| 2 |      1 | /*
 | 
|  |      2 | ** 2001 September 15
 | 
|  |      3 | **
 | 
|  |      4 | ** The author disclaims copyright to this source code.  In place of
 | 
|  |      5 | ** a legal notice, here is a blessing:
 | 
|  |      6 | **
 | 
|  |      7 | **    May you do good and not evil.
 | 
|  |      8 | **    May you find forgiveness for yourself and forgive others.
 | 
|  |      9 | **    May you share freely, never taking more than you give.
 | 
|  |     10 | **
 | 
|  |     11 | *************************************************************************
 | 
|  |     12 | ** This file contains C code routines that are called by the parser
 | 
|  |     13 | ** to handle INSERT statements in SQLite.
 | 
|  |     14 | **
 | 
|  |     15 | ** $Id: insert.cpp 1282 2008-11-13 09:31:33Z LarsPson $
 | 
|  |     16 | */
 | 
|  |     17 | #include "sqliteInt.h"
 | 
|  |     18 | 
 | 
|  |     19 | /*
 | 
|  |     20 | ** Set P3 of the most recently inserted opcode to a column affinity
 | 
|  |     21 | ** string for index pIdx. A column affinity string has one character
 | 
|  |     22 | ** for each column in the table, according to the affinity of the column:
 | 
|  |     23 | **
 | 
|  |     24 | **  Character      Column affinity
 | 
|  |     25 | **  ------------------------------
 | 
|  |     26 | **  'a'            TEXT
 | 
|  |     27 | **  'b'            NONE
 | 
|  |     28 | **  'c'            NUMERIC
 | 
|  |     29 | **  'd'            INTEGER
 | 
|  |     30 | **  'e'            REAL
 | 
|  |     31 | */
 | 
|  |     32 | void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
 | 
|  |     33 |   if( !pIdx->zColAff ){
 | 
|  |     34 |     /* The first time a column affinity string for a particular index is
 | 
|  |     35 |     ** required, it is allocated and populated here. It is then stored as
 | 
|  |     36 |     ** a member of the Index structure for subsequent use.
 | 
|  |     37 |     **
 | 
|  |     38 |     ** The column affinity string will eventually be deleted by
 | 
|  |     39 |     ** sqliteDeleteIndex() when the Index structure itself is cleaned
 | 
|  |     40 |     ** up.
 | 
|  |     41 |     */
 | 
|  |     42 |     int n;
 | 
|  |     43 |     Table *pTab = pIdx->pTable;
 | 
|  |     44 |     sqlite3 *db = sqlite3VdbeDb(v);
 | 
|  |     45 |     pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+1);
 | 
|  |     46 |     if( !pIdx->zColAff ){
 | 
|  |     47 |       return;
 | 
|  |     48 |     }
 | 
|  |     49 |     for(n=0; n<pIdx->nColumn; n++){
 | 
|  |     50 |       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
 | 
|  |     51 |     }
 | 
|  |     52 |     pIdx->zColAff[pIdx->nColumn] = '\0';
 | 
|  |     53 |   }
 | 
|  |     54 |  
 | 
|  |     55 |   sqlite3VdbeChangeP3(v, -1, pIdx->zColAff, 0);
 | 
|  |     56 | }
 | 
|  |     57 | 
 | 
|  |     58 | /*
 | 
|  |     59 | ** Set P3 of the most recently inserted opcode to a column affinity
 | 
|  |     60 | ** string for table pTab. A column affinity string has one character
 | 
|  |     61 | ** for each column indexed by the index, according to the affinity of the
 | 
|  |     62 | ** column:
 | 
|  |     63 | **
 | 
|  |     64 | **  Character      Column affinity
 | 
|  |     65 | **  ------------------------------
 | 
|  |     66 | **  'a'            TEXT
 | 
|  |     67 | **  'b'            NONE
 | 
|  |     68 | **  'c'            NUMERIC
 | 
|  |     69 | **  'd'            INTEGER
 | 
|  |     70 | **  'e'            REAL
 | 
|  |     71 | */
 | 
|  |     72 | void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
 | 
|  |     73 |   /* The first time a column affinity string for a particular table
 | 
|  |     74 |   ** is required, it is allocated and populated here. It is then 
 | 
|  |     75 |   ** stored as a member of the Table structure for subsequent use.
 | 
|  |     76 |   **
 | 
|  |     77 |   ** The column affinity string will eventually be deleted by
 | 
|  |     78 |   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
 | 
|  |     79 |   */
 | 
|  |     80 |   if( !pTab->zColAff ){
 | 
|  |     81 |     char *zColAff;
 | 
|  |     82 |     int i;
 | 
|  |     83 |     sqlite3 *db = sqlite3VdbeDb(v);
 | 
|  |     84 | 
 | 
|  |     85 |     zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
 | 
|  |     86 |     if( !zColAff ){
 | 
|  |     87 |       return;
 | 
|  |     88 |     }
 | 
|  |     89 | 
 | 
|  |     90 |     for(i=0; i<pTab->nCol; i++){
 | 
|  |     91 |       zColAff[i] = pTab->aCol[i].affinity;
 | 
|  |     92 |     }
 | 
|  |     93 |     zColAff[pTab->nCol] = '\0';
 | 
|  |     94 | 
 | 
|  |     95 |     pTab->zColAff = zColAff;
 | 
|  |     96 |   }
 | 
|  |     97 | 
 | 
|  |     98 |   sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0);
 | 
|  |     99 | }
 | 
|  |    100 | 
 | 
|  |    101 | /*
 | 
|  |    102 | ** Return non-zero if the table pTab in database iDb or any of its indices
 | 
|  |    103 | ** have been opened at any point in the VDBE program beginning at location
 | 
|  |    104 | ** iStartAddr throught the end of the program.  This is used to see if 
 | 
|  |    105 | ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can 
 | 
|  |    106 | ** run without using temporary table for the results of the SELECT. 
 | 
|  |    107 | */
 | 
|  |    108 | static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
 | 
|  |    109 |   int i;
 | 
|  |    110 |   int iEnd = sqlite3VdbeCurrentAddr(v);
 | 
|  |    111 |   for(i=iStartAddr; i<iEnd; i++){
 | 
|  |    112 |     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
 | 
|  |    113 |     assert( pOp!=0 );
 | 
|  |    114 |     if( pOp->opcode==OP_OpenRead ){
 | 
|  |    115 |       VdbeOp *pPrior = &pOp[-1];
 | 
|  |    116 |       int tnum = pOp->p2;
 | 
|  |    117 |       assert( i>iStartAddr );
 | 
|  |    118 |       assert( pPrior->opcode==OP_Integer );
 | 
|  |    119 |       if( pPrior->p1==iDb ){
 | 
|  |    120 |         Index *pIndex;
 | 
|  |    121 |         if( tnum==pTab->tnum ){
 | 
|  |    122 |           return 1;
 | 
|  |    123 |         }
 | 
|  |    124 |         for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
 | 
|  |    125 |           if( tnum==pIndex->tnum ){
 | 
|  |    126 |             return 1;
 | 
|  |    127 |           }
 | 
|  |    128 |         }
 | 
|  |    129 |       }
 | 
|  |    130 |     }
 | 
|  |    131 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    132 |     if( pOp->opcode==OP_VOpen && pOp->p3==(const char*)pTab->pVtab ){
 | 
|  |    133 |       assert( pOp->p3!=0 );
 | 
|  |    134 |       assert( pOp->p3type==P3_VTAB );
 | 
|  |    135 |       return 1;
 | 
|  |    136 |     }
 | 
|  |    137 | #endif
 | 
|  |    138 |   }
 | 
|  |    139 |   return 0;
 | 
|  |    140 | }
 | 
|  |    141 | 
 | 
|  |    142 | #ifndef SQLITE_OMIT_AUTOINCREMENT
 | 
|  |    143 | /*
 | 
|  |    144 | ** Write out code to initialize the autoincrement logic.  This code
 | 
|  |    145 | ** looks up the current autoincrement value in the sqlite_sequence
 | 
|  |    146 | ** table and stores that value in a memory cell.  Code generated by
 | 
|  |    147 | ** autoIncStep() will keep that memory cell holding the largest
 | 
|  |    148 | ** rowid value.  Code generated by autoIncEnd() will write the new
 | 
|  |    149 | ** largest value of the counter back into the sqlite_sequence table.
 | 
|  |    150 | **
 | 
|  |    151 | ** This routine returns the index of the mem[] cell that contains
 | 
|  |    152 | ** the maximum rowid counter.
 | 
|  |    153 | **
 | 
|  |    154 | ** Two memory cells are allocated.  The next memory cell after the
 | 
|  |    155 | ** one returned holds the rowid in sqlite_sequence where we will
 | 
|  |    156 | ** write back the revised maximum rowid.
 | 
|  |    157 | */
 | 
|  |    158 | static int autoIncBegin(
 | 
|  |    159 |   Parse *pParse,      /* Parsing context */
 | 
|  |    160 |   int iDb,            /* Index of the database holding pTab */
 | 
|  |    161 |   Table *pTab         /* The table we are writing to */
 | 
|  |    162 | ){
 | 
|  |    163 |   int memId = 0;
 | 
|  |    164 |   if( pTab->autoInc ){
 | 
|  |    165 |     Vdbe *v = pParse->pVdbe;
 | 
|  |    166 |     Db *pDb = &pParse->db->aDb[iDb];
 | 
|  |    167 |     int iCur = pParse->nTab;
 | 
|  |    168 |     int addr;
 | 
|  |    169 |     assert( v );
 | 
|  |    170 |     addr = sqlite3VdbeCurrentAddr(v);
 | 
|  |    171 |     memId = pParse->nMem+1;
 | 
|  |    172 |     pParse->nMem += 2;
 | 
|  |    173 |     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
 | 
|  |    174 |     sqlite3VdbeAddOp(v, OP_Rewind, iCur, addr+13);
 | 
|  |    175 |     sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
 | 
|  |    176 |     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
 | 
|  |    177 |     sqlite3VdbeAddOp(v, OP_Ne, 0x100, addr+12);
 | 
|  |    178 |     sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
 | 
|  |    179 |     sqlite3VdbeAddOp(v, OP_MemStore, memId-1, 1);
 | 
|  |    180 |     sqlite3VdbeAddOp(v, OP_Column, iCur, 1);
 | 
|  |    181 |     sqlite3VdbeAddOp(v, OP_MemStore, memId, 1);
 | 
|  |    182 |     sqlite3VdbeAddOp(v, OP_Goto, 0, addr+13);
 | 
|  |    183 |     sqlite3VdbeAddOp(v, OP_Next, iCur, addr+4);
 | 
|  |    184 |     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
 | 
|  |    185 |   }
 | 
|  |    186 |   return memId;
 | 
|  |    187 | }
 | 
|  |    188 | 
 | 
|  |    189 | /*
 | 
|  |    190 | ** Update the maximum rowid for an autoincrement calculation.
