 | 
|  |   3552 |   ** to indicate no errors.
 | 
|  |   3553 |   */
 | 
|  |   3554 |   rc = 0;
 | 
|  |   3555 | 
 | 
|  |   3556 |   /* Control jumps to here if an error is encountered above, or upon
 | 
|  |   3557 |   ** successful coding of the SELECT.
 | 
|  |   3558 |   */
 | 
|  |   3559 | select_end:
 | 
|  |   3560 | 
 | 
|  |   3561 |   /* Identify column names if we will be using them in a callback.  This
 | 
|  |   3562 |   ** step is skipped if the output is going to some other destination.
 | 
|  |   3563 |   */
 | 
|  |   3564 |   if( rc==SQLITE_OK && eDest==SRT_Callback ){
 | 
|  |   3565 |     generateColumnNames(pParse, pTabList, pEList);
 | 
|  |   3566 |   }
 | 
|  |   3567 | 
 | 
|  |   3568 |   sqlite3_free(sAggInfo.aCol);
 | 
|  |   3569 |   sqlite3_free(sAggInfo.aFunc);
 | 
|  |   3570 |   return rc;
 | 
|  |   3571 | }
 | 
|  |   3572 | 
 | 
|  |   3573 | #if defined(SQLITE_DEBUG)
 | 
|  |   3574 | /*
 | 
|  |   3575 | *******************************************************************************
 | 
|  |   3576 | ** The following code is used for testing and debugging only.  The code
 | 
|  |   3577 | ** that follows does not appear in normal builds.
 | 
|  |   3578 | **
 | 
|  |   3579 | ** These routines are used to print out the content of all or part of a 
 | 
|  |   3580 | ** parse structures such as Select or Expr.  Such printouts are useful
 | 
|  |   3581 | ** for helping to understand what is happening inside the code generator
 | 
|  |   3582 | ** during the execution of complex SELECT statements.
 | 
|  |   3583 | **
 | 
|  |   3584 | ** These routine are not called anywhere from within the normal
 | 
|  |   3585 | ** code base.  Then are intended to be called from within the debugger
 | 
|  |   3586 | ** or from temporary "printf" statements inserted for debugging.
 | 
|  |   3587 | */
 | 
|  |   3588 | void sqlite3PrintExpr(Expr *p){
 | 
|  |   3589 |   if( p->token.z && p->token.n>0 ){
 | 
|  |   3590 |     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
 | 
|  |   3591 |   }else{
 | 
|  |   3592 |     sqlite3DebugPrintf("(%d", p->op);
 | 
|  |   3593 |   }
 | 
|  |   3594 |   if( p->pLeft ){
 | 
|  |   3595 |     sqlite3DebugPrintf(" ");
 | 
|  |   3596 |     sqlite3PrintExpr(p->pLeft);
 | 
|  |   3597 |   }
 | 
|  |   3598 |   if( p->pRight ){
 | 
|  |   3599 |     sqlite3DebugPrintf(" ");
 | 
|  |   3600 |     sqlite3PrintExpr(p->pRight);
 | 
|  |   3601 |   }
 | 
|  |   3602 |   sqlite3DebugPrintf(")");
 | 
|  |   3603 | }
 | 
|  |   3604 | void sqlite3PrintExprList(ExprList *pList){
 | 
|  |   3605 |   int i;
 | 
|  |   3606 |   for(i=0; i<pList->nExpr; i++){
 | 
|  |   3607 |     sqlite3PrintExpr(pList->a[i].pExpr);
 | 
|  |   3608 |     if( i<pList->nExpr-1 ){
 | 
|  |   3609 |       sqlite3DebugPrintf(", ");
 | 
|  |   3610 |     }
 | 
|  |   3611 |   }
 | 
|  |   3612 | }
 | 
|  |   3613 | void sqlite3PrintSelect(Select *p, int indent){
 | 
|  |   3614 |   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
 | 
|  |   3615 |   sqlite3PrintExprList(p->pEList);
 | 
|  |   3616 |   sqlite3DebugPrintf("\n");
 | 
|  |   3617 |   if( p->pSrc ){
 | 
|  |   3618 |     char *zPrefix;
 | 
|  |   3619 |     int i;
 | 
|  |   3620 |     zPrefix = "FROM";
 | 
|  |   3621 |     for(i=0; i<p->pSrc->nSrc; i++){
 | 
|  |   3622 |       struct SrcList_item *pItem = &p->pSrc->a[i];
 | 
|  |   3623 |       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
 | 
|  |   3624 |       zPrefix = "";
 | 
|  |   3625 |       if( pItem->pSelect ){
 | 
|  |   3626 |         sqlite3DebugPrintf("(\n");
 | 
|  |   3627 |         sqlite3PrintSelect(pItem->pSelect, indent+10);
 | 
|  |   3628 |         sqlite3DebugPrintf("%*s)", indent+8, "");
 | 
|  |   3629 |       }else if( pItem->zName ){
 | 
|  |   3630 |         sqlite3DebugPrintf("%s", pItem->zName);
 | 
|  |   3631 |       }
 | 
|  |   3632 |       if( pItem->pTab ){
 | 
|  |   3633 |         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
 | 
|  |   3634 |       }
 | 
|  |   3635 |       if( pItem->zAlias ){
 | 
|  |   3636 |         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
 | 
|  |   3637 |       }
 | 
|  |   3638 |       if( i<p->pSrc->nSrc-1 ){
 | 
|  |   3639 |         sqlite3DebugPrintf(",");
 | 
|  |   3640 |       }
 | 
|  |   3641 |       sqlite3DebugPrintf("\n");
 | 
|  |   3642 |     }
 | 
|  |   3643 |   }
 | 
|  |   3644 |   if( p->pWhere ){
 | 
|  |   3645 |     sqlite3DebugPrintf("%*s WHERE ", indent, "");
 | 
|  |   3646 |     sqlite3PrintExpr(p->pWhere);
 | 
|  |   3647 |     sqlite3DebugPrintf("\n");
 | 
|  |   3648 |   }
 | 
|  |   3649 |   if( p->pGroupBy ){
 | 
|  |   3650 |     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
 | 
|  |   3651 |     sqlite3PrintExprList(p->pGroupBy);
 | 
|  |   3652 |     sqlite3DebugPrintf("\n");
 | 
|  |   3653 |   }
 | 
|  |   3654 |   if( p->pHaving ){
 | 
|  |   3655 |     sqlite3DebugPrintf("%*s HAVING ", indent, "");
 | 
|  |   3656 |     sqlite3PrintExpr(p->pHaving);
 | 
|  |   3657 |     sqlite3DebugPrintf("\n");
 | 
|  |   3658 |   }
 | 
|  |   3659 |   if( p->pOrderBy ){
 | 
|  |   3660 |     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
 | 
|  |   3661 |     sqlite3PrintExprList(p->pOrderBy);
 | 
|  |   3662 |     sqlite3DebugPrintf("\n");
 | 
|  |   3663 |   }
 | 
|  |   3664 | }
 | 
|  |   3665 | /* End of the structure debug printing code
 | 
|  |   3666 | *****************************************************************************/
 | 
|  |   3667 | #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
 |