 | 
|  |    191 | **
 | 
|  |    192 | ** This routine should be called when the top of the stack holds a
 | 
|  |    193 | ** new rowid that is about to be inserted.  If that new rowid is
 | 
|  |    194 | ** larger than the maximum rowid in the memId memory cell, then the
 | 
|  |    195 | ** memory cell is updated.  The stack is unchanged.
 | 
|  |    196 | */
 | 
|  |    197 | static void autoIncStep(Parse *pParse, int memId){
 | 
|  |    198 |   if( memId>0 ){
 | 
|  |    199 |     sqlite3VdbeAddOp(pParse->pVdbe, OP_MemMax, memId, 0);
 | 
|  |    200 |   }
 | 
|  |    201 | }
 | 
|  |    202 | 
 | 
|  |    203 | /*
 | 
|  |    204 | ** After doing one or more inserts, the maximum rowid is stored
 | 
|  |    205 | ** in mem[memId].  Generate code to write this value back into the
 | 
|  |    206 | ** the sqlite_sequence table.
 | 
|  |    207 | */
 | 
|  |    208 | static void autoIncEnd(
 | 
|  |    209 |   Parse *pParse,     /* The parsing context */
 | 
|  |    210 |   int iDb,           /* Index of the database holding pTab */
 | 
|  |    211 |   Table *pTab,       /* Table we are inserting into */
 | 
|  |    212 |   int memId          /* Memory cell holding the maximum rowid */
 | 
|  |    213 | ){
 | 
|  |    214 |   if( pTab->autoInc ){
 | 
|  |    215 |     int iCur = pParse->nTab;
 | 
|  |    216 |     Vdbe *v = pParse->pVdbe;
 | 
|  |    217 |     Db *pDb = &pParse->db->aDb[iDb];
 | 
|  |    218 |     int addr;
 | 
|  |    219 |     assert( v );
 | 
|  |    220 |     addr = sqlite3VdbeCurrentAddr(v);
 | 
|  |    221 |     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
 | 
|  |    222 |     sqlite3VdbeAddOp(v, OP_MemLoad, memId-1, 0);
 | 
|  |    223 |     sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+7);
 | 
|  |    224 |     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |    225 |     sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
 | 
|  |    226 |     sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
 | 
|  |    227 |     sqlite3VdbeAddOp(v, OP_MemLoad, memId, 0);
 | 
|  |    228 |     sqlite3VdbeAddOp(v, OP_MakeRecord, 2, 0);
 | 
|  |    229 |     sqlite3VdbeAddOp(v, OP_Insert, iCur, OPFLAG_APPEND);
 | 
|  |    230 |     sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
 | 
|  |    231 |   }
 | 
|  |    232 | }
 | 
|  |    233 | #else
 | 
|  |    234 | /*
 | 
|  |    235 | ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
 | 
|  |    236 | ** above are all no-ops
 | 
|  |    237 | */
 | 
|  |    238 | # define autoIncBegin(A,B,C) (0)
 | 
|  |    239 | # define autoIncStep(A,B)
 | 
|  |    240 | # define autoIncEnd(A,B,C,D)
 | 
|  |    241 | #endif /* SQLITE_OMIT_AUTOINCREMENT */
 | 
|  |    242 | 
 | 
|  |    243 | 
 | 
|  |    244 | /* Forward declaration */
 | 
|  |    245 | static int xferOptimization(
 | 
|  |    246 |   Parse *pParse,        /* Parser context */
 | 
|  |    247 |   Table *pDest,         /* The table we are inserting into */
 | 
|  |    248 |   Select *pSelect,      /* A SELECT statement to use as the data source */
 | 
|  |    249 |   int onError,          /* How to handle constraint errors */
 | 
|  |    250 |   int iDbDest           /* The database of pDest */
 | 
|  |    251 | );
 | 
|  |    252 | 
 | 
|  |    253 | /*
 | 
|  |    254 | ** This routine is call to handle SQL of the following forms:
 | 
|  |    255 | **
 | 
|  |    256 | **    insert into TABLE (IDLIST) values(EXPRLIST)
 | 
|  |    257 | **    insert into TABLE (IDLIST) select
 | 
|  |    258 | **
 | 
|  |    259 | ** The IDLIST following the table name is always optional.  If omitted,
 | 
|  |    260 | ** then a list of all columns for the table is substituted.  The IDLIST
 | 
|  |    261 | ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
 | 
|  |    262 | **
 | 
|  |    263 | ** The pList parameter holds EXPRLIST in the first form of the INSERT
 | 
|  |    264 | ** statement above, and pSelect is NULL.  For the second form, pList is
 | 
|  |    265 | ** NULL and pSelect is a pointer to the select statement used to generate
 | 
|  |    266 | ** data for the insert.
 | 
|  |    267 | **
 | 
|  |    268 | ** The code generated follows one of four templates.  For a simple
 | 
|  |    269 | ** select with data coming from a VALUES clause, the code executes
 | 
|  |    270 | ** once straight down through.  The template looks like this:
 | 
|  |    271 | **
 | 
|  |    272 | **         open write cursor to <table> and its indices
 | 
|  |    273 | **         puts VALUES clause expressions onto the stack
 | 
|  |    274 | **         write the resulting record into <table>
 | 
|  |    275 | **         cleanup
 | 
|  |    276 | **
 | 
|  |    277 | ** The three remaining templates assume the statement is of the form
 | 
|  |    278 | **
 | 
|  |    279 | **   INSERT INTO <table> SELECT ...
 | 
|  |    280 | **
 | 
|  |    281 | ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
 | 
|  |    282 | ** in other words if the SELECT pulls all columns from a single table
 | 
|  |    283 | ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
 | 
|  |    284 | ** if <table2> and <table1> are distinct tables but have identical
 | 
|  |    285 | ** schemas, including all the same indices, then a special optimization
 | 
|  |    286 | ** is invoked that copies raw records from <table2> over to <table1>.
 | 
|  |    287 | ** See the xferOptimization() function for the implementation of this
 | 
|  |    288 | ** template.  This is the second template.
 | 
|  |    289 | **
 | 
|  |    290 | **         open a write cursor to <table>
 | 
|  |    291 | **         open read cursor on <table2>
 | 
|  |    292 | **         transfer all records in <table2> over to <table>
 | 
|  |    293 | **         close cursors
 | 
|  |    294 | **         foreach index on <table>
 | 
|  |    295 | **           open a write cursor on the <table> index
 | 
|  |    296 | **           open a read cursor on the corresponding <table2> index
 | 
|  |    297 | **           transfer all records from the read to the write cursors
 | 
|  |    298 | **           close cursors
 | 
|  |    299 | **         end foreach
 | 
|  |    300 | **
 | 
|  |    301 | ** The third template is for when the second template does not apply
 | 
|  |    302 | ** and the SELECT clause does not read from <table> at any time.
 | 
|  |    303 | ** The generated code follows this template:
 | 
|  |    304 | **
 | 
|  |    305 | **         goto B
 | 
|  |    306 | **      A: setup for the SELECT
 | 
|  |    307 | **         loop over the rows in the SELECT
 | 
|  |    308 | **           gosub C
 | 
|  |    309 | **         end loop
 | 
|  |    310 | **         cleanup after the SELECT
 | 
|  |    311 | **         goto D
 | 
|  |    312 | **      B: open write cursor to <table> and its indices
 | 
|  |    313 | **         goto A
 | 
|  |    314 | **      C: insert the select result into <table>
 | 
|  |    315 | **         return
 | 
|  |    316 | **      D: cleanup
 | 
|  |    317 | **
 | 
|  |    318 | ** The fourth template is used if the insert statement takes its
 | 
|  |    319 | ** values from a SELECT but the data is being inserted into a table
 | 
|  |    320 | ** that is also read as part of the SELECT.  In the third form,
 | 
|  |    321 | ** we have to use a intermediate table to store the results of
 | 
|  |    322 | ** the select.  The template is like this:
 | 
|  |    323 | **
 | 
|  |    324 | **         goto B
 | 
|  |    325 | **      A: setup for the SELECT
 | 
|  |    326 | **         loop over the tables in the SELECT
 | 
|  |    327 | **           gosub C
 | 
|  |    328 | **         end loop
 | 
|  |    329 | **         cleanup after the SELECT
 | 
|  |    330 | **         goto D
 | 
|  |    331 | **      C: insert the select result into the intermediate table
 | 
|  |    332 | **         return
 | 
|  |    333 | **      B: open a cursor to an intermediate table
 | 
|  |    334 | **         goto A
 | 
|  |    335 | **      D: open write cursor to <table> and its indices
 | 
|  |    336 | **         loop over the intermediate table
 | 
|  |    337 | **           transfer values form intermediate table into <table>
 | 
|  |    338 | **         end the loop
 | 
|  |    339 | **         cleanup
 | 
|  |    340 | */
 | 
|  |    341 | void sqlite3Insert(
 | 
|  |    342 |   Parse *pParse,        /* Parser context */
 | 
|  |    343 |   SrcList *pTabList,    /* Name of table into which we are inserting */
 | 
|  |    344 |   ExprList *pList,      /* List of values to be inserted */
 | 
|  |    345 |   Select *pSelect,      /* A SELECT statement to use as the data source */
 | 
|  |    346 |   IdList *pColumn,      /* Column names corresponding to IDLIST. */
 | 
|  |    347 |   int onError           /* How to handle constraint errors */
 | 
|  |    348 | ){
 | 
|  |    349 |   Table *pTab;          /* The table to insert into */
 | 
|  |    350 |   char *zTab;           /* Name of the table into which we are inserting */
 | 
|  |    351 |   const char *zDb;      /* Name of the database holding this table */
 | 
|  |    352 |   int i, j, idx;        /* Loop counters */
 | 
|  |    353 |   Vdbe *v;              /* Generate code into this virtual machine */
 | 
|  |    354 |   Index *pIdx;          /* For looping over indices of the table */
 | 
|  |    355 |   int nColumn;          /* Number of columns in the data */
 | 
|  |    356 |   int base = 0;         /* VDBE Cursor number for pTab */
 | 
|  |    357 |   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
 | 
|  |    358 |   sqlite3 *db;          /* The main database structure */
 | 
|  |    359 |   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
 | 
|  |    360 |   int endOfLoop;        /* Label for the end of the insertion loop */
 | 
|  |    361 |   int useTempTable = 0; /* Store SELECT results in intermediate table */
 | 
|  |    362 |   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
 | 
|  |    363 |   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
 | 
|  |    364 |   int iCleanup = 0;     /* Address of the cleanup code */
 | 
|  |    365 |   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
 | 
|  |    366 |   int iCntMem = 0;      /* Memory cell used for the row counter */
 | 
|  |    367 |   int newIdx = -1;      /* Cursor for the NEW table */
 | 
|  |    368 |   Db *pDb;              /* The database containing table being inserted into */
 | 
|  |    369 |   int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
 | 
|  |    370 |   int appendFlag = 0;   /* True if the insert is likely to be an append */
 | 
|  |    371 |   int iDb;
 | 
|  |    372 | 
 | 
|  |    373 |   int nHidden = 0;
 | 
|  |    374 | 
 | 
|  |    375 | #ifndef SQLITE_OMIT_TRIGGER
 | 
|  |    376 |   int isView;                 /* True if attempting to insert into a view */
 | 
|  |    377 |   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
 | 
|  |    378 | #endif
 | 
|  |    379 | 
 | 
|  |    380 |   db = pParse->db;
 | 
|  |    381 |   if( pParse->nErr || db->mallocFailed ){
 | 
|  |    382 |     goto insert_cleanup;
 | 
|  |    383 |   }
 | 
|  |    384 | 
 | 
|  |    385 |   /* Locate the table into which we will be inserting new information.
 | 
|  |    386 |   */
 | 
|  |    387 |   assert( pTabList->nSrc==1 );
 | 
|  |    388 |   zTab = pTabList->a[0].zName;
 | 
|  |    389 |   if( zTab==0 ) goto insert_cleanup;
 | 
|  |    390 |   pTab = sqlite3SrcListLookup(pParse, pTabList);
 | 
|  |    391 |   if( pTab==0 ){
 | 
|  |    392 |     goto insert_cleanup;
 | 
|  |    393 |   }
 | 
|  |    394 |   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | 
|  |    395 |   assert( iDb<db->nDb );
 | 
|  |    396 |   pDb = &db->aDb[iDb];
 | 
|  |    397 |   zDb = pDb->zName;
 | 
|  |    398 |   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
 | 
|  |    399 |     goto insert_cleanup;
 | 
|  |    400 |   }
 | 
|  |    401 | 
 | 
|  |    402 |   /* Figure out if we have any triggers and if the table being
 | 
|  |    403 |   ** inserted into is a view
 | 
|  |    404 |   */
 | 
|  |    405 | #ifndef SQLITE_OMIT_TRIGGER
 | 
|  |    406 |   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
 | 
|  |    407 |   isView = pTab->pSelect!=0;
 | 
|  |    408 | #else
 | 
|  |    409 | # define triggers_exist 0
 | 
|  |    410 | # define isView 0
 | 
|  |    411 | #endif
 | 
|  |    412 | #ifdef SQLITE_OMIT_VIEW
 | 
|  |    413 | # undef isView
 | 
|  |    414 | # define isView 0
 | 
|  |    415 | #endif
 | 
|  |    416 | 
 | 
|  |    417 |   /* Ensure that:
 | 
|  |    418 |   *  (a) the table is not read-only, 
 | 
|  |    419 |   *  (b) that if it is a view then ON INSERT triggers exist
 | 
|  |    420 |   */
 | 
|  |    421 |   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
 | 
|  |    422 |     goto insert_cleanup;
 | 
|  |    423 |   }
 | 
|  |    424 |   assert( pTab!=0 );
 | 
|  |    425 | 
 | 
|  |    426 |   /* If pTab is really a view, make sure it has been initialized.
 | 
|  |    427 |   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 
 | 
|  |    428 |   ** module table).
 | 
|  |    429 |   */
 | 
|  |    430 |   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | 
|  |    431 |     goto insert_cleanup;
 | 
|  |    432 |   }
 | 
|  |    433 | 
 | 
|  |    434 |   /* Allocate a VDBE
 | 
|  |    435 |   */
 | 
|  |    436 |   v = sqlite3GetVdbe(pParse);
 | 
|  |    437 |   if( v==0 ) goto insert_cleanup;
 | 
|  |    438 |   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
 | 
|  |    439 |   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
 | 
|  |    440 | 
 | 
|  |    441 |   /* if there are row triggers, allocate a temp table for new.* references. */
 | 
|  |    442 |   if( triggers_exist ){
 | 
|  |    443 |     newIdx = pParse->nTab++;
 | 
|  |    444 |   }
 | 
|  |    445 | 
 | 
|  |    446 | #ifndef SQLITE_OMIT_XFER_OPT
 | 
|  |    447 |   /* If the statement is of the form
 | 
|  |    448 |   **
 | 
|  |    449 |   **       INSERT INTO <table1> SELECT * FROM <table2>;
 | 
|  |    450 |   **
 | 
|  |    451 |   ** Then special optimizations can be applied that make the transfer
 | 
|  |    452 |   ** very fast and which reduce fragmentation of indices.
 | 
|  |    453 |   */
 | 
|  |    454 |   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
 | 
|  |    455 |     assert( !triggers_exist );
 | 
|  |    456 |     assert( pList==0 );
 | 
|  |    457 |     goto insert_cleanup;
 | 
|  |    458 |   }
 | 
|  |    459 | #endif /* SQLITE_OMIT_XFER_OPT */
 | 
|  |    460 | 
 | 
|  |    461 |   /* If this is an AUTOINCREMENT table, look up the sequence number in the
 | 
|  |    462 |   ** sqlite_sequence table and store it in memory cell counterMem.  Also
 | 
|  |    463 |   ** remember the rowid of the sqlite_sequence table entry in memory cell
 | 
|  |    464 |   ** counterRowid.
 | 
|  |    465 |   */
 | 
|  |    466 |   counterMem = autoIncBegin(pParse, iDb, pTab);
 | 
|  |    467 | 
 | 
|  |    468 |   /* Figure out how many columns of data are supplied.  If the data
 | 
|  |    469 |   ** is coming from a SELECT statement, then this step also generates
 | 
|  |    470 |   ** all the code to implement the SELECT statement and invoke a subroutine
 | 
|  |    471 |   ** to process each row of the result. (Template 2.) If the SELECT
 | 
|  |    472 |   ** statement uses the the table that is being inserted into, then the
 | 
|  |    473 |   ** subroutine is also coded here.  That subroutine stores the SELECT
 | 
|  |    474 |   ** results in a temporary table. (Template 3.)
 | 
|  |    475 |   */
 | 
|  |    476 |   if( pSelect ){
 | 
|  |    477 |     /* Data is coming from a SELECT.  Generate code to implement that SELECT
 | 
|  |    478 |     */
 | 
|  |    479 |     int rc, iInitCode;
 | 
|  |    480 |     iInitCode = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | 
|  |    481 |     iSelectLoop = sqlite3VdbeCurrentAddr(v);
 | 
|  |    482 |     iInsertBlock = sqlite3VdbeMakeLabel(v);
 | 
|  |    483 | 
 | 
|  |    484 |     /* Resolve the expressions in the SELECT statement and execute it. */
 | 
|  |    485 |     rc = sqlite3Select(pParse, pSelect, SRT_Subroutine, iInsertBlock,0,0,0,0);
 | 
|  |    486 |     if( rc || pParse->nErr || db->mallocFailed ){
 | 
|  |    487 |       goto insert_cleanup;
 | 
|  |    488 |     }
 | 
|  |    489 | 
 | 
|  |    490 |     iCleanup = sqlite3VdbeMakeLabel(v);
 | 
|  |    491 |     sqlite3VdbeAddOp(v, OP_Goto, 0, iCleanup);
 | 
|  |    492 |     assert( pSelect->pEList );
 | 
|  |    493 |     nColumn = pSelect->pEList->nExpr;
 | 
|  |    494 | 
 | 
|  |    495 |     /* Set useTempTable to TRUE if the result of the SELECT statement
 | 
|  |    496 |     ** should be written into a temporary table.  Set to FALSE if each
 | 
|  |    497 |     ** row of the SELECT can be written directly into the result table.
 | 
|  |    498 |     **
 | 
|  |    499 |     ** A temp table must be used if the table being updated is also one
 | 
|  |    500 |     ** of the tables being read by the SELECT statement.  Also use a 
 | 
|  |    501 |     ** temp table in the case of row triggers.
 | 
|  |    502 |     */
 | 
|  |    503 |     if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
 | 
|  |    504 |       useTempTable = 1;
 | 
|  |    505 |     }
 | 
|  |    506 | 
 | 
|  |    507 |     if( useTempTable ){
 | 
|  |    508 |       /* Generate the subroutine that SELECT calls to process each row of
 | 
|  |    509 |       ** the result.  Store the result in a temporary table
 | 
|  |    510 |       */
 | 
|  |    511 |       srcTab = pParse->nTab++;
 | 
|  |    512 |       sqlite3VdbeResolveLabel(v, iInsertBlock);
 | 
|  |    513 |       sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
 | 
|  |    514 |       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
 | 
|  |    515 |       sqlite3VdbeAddOp(v, OP_NewRowid, srcTab, 0);
 | 
|  |    516 |       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
 | 
|  |    517 |       sqlite3VdbeAddOp(v, OP_Insert, srcTab, OPFLAG_APPEND);
 | 
|  |    518 |       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | 
|  |    519 | 
 | 
|  |    520 |       /* The following code runs first because the GOTO at the very top
 | 
|  |    521 |       ** of the program jumps to it.  Create the temporary table, then jump
 | 
|  |    522 |       ** back up and execute the SELECT code above.
 | 
|  |    523 |       */
 | 
|  |    524 |       sqlite3VdbeJumpHere(v, iInitCode);
 | 
|  |    525 |       sqlite3VdbeAddOp(v, OP_OpenEphemeral, srcTab, 0);
 | 
|  |    526 |       sqlite3VdbeAddOp(v, OP_SetNumColumns, srcTab, nColumn);
 | 
|  |    527 |       sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
 | 
|  |    528 |       sqlite3VdbeResolveLabel(v, iCleanup);
 | 
|  |    529 |     }else{
 | 
|  |    530 |       sqlite3VdbeJumpHere(v, iInitCode);
 | 
|  |    531 |     }
 | 
|  |    532 |   }else{
 | 
|  |    533 |     /* This is the case if the data for the INSERT is coming from a VALUES
 | 
|  |    534 |     ** clause
 | 
|  |    535 |     */
 | 
|  |    536 |     NameContext sNC;
 | 
|  |    537 |     memset(&sNC, 0, sizeof(sNC));
 | 
|  |    538 |     sNC.pParse = pParse;
 | 
|  |    539 |     srcTab = -1;
 | 
|  |    540 |     assert( useTempTable==0 );
 | 
|  |    541 |     nColumn = pList ? pList->nExpr : 0;
 | 
|  |    542 |     for(i=0; i<nColumn; i++){
 | 
|  |    543 |       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
 | 
|  |    544 |         goto insert_cleanup;
 | 
|  |    545 |       }
 | 
|  |    546 |     }
 | 
|  |    547 |   }
 | 
|  |    548 | 
 | 
|  |    549 |   /* Make sure the number of columns in the source data matches the number
 | 
|  |    550 |   ** of columns to be inserted into the table.
 | 
|  |    551 |   */
 | 
|  |    552 |   if( IsVirtual(pTab) ){
 | 
|  |    553 |     for(i=0; i<pTab->nCol; i++){
 | 
|  |    554 |       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
 | 
|  |    555 |     }
 | 
|  |    556 |   }
 | 
|  |    557 |   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
 | 
|  |    558 |     sqlite3ErrorMsg(pParse, 
 | 
|  |    559 |        "table %S has %d columns but %d values were supplied",
 | 
|  |    560 |        pTabList, 0, pTab->nCol, nColumn);
 | 
|  |    561 |     goto insert_cleanup;
 | 
|  |    562 |   }
 | 
|  |    563 |   if( pColumn!=0 && nColumn!=pColumn->nId ){
 | 
|  |    564 |     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
 | 
|  |    565 |     goto insert_cleanup;
 | 
|  |    566 |   }
 | 
|  |    567 | 
 | 
|  |    568 |   /* If the INSERT statement included an IDLIST term, then make sure
 | 
|  |    569 |   ** all elements of the IDLIST really are columns of the table and 
 | 
|  |    570 |   ** remember the column indices.
 | 
|  |    571 |   **
 | 
|  |    572 |   ** If the table has an INTEGER PRIMARY KEY column and that column
 | 
|  |    573 |   ** is named in the IDLIST, then record in the keyColumn variable
 | 
|  |    574 |   ** the index into IDLIST of the primary key column.  keyColumn is
 | 
|  |    575 |   ** the index of the primary key as it appears in IDLIST, not as
 | 
|  |    576 |   ** is appears in the original table.  (The index of the primary
 | 
|  |    577 |   ** key in the original table is pTab->iPKey.)
 | 
|  |    578 |   */
 | 
|  |    579 |   if( pColumn ){
 | 
|  |    580 |     for(i=0; i<pColumn->nId; i++){
 | 
|  |    581 |       pColumn->a[i].idx = -1;
 | 
|  |    582 |     }
 | 
|  |    583 |     for(i=0; i<pColumn->nId; i++){
 | 
|  |    584 |       for(j=0; j<pTab->nCol; j++){
 | 
|  |    585 |         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
 | 
|  |    586 |           pColumn->a[i].idx = j;
 | 
|  |    587 |           if( j==pTab->iPKey ){
 | 
|  |    588 |             keyColumn = i;
 | 
|  |    589 |           }
 | 
|  |    590 |           break;
 | 
|  |    591 |         }
 | 
|  |    592 |       }
 | 
|  |    593 |       if( j>=pTab->nCol ){
 | 
|  |    594 |         if( sqlite3IsRowid(pColumn->a[i].zName) ){
 | 
|  |    595 |           keyColumn = i;
 | 
|  |    596 |         }else{
 | 
|  |    597 |           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
 | 
|  |    598 |               pTabList, 0, pColumn->a[i].zName);
 | 
|  |    599 |           pParse->nErr++;
 | 
|  |    600 |           goto insert_cleanup;
 | 
|  |    601 |         }
 | 
|  |    602 |       }
 | 
|  |    603 |     }
 | 
|  |    604 |   }
 | 
|  |    605 | 
 | 
|  |    606 |   /* If there is no IDLIST term but the table has an integer primary
 | 
|  |    607 |   ** key, the set the keyColumn variable to the primary key column index
 | 
|  |    608 |   ** in the original table definition.
 | 
|  |    609 |   */
 | 
|  |    610 |   if( pColumn==0 && nColumn>0 ){
 | 
|  |    611 |     keyColumn = pTab->iPKey;
 | 
|  |    612 |   }
 | 
|  |    613 | 
 | 
|  |    614 |   /* Open the temp table for FOR EACH ROW triggers
 | 
|  |    615 |   */
 | 
|  |    616 |   if( triggers_exist ){
 | 
|  |    617 |     sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
 | 
|  |    618 |     sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
 | 
|  |    619 |   }
 | 
|  |    620 |     
 | 
|  |    621 |   /* Initialize the count of rows to be inserted
 | 
|  |    622 |   */
 | 
|  |    623 |   if( db->flags & SQLITE_CountRows ){
 | 
|  |    624 |     iCntMem = pParse->nMem++;
 | 
|  |    625 |     sqlite3VdbeAddOp(v, OP_MemInt, 0, iCntMem);
 | 
|  |    626 |   }
 | 
|  |    627 | 
 | 
|  |    628 |   /* Open tables and indices if there are no row triggers */
 | 
|  |    629 |   if( !triggers_exist ){
 | 
|  |    630 |     base = pParse->nTab;
 | 
|  |    631 |     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
 | 
|  |    632 |   }
 | 
|  |    633 | 
 | 
|  |    634 |   /* If the data source is a temporary table, then we have to create
 | 
|  |    635 |   ** a loop because there might be multiple rows of data.  If the data
 | 
|  |    636 |   ** source is a subroutine call from the SELECT statement, then we need
 | 
|  |    637 |   ** to launch the SELECT statement processing.
 | 
|  |    638 |   */
 | 
|  |    639 |   if( useTempTable ){
 | 
|  |    640 |     iBreak = sqlite3VdbeMakeLabel(v);
 | 
|  |    641 |     sqlite3VdbeAddOp(v, OP_Rewind, srcTab, iBreak);
 | 
|  |    642 |     iCont = sqlite3VdbeCurrentAddr(v);
 | 
|  |    643 |   }else if( pSelect ){
 | 
|  |    644 |     sqlite3VdbeAddOp(v, OP_Goto, 0, iSelectLoop);
 | 
|  |    645 |     sqlite3VdbeResolveLabel(v, iInsertBlock);
 | 
|  |    646 |     sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
 | 
|  |    647 |   }
 | 
|  |    648 | 
 | 
|  |    649 |   /* Run the BEFORE and INSTEAD OF triggers, if there are any
 | 
|  |    650 |   */
 | 
|  |    651 |   endOfLoop = sqlite3VdbeMakeLabel(v);
 | 
|  |    652 |   if( triggers_exist & TRIGGER_BEFORE ){
 | 
|  |    653 | 
 | 
|  |    654 |     /* build the NEW.* reference row.  Note that if there is an INTEGER
 | 
|  |    655 |     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
 | 
|  |    656 |     ** translated into a unique ID for the row.  But on a BEFORE trigger,
 | 
|  |    657 |     ** we do not know what the unique ID will be (because the insert has
 | 
|  |    658 |     ** not happened yet) so we substitute a rowid of -1
 | 
|  |    659 |     */
 | 
|  |    660 |     if( keyColumn<0 ){
 | 
|  |    661 |       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
 | 
|  |    662 |     }else if( useTempTable ){
 | 
|  |    663 |       sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
 | 
|  |    664 |     }else{
 | 
|  |    665 |       assert( pSelect==0 );  /* Otherwise useTempTable is true */
 | 
|  |    666 |       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
 | 
|  |    667 |       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
 | 
|  |    668 |       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |    669 |       sqlite3VdbeAddOp(v, OP_Integer, -1, 0);
 | 
|  |    670 |       sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | 
|  |    671 |     }
 | 
|  |    672 | 
 | 
|  |    673 |     /* Cannot have triggers on a virtual table. If it were possible,
 | 
|  |    674 |     ** this block would have to account for hidden column.
 | 
|  |    675 |     */
 | 
|  |    676 |     assert(!IsVirtual(pTab));
 | 
|  |    677 | 
 | 
|  |    678 |     /* Create the new column data
 | 
|  |    679 |     */
 | 
|  |    680 |     for(i=0; i<pTab->nCol; i++){
 | 
|  |    681 |       if( pColumn==0 ){
 | 
|  |    682 |         j = i;
 | 
|  |    683 |       }else{
 | 
|  |    684 |         for(j=0; j<pColumn->nId; j++){
 | 
|  |    685 |           if( pColumn->a[j].idx==i ) break;
 | 
|  |    686 |         }
 | 
|  |    687 |       }
 | 
|  |    688 |       if( pColumn && j>=pColumn->nId ){
 | 
|  |    689 |         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
 | 
|  |    690 |       }else if( useTempTable ){
 | 
|  |    691 |         sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
 | 
|  |    692 |       }else{
 | 
|  |    693 |         assert( pSelect==0 ); /* Otherwise useTempTable is true */
 | 
|  |    694 |         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr);
 | 
|  |    695 |       }
 | 
|  |    696 |     }
 | 
|  |    697 |     sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
 | 
|  |    698 | 
 | 
|  |    699 |     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
 | 
|  |    700 |     ** do not attempt any conversions before assembling the record.
 | 
|  |    701 |     ** If this is a real table, attempt conversions as required by the
 | 
|  |    702 |     ** table column affinities.
 | 
|  |    703 |     */
 | 
|  |    704 |     if( !isView ){
 | 
|  |    705 |       sqlite3TableAffinityStr(v, pTab);
 | 
|  |    706 |     }
 | 
|  |    707 |     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
 | 
|  |    708 | 
 | 
|  |    709 |     /* Fire BEFORE or INSTEAD OF triggers */
 | 
|  |    710 |     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 
 | 
|  |    711 |         newIdx, -1, onError, endOfLoop) ){
 | 
|  |    712 |       goto insert_cleanup;
 | 
|  |    713 |     }
 | 
|  |    714 |   }
 | 
|  |    715 | 
 | 
|  |    716 |   /* If any triggers exists, the opening of tables and indices is deferred
 | 
|  |    717 |   ** until now.
 | 
|  |    718 |   */
 | 
|  |    719 |   if( triggers_exist && !isView ){
 | 
|  |    720 |     base = pParse->nTab;
 | 
|  |    721 |     sqlite3OpenTableAndIndices(pParse, pTab, base, OP_OpenWrite);
 | 
|  |    722 |   }
 | 
|  |    723 | 
 | 
|  |    724 |   /* Push the record number for the new entry onto the stack.  The
 | 
|  |    725 |   ** record number is a randomly generate integer created by NewRowid
 | 
|  |    726 |   ** except when the table has an INTEGER PRIMARY KEY column, in which
 | 
|  |    727 |   ** case the record number is the same as that column. 
 | 
|  |    728 |   */
 | 
|  |    729 |   if( !isView ){
 | 
|  |    730 |     if( IsVirtual(pTab) ){
 | 
|  |    731 |       /* The row that the VUpdate opcode will delete:  none */
 | 
|  |    732 |       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |    733 |     }
 | 
|  |    734 |     if( keyColumn>=0 ){
 | 
|  |    735 |       if( useTempTable ){
 | 
|  |    736 |         sqlite3VdbeAddOp(v, OP_Column, srcTab, keyColumn);
 | 
|  |    737 |       }else if( pSelect ){
 | 
|  |    738 |         sqlite3VdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
 | 
|  |    739 |       }else{
 | 
|  |    740 |         VdbeOp *pOp;
 | 
|  |    741 |         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr);
 | 
|  |    742 |         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
 | 
|  |    743 |         if( pOp && pOp->opcode==OP_Null ){
 | 
|  |    744 |           appendFlag = 1;
 | 
|  |    745 |           pOp->opcode = OP_NewRowid;
 | 
|  |    746 |           pOp->p1 = base;
 | 
|  |    747 |           pOp->p2 = counterMem;
 | 
|  |    748 |         }
 | 
|  |    749 |       }
 | 
|  |    750 |       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
 | 
|  |    751 |       ** to generate a unique primary key value.
 | 
|  |    752 |       */
 | 
|  |    753 |       if( !appendFlag ){
 | 
|  |    754 |         sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
 | 
|  |    755 |         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |    756 |         sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
 | 
|  |    757 |         sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
 | 
|  |    758 |       }
 | 
|  |    759 |     }else if( IsVirtual(pTab) ){
 | 
|  |    760 |       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |    761 |     }else{
 | 
|  |    762 |       sqlite3VdbeAddOp(v, OP_NewRowid, base, counterMem);
 | 
|  |    763 |       appendFlag = 1;
 | 
|  |    764 |     }
 | 
|  |    765 |     autoIncStep(pParse, counterMem);
 | 
|  |    766 | 
 | 
|  |    767 |     /* Push onto the stack, data for all columns of the new entry, beginning
 | 
|  |    768 |     ** with the first column.
 | 
|  |    769 |     */
 | 
|  |    770 |     nHidden = 0;
 | 
|  |    771 |     for(i=0; i<pTab->nCol; i++){
 | 
|  |    772 |       if( i==pTab->iPKey ){
 | 
|  |    773 |         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
 | 
|  |    774 |         ** Whenever this column is read, the record number will be substituted
 | 
|  |    775 |         ** in its place.  So will fill this column with a NULL to avoid
 | 
|  |    776 |         ** taking up data space with information that will never be used. */
 | 
|  |    777 |         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
 | 
|  |    778 |         continue;
 | 
|  |    779 |       }
 | 
|  |    780 |       if( pColumn==0 ){
 | 
|  |    781 |         if( IsHiddenColumn(&pTab->aCol[i]) ){
 | 
|  |    782 |           assert( IsVirtual(pTab) );
 | 
|  |    783 |           j = -1;
 | 
|  |    784 |           nHidden++;
 | 
|  |    785 |         }else{
 | 
|  |    786 |           j = i - nHidden;
 | 
|  |    787 |         }
 | 
|  |    788 |       }else{
 | 
|  |    789 |         for(j=0; j<pColumn->nId; j++){
 | 
|  |    790 |           if( pColumn->a[j].idx==i ) break;
 | 
|  |    791 |         }
 | 
|  |    792 |       }
 | 
|  |    793 |       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
 | 
|  |    794 |         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
 | 
|  |    795 |       }else if( useTempTable ){
 | 
|  |    796 |         sqlite3VdbeAddOp(v, OP_Column, srcTab, j); 
 | 
|  |    797 |       }else if( pSelect ){
 | 
|  |    798 |         sqlite3VdbeAddOp(v, OP_Dup, i+nColumn-j+IsVirtual(pTab), 1);
 | 
|  |    799 |       }else{
 | 
|  |    800 |         sqlite3ExprCode(pParse, pList->a[j].pExpr);
 | 
|  |    801 |       }
 | 
|  |    802 |     }
 | 
|  |    803 | 
 | 
|  |    804 |     /* Generate code to check constraints and generate index keys and
 | 
|  |    805 |     ** do the insertion.
 | 
|  |    806 |     */
 | 
|  |    807 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |    808 |     if( IsVirtual(pTab) ){
 | 
|  |    809 |       pParse->pVirtualLock = pTab;
 | 
|  |    810 |       sqlite3VdbeOp3(v, OP_VUpdate, 1, pTab->nCol+2,
 | 
|  |    811 |                      (const char*)pTab->pVtab, P3_VTAB);
 | 
|  |    812 |     }else
 | 
|  |    813 | #endif
 | 
|  |    814 |     {
 | 
|  |    815 |       sqlite3GenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
 | 
|  |    816 |                                      0, onError, endOfLoop);
 | 
|  |    817 |       sqlite3CompleteInsertion(pParse, pTab, base, 0,0,0,
 | 
|  |    818 |                             (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
 | 
|  |    819 |                             appendFlag);
 | 
|  |    820 |     }
 | 
|  |    821 |   }
 | 
|  |    822 | 
 | 
|  |    823 |   /* Update the count of rows that are inserted
 | 
|  |    824 |   */
 | 
|  |    825 |   if( (db->flags & SQLITE_CountRows)!=0 ){
 | 
|  |    826 |     sqlite3VdbeAddOp(v, OP_MemIncr, 1, iCntMem);
 | 
|  |    827 |   }
 | 
|  |    828 | 
 | 
|  |    829 |   if( triggers_exist ){
 | 
|  |    830 |     /* Close all tables opened */
 | 
|  |    831 |     if( !isView ){
 | 
|  |    832 |       sqlite3VdbeAddOp(v, OP_Close, base, 0);
 | 
|  |    833 |       for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
 | 
|  |    834 |         sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
 | 
|  |    835 |       }
 | 
|  |    836 |     }
 | 
|  |    837 | 
 | 
|  |    838 |     /* Code AFTER triggers */
 | 
|  |    839 |     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
 | 
|  |    840 |           newIdx, -1, onError, endOfLoop) ){
 | 
|  |    841 |       goto insert_cleanup;
 | 
|  |    842 |     }
 | 
|  |    843 |   }
 | 
|  |    844 | 
 | 
|  |    845 |   /* The bottom of the loop, if the data source is a SELECT statement
 | 
|  |    846 |   */
 | 
|  |    847 |   sqlite3VdbeResolveLabel(v, endOfLoop);
 | 
|  |    848 |   if( useTempTable ){
 | 
|  |    849 |     sqlite3VdbeAddOp(v, OP_Next, srcTab, iCont);
 | 
|  |    850 |     sqlite3VdbeResolveLabel(v, iBreak);
 | 
|  |    851 |     sqlite3VdbeAddOp(v, OP_Close, srcTab, 0);
 | 
|  |    852 |   }else if( pSelect ){
 | 
|  |    853 |     sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
 | 
|  |    854 |     sqlite3VdbeAddOp(v, OP_Return, 0, 0);
 | 
|  |    855 |     sqlite3VdbeResolveLabel(v, iCleanup);
 | 
|  |    856 |   }
 | 
|  |    857 | 
 | 
|  |    858 |   if( !triggers_exist && !IsVirtual(pTab) ){
 | 
|  |    859 |     /* Close all tables opened */
 | 
|  |    860 |     sqlite3VdbeAddOp(v, OP_Close, base, 0);
 | 
|  |    861 |     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
 | 
|  |    862 |       sqlite3VdbeAddOp(v, OP_Close, idx+base, 0);
 | 
|  |    863 |     }
 | 
|  |    864 |   }
 | 
|  |    865 | 
 | 
|  |    866 |   /* Update the sqlite_sequence table by storing the content of the
 | 
|  |    867 |   ** counter value in memory counterMem back into the sqlite_sequence
 | 
|  |    868 |   ** table.
 | 
|  |    869 |   */
 | 
|  |    870 |   autoIncEnd(pParse, iDb, pTab, counterMem);
 | 
|  |    871 | 
 | 
|  |    872 |   /*
 | 
|  |    873 |   ** Return the number of rows inserted. If this routine is 
 | 
|  |    874 |   ** generating code because of a call to sqlite3NestedParse(), do not
 | 
|  |    875 |   ** invoke the callback function.
 | 
|  |    876 |   */
 | 
|  |    877 |   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
 | 
|  |    878 |     sqlite3VdbeAddOp(v, OP_MemLoad, iCntMem, 0);
 | 
|  |    879 |     sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
 | 
|  |    880 |     sqlite3VdbeSetNumCols(v, 1);
 | 
|  |    881 |     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P3_STATIC);
 | 
|  |    882 |   }
 | 
|  |    883 | 
 | 
|  |    884 | insert_cleanup:
 | 
|  |    885 |   sqlite3SrcListDelete(pTabList);
 | 
|  |    886 |   sqlite3ExprListDelete(pList);
 | 
|  |    887 |   sqlite3SelectDelete(pSelect);
 | 
|  |    888 |   sqlite3IdListDelete(pColumn);
 | 
|  |    889 | }
 | 
|  |    890 | 
 | 
|  |    891 | /*
 | 
|  |    892 | ** Generate code to do a constraint check prior to an INSERT or an UPDATE.
 | 
|  |    893 | **
 | 
|  |    894 | ** When this routine is called, the stack contains (from bottom to top)
 | 
|  |    895 | ** the following values:
 | 
|  |    896 | **
 | 
|  |    897 | **    1.  The rowid of the row to be updated before the update.  This
 | 
|  |    898 | **        value is omitted unless we are doing an UPDATE that involves a
 | 
|  |    899 | **        change to the record number.
 | 
|  |    900 | **
 | 
|  |    901 | **    2.  The rowid of the row after the update.
 | 
|  |    902 | **
 | 
|  |    903 | **    3.  The data in the first column of the entry after the update.
 | 
|  |    904 | **
 | 
|  |    905 | **    i.  Data from middle columns...
 | 
|  |    906 | **
 | 
|  |    907 | **    N.  The data in the last column of the entry after the update.
 | 
|  |    908 | **
 | 
|  |    909 | ** The old rowid shown as entry (1) above is omitted unless both isUpdate
 | 
|  |    910 | ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
 | 
|  |    911 | ** INSERTs and rowidChng is true if the record number is being changed.
 | 
|  |    912 | **
 | 
|  |    913 | ** The code generated by this routine pushes additional entries onto
 | 
|  |    914 | ** the stack which are the keys for new index entries for the new record.
 | 
|  |    915 | ** The order of index keys is the same as the order of the indices on
 | 
|  |    916 | ** the pTable->pIndex list.  A key is only created for index i if 
 | 
|  |    917 | ** aIdxUsed!=0 and aIdxUsed[i]!=0.
 | 
|  |    918 | **
 | 
|  |    919 | ** This routine also generates code to check constraints.  NOT NULL,
 | 
|  |    920 | ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
 | 
|  |    921 | ** then the appropriate action is performed.  There are five possible
 | 
|  |    922 | ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
 | 
|  |    923 | **
 | 
|  |    924 | **  Constraint type  Action       What Happens
 | 
|  |    925 | **  ---------------  ----------   ----------------------------------------
 | 
|  |    926 | **  any              ROLLBACK     The current transaction is rolled back and
 | 
|  |    927 | **                                sqlite3_exec() returns immediately with a
 | 
|  |    928 | **                                return code of SQLITE_CONSTRAINT.
 | 
|  |    929 | **
 | 
|  |    930 | **  any              ABORT        Back out changes from the current command
 | 
|  |    931 | **                                only (do not do a complete rollback) then
 | 
|  |    932 | **                                cause sqlite3_exec() to return immediately
 | 
|  |    933 | **                                with SQLITE_CONSTRAINT.
 | 
|  |    934 | **
 | 
|  |    935 | **  any              FAIL         Sqlite_exec() returns immediately with a
 | 
|  |    936 | **                                return code of SQLITE_CONSTRAINT.  The
 | 
|  |    937 | **                                transaction is not rolled back and any
 | 
|  |    938 | **                                prior changes are retained.
 | 
|  |    939 | **
 | 
|  |    940 | **  any              IGNORE       The record number and data is popped from
 | 
|  |    941 | **                                the stack and there is an immediate jump
 | 
|  |    942 | **                                to label ignoreDest.
 | 
|  |    943 | **
 | 
|  |    944 | **  NOT NULL         REPLACE      The NULL value is replace by the default
 | 
|  |    945 | **                                value for that column.  If the default value
 | 
|  |    946 | **                                is NULL, the action is the same as ABORT.
 | 
|  |    947 | **
 | 
|  |    948 | **  UNIQUE           REPLACE      The other row that conflicts with the row
 | 
|  |    949 | **                                being inserted is removed.
 | 
|  |    950 | **
 | 
|  |    951 | **  CHECK            REPLACE      Illegal.  The results in an exception.
 | 
|  |    952 | **
 | 
|  |    953 | ** Which action to take is determined by the overrideError parameter.
 | 
|  |    954 | ** Or if overrideError==OE_Default, then the pParse->onError parameter
 | 
|  |    955 | ** is used.  Or if pParse->onError==OE_Default then the onError value
 | 
|  |    956 | ** for the constraint is used.
 | 
|  |    957 | **
 | 
|  |    958 | ** The calling routine must open a read/write cursor for pTab with
 | 
|  |    959 | ** cursor number "base".  All indices of pTab must also have open
 | 
|  |    960 | ** read/write cursors with cursor number base+i for the i-th cursor.
 | 
|  |    961 | ** Except, if there is no possibility of a REPLACE action then
 | 
|  |    962 | ** cursors do not need to be open for indices where aIdxUsed[i]==0.
 | 
|  |    963 | **
 | 
|  |    964 | ** If the isUpdate flag is true, it means that the "base" cursor is
 | 
|  |    965 | ** initially pointing to an entry that is being updated.  The isUpdate
 | 
|  |    966 | ** flag causes extra code to be generated so that the "base" cursor
 | 
|  |    967 | ** is still pointing at the same entry after the routine returns.
 | 
|  |    968 | ** Without the isUpdate flag, the "base" cursor might be moved.
 | 
|  |    969 | */
 | 
|  |    970 | void sqlite3GenerateConstraintChecks(
 | 
|  |    971 |   Parse *pParse,      /* The parser context */
 | 
|  |    972 |   Table *pTab,        /* the table into which we are inserting */
 | 
|  |    973 |   int base,           /* Index of a read/write cursor pointing at pTab */
 | 
|  |    974 |   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
 | 
|  |    975 |   int rowidChng,      /* True if the record number will change */
 | 
|  |    976 |   int isUpdate,       /* True for UPDATE, False for INSERT */
 | 
|  |    977 |   int overrideError,  /* Override onError to this if not OE_Default */
 | 
|  |    978 |   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
 | 
|  |    979 | ){
 | 
|  |    980 |   int i;
 | 
|  |    981 |   Vdbe *v;
 | 
|  |    982 |   int nCol;
 | 
|  |    983 |   int onError;
 | 
|  |    984 |   int addr;
 | 
|  |    985 |   int extra;
 | 
|  |    986 |   int iCur;
 | 
|  |    987 |   Index *pIdx;
 | 
|  |    988 |   int seenReplace = 0;
 | 
|  |    989 |   int jumpInst1=0, jumpInst2;
 | 
|  |    990 |   int hasTwoRowids = (isUpdate && rowidChng);
 | 
|  |    991 | 
 | 
|  |    992 |   v = sqlite3GetVdbe(pParse);
 | 
|  |    993 |   assert( v!=0 );
 | 
|  |    994 |   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
 | 
|  |    995 |   nCol = pTab->nCol;
 | 
|  |    996 | 
 | 
|  |    997 |   /* Test all NOT NULL constraints.
 | 
|  |    998 |   */
 | 
|  |    999 |   for(i=0; i<nCol; i++){
 | 
|  |   1000 |     if( i==pTab->iPKey ){
 | 
|  |   1001 |       continue;
 | 
|  |   1002 |     }
 | 
|  |   1003 |     onError = pTab->aCol[i].notNull;
 | 
|  |   1004 |     if( onError==OE_None ) continue;
 | 
|  |   1005 |     if( overrideError!=OE_Default ){
 | 
|  |   1006 |       onError = overrideError;
 | 
|  |   1007 |     }else if( onError==OE_Default ){
 | 
|  |   1008 |       onError = OE_Abort;
 | 
|  |   1009 |     }
 | 
|  |   1010 |     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
 | 
|  |   1011 |       onError = OE_Abort;
 | 
|  |   1012 |     }
 | 
|  |   1013 |     sqlite3VdbeAddOp(v, OP_Dup, nCol-1-i, 1);
 | 
|  |   1014 |     addr = sqlite3VdbeAddOp(v, OP_NotNull, 1, 0);
 | 
|  |   1015 |     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
 | 
|  |   1016 |         || onError==OE_Ignore || onError==OE_Replace );
 | 
|  |   1017 |     switch( onError ){
 | 
|  |   1018 |       case OE_Rollback:
 | 
|  |   1019 |       case OE_Abort:
 | 
|  |   1020 |       case OE_Fail: {
 | 
|  |   1021 |         char *zMsg = 0;
 | 
|  |   1022 |         sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
 | 
|  |   1023 |         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
 | 
|  |   1024 |                         " may not be NULL", (char*)0);
 | 
|  |   1025 |         sqlite3VdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
 | 
|  |   1026 |         break;
 | 
|  |   1027 |       }
 | 
|  |   1028 |       case OE_Ignore: {
 | 
|  |   1029 |         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
 | 
|  |   1030 |         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | 
|  |   1031 |         break;
 | 
|  |   1032 |       }
 | 
|  |   1033 |       case OE_Replace: {
 | 
|  |   1034 |         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt);
 | 
|  |   1035 |         sqlite3VdbeAddOp(v, OP_Push, nCol-i, 0);
 | 
|  |   1036 |         break;
 | 
|  |   1037 |       }
 | 
|  |   1038 |     }
 | 
|  |   1039 |     sqlite3VdbeJumpHere(v, addr);
 | 
|  |   1040 |   }
 | 
|  |   1041 | 
 | 
|  |   1042 |   /* Test all CHECK constraints
 | 
|  |   1043 |   */
 | 
|  |   1044 | #ifndef SQLITE_OMIT_CHECK
 | 
|  |   1045 |   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
 | 
|  |   1046 |     int allOk = sqlite3VdbeMakeLabel(v);
 | 
|  |   1047 |     assert( pParse->ckOffset==0 );
 | 
|  |   1048 |     pParse->ckOffset = nCol;
 | 
|  |   1049 |     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, 1);
 | 
|  |   1050 |     assert( pParse->ckOffset==nCol );
 | 
|  |   1051 |     pParse->ckOffset = 0;
 | 
|  |   1052 |     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
 | 
|  |   1053 |     if( onError==OE_Ignore ){
 | 
|  |   1054 |       sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
 | 
|  |   1055 |       sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | 
|  |   1056 |     }else{
 | 
|  |   1057 |       sqlite3VdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
 | 
|  |   1058 |     }
 | 
|  |   1059 |     sqlite3VdbeResolveLabel(v, allOk);
 | 
|  |   1060 |   }
 | 
|  |   1061 | #endif /* !defined(SQLITE_OMIT_CHECK) */
 | 
|  |   1062 | 
 | 
|  |   1063 |   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
 | 
|  |   1064 |   ** of the new record does not previously exist.  Except, if this
 | 
|  |   1065 |   ** is an UPDATE and the primary key is not changing, that is OK.
 | 
|  |   1066 |   */
 | 
|  |   1067 |   if( rowidChng ){
 | 
|  |   1068 |     onError = pTab->keyConf;
 | 
|  |   1069 |     if( overrideError!=OE_Default ){
 | 
|  |   1070 |       onError = overrideError;
 | 
|  |   1071 |     }else if( onError==OE_Default ){
 | 
|  |   1072 |       onError = OE_Abort;
 | 
|  |   1073 |     }
 | 
|  |   1074 |     
 | 
|  |   1075 |     if( isUpdate ){
 | 
|  |   1076 |       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
 | 
|  |   1077 |       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
 | 
|  |   1078 |       jumpInst1 = sqlite3VdbeAddOp(v, OP_Eq, 0, 0);
 | 
|  |   1079 |     }
 | 
|  |   1080 |     sqlite3VdbeAddOp(v, OP_Dup, nCol, 1);
 | 
|  |   1081 |     jumpInst2 = sqlite3VdbeAddOp(v, OP_NotExists, base, 0);
 | 
|  |   1082 |     switch( onError ){
 | 
|  |   1083 |       default: {
 | 
|  |   1084 |         onError = OE_Abort;
 | 
|  |   1085 |         /* Fall thru into the next case */
 | 
|  |   1086 |       }
 | 
|  |   1087 |       case OE_Rollback:
 | 
|  |   1088 |       case OE_Abort:
 | 
|  |   1089 |       case OE_Fail: {
 | 
|  |   1090 |         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
 | 
|  |   1091 |                          "PRIMARY KEY must be unique", P3_STATIC);
 | 
|  |   1092 |         break;
 | 
|  |   1093 |       }
 | 
|  |   1094 |       case OE_Replace: {
 | 
|  |   1095 |         sqlite3GenerateRowIndexDelete(v, pTab, base, 0);
 | 
|  |   1096 |         if( isUpdate ){
 | 
|  |   1097 |           sqlite3VdbeAddOp(v, OP_Dup, nCol+hasTwoRowids, 1);
 | 
|  |   1098 |           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | 
|  |   1099 |         }
 | 
|  |   1100 |         seenReplace = 1;
 | 
|  |   1101 |         break;
 | 
|  |   1102 |       }
 | 
|  |   1103 |       case OE_Ignore: {
 | 
|  |   1104 |         assert( seenReplace==0 );
 | 
|  |   1105 |         sqlite3VdbeAddOp(v, OP_Pop, nCol+1+hasTwoRowids, 0);
 | 
|  |   1106 |         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | 
|  |   1107 |         break;
 | 
|  |   1108 |       }
 | 
|  |   1109 |     }
 | 
|  |   1110 |     sqlite3VdbeJumpHere(v, jumpInst2);
 | 
|  |   1111 |     if( isUpdate ){
 | 
|  |   1112 |       sqlite3VdbeJumpHere(v, jumpInst1);
 | 
|  |   1113 |       sqlite3VdbeAddOp(v, OP_Dup, nCol+1, 1);
 | 
|  |   1114 |       sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | 
|  |   1115 |     }
 | 
|  |   1116 |   }
 | 
|  |   1117 | 
 | 
|  |   1118 |   /* Test all UNIQUE constraints by creating entries for each UNIQUE
 | 
|  |   1119 |   ** index and making sure that duplicate entries do not already exist.
 | 
|  |   1120 |   ** Add the new records to the indices as we go.
 | 
|  |   1121 |   */
 | 
|  |   1122 |   extra = -1;
 | 
|  |   1123 |   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
 | 
|  |   1124 |     if( aIdxUsed && aIdxUsed[iCur]==0 ) continue;  /* Skip unused indices */
 | 
|  |   1125 |     extra++;
 | 
|  |   1126 | 
 | 
|  |   1127 |     /* Create a key for accessing the index entry */
 | 
|  |   1128 |     sqlite3VdbeAddOp(v, OP_Dup, nCol+extra, 1);
 | 
|  |   1129 |     for(i=0; i<pIdx->nColumn; i++){
 | 
|  |   1130 |       int idx = pIdx->aiColumn[i];
 | 
|  |   1131 |       if( idx==pTab->iPKey ){
 | 
|  |   1132 |         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
 | 
|  |   1133 |       }else{
 | 
|  |   1134 |         sqlite3VdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
 | 
|  |   1135 |       }
 | 
|  |   1136 |     }
 | 
|  |   1137 |     jumpInst1 = sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
 | 
|  |   1138 |     sqlite3IndexAffinityStr(v, pIdx);
 | 
|  |   1139 | 
 | 
|  |   1140 |     /* Find out what action to take in case there is an indexing conflict */
 | 
|  |   1141 |     onError = pIdx->onError;
 | 
|  |   1142 |     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
 | 
|  |   1143 |     if( overrideError!=OE_Default ){
 | 
|  |   1144 |       onError = overrideError;
 | 
|  |   1145 |     }else if( onError==OE_Default ){
 | 
|  |   1146 |       onError = OE_Abort;
 | 
|  |   1147 |     }
 | 
|  |   1148 |     if( seenReplace ){
 | 
|  |   1149 |       if( onError==OE_Ignore ) onError = OE_Replace;
 | 
|  |   1150 |       else if( onError==OE_Fail ) onError = OE_Abort;
 | 
|  |   1151 |     }
 | 
|  |   1152 |     
 | 
|  |   1153 | 
 | 
|  |   1154 |     /* Check to see if the new index entry will be unique */
 | 
|  |   1155 |     sqlite3VdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRowids, 1);
 | 
|  |   1156 |     jumpInst2 = sqlite3VdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
 | 
|  |   1157 | 
 | 
|  |   1158 |     /* Generate code that executes if the new index entry is not unique */
 | 
|  |   1159 |     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
 | 
|  |   1160 |         || onError==OE_Ignore || onError==OE_Replace );
 | 
|  |   1161 |     switch( onError ){
 | 
|  |   1162 |       case OE_Rollback:
 | 
|  |   1163 |       case OE_Abort:
 | 
|  |   1164 |       case OE_Fail: {
 | 
|  |   1165 |         int j, n1, n2;
 | 
|  |   1166 |         char zErrMsg[200];
 | 
|  |   1167 |         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
 | 
|  |   1168 |                          pIdx->nColumn>1 ? "columns " : "column ");
 | 
|  |   1169 |         n1 = strlen(zErrMsg);
 | 
|  |   1170 |         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
 | 
|  |   1171 |           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
 | 
|  |   1172 |           n2 = strlen(zCol);
 | 
|  |   1173 |           if( j>0 ){
 | 
|  |   1174 |             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
 | 
|  |   1175 |             n1 += 2;
 | 
|  |   1176 |           }
 | 
|  |   1177 |           if( n1+n2>sizeof(zErrMsg)-30 ){
 | 
|  |   1178 |             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
 | 
|  |   1179 |             n1 += 3;
 | 
|  |   1180 |             break;
 | 
|  |   1181 |           }else{
 | 
|  |   1182 |             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
 | 
|  |   1183 |             n1 += n2;
 | 
|  |   1184 |           }
 | 
|  |   1185 |         }
 | 
|  |   1186 |         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 
 | 
|  |   1187 |             pIdx->nColumn>1 ? " are not unique" : " is not unique");
 | 
|  |   1188 |         sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
 | 
|  |   1189 |         break;
 | 
|  |   1190 |       }
 | 
|  |   1191 |       case OE_Ignore: {
 | 
|  |   1192 |         assert( seenReplace==0 );
 | 
|  |   1193 |         sqlite3VdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRowids, 0);
 | 
|  |   1194 |         sqlite3VdbeAddOp(v, OP_Goto, 0, ignoreDest);
 | 
|  |   1195 |         break;
 | 
|  |   1196 |       }
 | 
|  |   1197 |       case OE_Replace: {
 | 
|  |   1198 |         sqlite3GenerateRowDelete(pParse->db, v, pTab, base, 0);
 | 
|  |   1199 |         if( isUpdate ){
 | 
|  |   1200 |           sqlite3VdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRowids, 1);
 | 
|  |   1201 |           sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
 | 
|  |   1202 |         }
 | 
|  |   1203 |         seenReplace = 1;
 | 
|  |   1204 |         break;
 | 
|  |   1205 |       }
 | 
|  |   1206 |     }
 | 
|  |   1207 | #if NULL_DISTINCT_FOR_UNIQUE
 | 
|  |   1208 |     sqlite3VdbeJumpHere(v, jumpInst1);
 | 
|  |   1209 | #endif
 | 
|  |   1210 |     sqlite3VdbeJumpHere(v, jumpInst2);
 | 
|  |   1211 |   }
 | 
|  |   1212 | }
 | 
|  |   1213 | 
 | 
|  |   1214 | /*
 | 
|  |   1215 | ** This routine generates code to finish the INSERT or UPDATE operation
 | 
|  |   1216 | ** that was started by a prior call to sqlite3GenerateConstraintChecks.
 | 
|  |   1217 | ** The stack must contain keys for all active indices followed by data
 | 
|  |   1218 | ** and the rowid for the new entry.  This routine creates the new
 | 
|  |   1219 | ** entries in all indices and in the main table.
 | 
|  |   1220 | **
 | 
|  |   1221 | ** The arguments to this routine should be the same as the first six
 | 
|  |   1222 | ** arguments to sqlite3GenerateConstraintChecks.
 | 
|  |   1223 | */
 | 
|  |   1224 | void sqlite3CompleteInsertion(
 | 
|  |   1225 |   Parse *pParse,      /* The parser context */
 | 
|  |   1226 |   Table *pTab,        /* the table into which we are inserting */
 | 
|  |   1227 |   int base,           /* Index of a read/write cursor pointing at pTab */
 | 
|  |   1228 |   char *aIdxUsed,     /* Which indices are used.  NULL means all are used */
 | 
|  |   1229 |   int rowidChng,      /* True if the record number will change */
 | 
|  |   1230 |   int isUpdate,       /* True for UPDATE, False for INSERT */
 | 
|  |   1231 |   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
 | 
|  |   1232 |   int appendBias      /* True if this is likely to be an append */
 | 
|  |   1233 | ){
 | 
|  |   1234 |   int i;
 | 
|  |   1235 |   Vdbe *v;
 | 
|  |   1236 |   int nIdx;
 | 
|  |   1237 |   Index *pIdx;
 | 
|  |   1238 |   int pik_flags;
 | 
|  |   1239 | 
 | 
|  |   1240 |   v = sqlite3GetVdbe(pParse);
 | 
|  |   1241 |   assert( v!=0 );
 | 
|  |   1242 |   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
 | 
|  |   1243 |   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
 | 
|  |   1244 |   for(i=nIdx-1; i>=0; i--){
 | 
|  |   1245 |     if( aIdxUsed && aIdxUsed[i]==0 ) continue;
 | 
|  |   1246 |     sqlite3VdbeAddOp(v, OP_IdxInsert, base+i+1, 0);
 | 
|  |   1247 |   }
 | 
|  |   1248 |   sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
 | 
|  |   1249 |   sqlite3TableAffinityStr(v, pTab);
 | 
|  |   1250 | #ifndef SQLITE_OMIT_TRIGGER
 | 
|  |   1251 |   if( newIdx>=0 ){
 | 
|  |   1252 |     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
 | 
|  |   1253 |     sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
 | 
|  |   1254 |     sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
 | 
|  |   1255 |   }
 | 
|  |   1256 | #endif
 | 
|  |   1257 |   if( pParse->nested ){
 | 
|  |   1258 |     pik_flags = 0;
 | 
|  |   1259 |   }else{
 | 
|  |   1260 |     pik_flags = OPFLAG_NCHANGE;
 | 
|  |   1261 |     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
 | 
|  |   1262 |   }
 | 
|  |   1263 |   if( appendBias ){
 | 
|  |   1264 |     pik_flags |= OPFLAG_APPEND;
 | 
|  |   1265 |   }
 | 
|  |   1266 |   sqlite3VdbeAddOp(v, OP_Insert, base, pik_flags);
 | 
|  |   1267 |   if( !pParse->nested ){
 | 
|  |   1268 |     sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
 | 
|  |   1269 |   }
 | 
|  |   1270 |   
 | 
|  |   1271 |   if( isUpdate && rowidChng ){
 | 
|  |   1272 |     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
 | 
|  |   1273 |   }
 | 
|  |   1274 | }
 | 
|  |   1275 | 
 | 
|  |   1276 | /*
 | 
|  |   1277 | ** Generate code that will open cursors for a table and for all
 | 
|  |   1278 | ** indices of that table.  The "base" parameter is the cursor number used
 | 
|  |   1279 | ** for the table.  Indices are opened on subsequent cursors.
 | 
|  |   1280 | */
 | 
|  |   1281 | void sqlite3OpenTableAndIndices(
 | 
|  |   1282 |   Parse *pParse,   /* Parsing context */
 | 
|  |   1283 |   Table *pTab,     /* Table to be opened */
 | 
|  |   1284 |   int base,        /* Cursor number assigned to the table */
 | 
|  |   1285 |   int op           /* OP_OpenRead or OP_OpenWrite */
 | 
|  |   1286 | ){
 | 
|  |   1287 |   int i;
 | 
|  |   1288 |   int iDb;
 | 
|  |   1289 |   Index *pIdx;
 | 
|  |   1290 |   Vdbe *v;
 | 
|  |   1291 | 
 | 
|  |   1292 |   if( IsVirtual(pTab) ) return;
 | 
|  |   1293 |   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | 
|  |   1294 |   v = sqlite3GetVdbe(pParse);
 | 
|  |   1295 |   assert( v!=0 );
 | 
|  |   1296 |   sqlite3OpenTable(pParse, base, iDb, pTab, op);
 | 
|  |   1297 |   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
 | 
|  |   1298 |     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | 
|  |   1299 |     assert( pIdx->pSchema==pTab->pSchema );
 | 
|  |   1300 |     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
 | 
|  |   1301 |     VdbeComment((v, "# %s", pIdx->zName));
 | 
|  |   1302 |     sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)pKey, P3_KEYINFO_HANDOFF);
 | 
|  |   1303 |   }
 | 
|  |   1304 |   if( pParse->nTab<=base+i ){
 | 
|  |   1305 |     pParse->nTab = base+i;
 | 
|  |   1306 |   }
 | 
|  |   1307 | }
 | 
|  |   1308 | 
 | 
|  |   1309 | 
 | 
|  |   1310 | #ifdef SQLITE_TEST
 | 
|  |   1311 | /*
 | 
|  |   1312 | ** The following global variable is incremented whenever the
 | 
|  |   1313 | ** transfer optimization is used.  This is used for testing
 | 
|  |   1314 | ** purposes only - to make sure the transfer optimization really
 | 
|  |   1315 | ** is happening when it is suppose to.
 | 
|  |   1316 | */
 | 
|  |   1317 | int sqlite3_xferopt_count;
 | 
|  |   1318 | #endif /* SQLITE_TEST */
 | 
|  |   1319 | 
 | 
|  |   1320 | 
 | 
|  |   1321 | #ifndef SQLITE_OMIT_XFER_OPT
 | 
|  |   1322 | /*
 | 
|  |   1323 | ** Check to collation names to see if they are compatible.
 | 
|  |   1324 | */
 | 
|  |   1325 | static int xferCompatibleCollation(const char *z1, const char *z2){
 | 
|  |   1326 |   if( z1==0 ){
 | 
|  |   1327 |     return z2==0;
 | 
|  |   1328 |   }
 | 
|  |   1329 |   if( z2==0 ){
 | 
|  |   1330 |     return 0;
 | 
|  |   1331 |   }
 | 
|  |   1332 |   return sqlite3StrICmp(z1, z2)==0;
 | 
|  |   1333 | }
 | 
|  |   1334 | 
 | 
|  |   1335 | 
 | 
|  |   1336 | /*
 | 
|  |   1337 | ** Check to see if index pSrc is compatible as a source of data
 | 
|  |   1338 | ** for index pDest in an insert transfer optimization.  The rules
 | 
|  |   1339 | ** for a compatible index:
 | 
|  |   1340 | **
 | 
|  |   1341 | **    *   The index is over the same set of columns
 | 
|  |   1342 | **    *   The same DESC and ASC markings occurs on all columns
 | 
|  |   1343 | **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
 | 
|  |   1344 | **    *   The same collating sequence on each column
 | 
|  |   1345 | */
 | 
|  |   1346 | static int xferCompatibleIndex(Index *pDest, Index *pSrc){
 | 
|  |   1347 |   int i;
 | 
|  |   1348 |   assert( pDest && pSrc );
 | 
|  |   1349 |   assert( pDest->pTable!=pSrc->pTable );
 | 
|  |   1350 |   if( pDest->nColumn!=pSrc->nColumn ){
 | 
|  |   1351 |     return 0;   /* Different number of columns */
 | 
|  |   1352 |   }
 | 
|  |   1353 |   if( pDest->onError!=pSrc->onError ){
 | 
|  |   1354 |     return 0;   /* Different conflict resolution strategies */
 | 
|  |   1355 |   }
 | 
|  |   1356 |   for(i=0; i<pSrc->nColumn; i++){
 | 
|  |   1357 |     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
 | 
|  |   1358 |       return 0;   /* Different columns indexed */
 | 
|  |   1359 |     }
 | 
|  |   1360 |     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
 | 
|  |   1361 |       return 0;   /* Different sort orders */
 | 
|  |   1362 |     }
 | 
|  |   1363 |     if( pSrc->azColl[i]!=pDest->azColl[i] ){
 | 
|  |   1364 |       return 0;   /* Different sort orders */
 | 
|  |   1365 |     }
 | 
|  |   1366 |   }
 | 
|  |   1367 | 
 | 
|  |   1368 |   /* If no test above fails then the indices must be compatible */
 | 
|  |   1369 |   return 1;
 | 
|  |   1370 | }
 | 
|  |   1371 | 
 | 
|  |   1372 | /*
 | 
|  |   1373 | ** Attempt the transfer optimization on INSERTs of the form
 | 
|  |   1374 | **
 | 
|  |   1375 | **     INSERT INTO tab1 SELECT * FROM tab2;
 | 
|  |   1376 | **
 | 
|  |   1377 | ** This optimization is only attempted if
 | 
|  |   1378 | **
 | 
|  |   1379 | **    (1)  tab1 and tab2 have identical schemas including all the
 | 
|  |   1380 | **         same indices and constraints
 | 
|  |   1381 | **
 | 
|  |   1382 | **    (2)  tab1 and tab2 are different tables
 | 
|  |   1383 | **
 | 
|  |   1384 | **    (3)  There must be no triggers on tab1
 | 
|  |   1385 | **
 | 
|  |   1386 | **    (4)  The result set of the SELECT statement is "*"
 | 
|  |   1387 | **
 | 
|  |   1388 | **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
 | 
|  |   1389 | **         or LIMIT clause.
 | 
|  |   1390 | **
 | 
|  |   1391 | **    (6)  The SELECT statement is a simple (not a compound) select that
 | 
|  |   1392 | **         contains only tab2 in its FROM clause
 | 
|  |   1393 | **
 | 
|  |   1394 | ** This method for implementing the INSERT transfers raw records from
 | 
|  |   1395 | ** tab2 over to tab1.  The columns are not decoded.  Raw records from
 | 
|  |   1396 | ** the indices of tab2 are transfered to tab1 as well.  In so doing,
 | 
|  |   1397 | ** the resulting tab1 has much less fragmentation.
 | 
|  |   1398 | **
 | 
|  |   1399 | ** This routine returns TRUE if the optimization is attempted.  If any
 | 
|  |   1400 | ** of the conditions above fail so that the optimization should not
 | 
|  |   1401 | ** be attempted, then this routine returns FALSE.
 | 
|  |   1402 | */
 | 
|  |   1403 | static int xferOptimization(
 | 
|  |   1404 |   Parse *pParse,        /* Parser context */
 | 
|  |   1405 |   Table *pDest,         /* The table we are inserting into */
 | 
|  |   1406 |   Select *pSelect,      /* A SELECT statement to use as the data source */
 | 
|  |   1407 |   int onError,          /* How to handle constraint errors */
 | 
|  |   1408 |   int iDbDest           /* The database of pDest */
 | 
|  |   1409 | ){
 | 
|  |   1410 |   ExprList *pEList;                /* The result set of the SELECT */
 | 
|  |   1411 |   Table *pSrc;                     /* The table in the FROM clause of SELECT */
 | 
|  |   1412 |   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
 | 
|  |   1413 |   SrcList::SrcList_item *pItem;      /* An element of pSelect->pSrc */
 | 
|  |   1414 |   int i;                           /* Loop counter */
 | 
|  |   1415 |   int iDbSrc;                      /* The database of pSrc */
 | 
|  |   1416 |   int iSrc, iDest;                 /* Cursors from source and destination */
 | 
|  |   1417 |   int addr1, addr2;                /* Loop addresses */
 | 
|  |   1418 |   int emptyDestTest;               /* Address of test for empty pDest */
 | 
|  |   1419 |   int emptySrcTest;                /* Address of test for empty pSrc */
 | 
|  |   1420 |   Vdbe *v;                         /* The VDBE we are building */
 | 
|  |   1421 |   KeyInfo *pKey;                   /* Key information for an index */
 | 
|  |   1422 |   int counterMem;                  /* Memory register used by AUTOINC */
 | 
|  |   1423 |   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
 | 
|  |   1424 | 
 | 
|  |   1425 |   if( pSelect==0 ){
 | 
|  |   1426 |     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
 | 
|  |   1427 |   }
 | 
|  |   1428 |   if( pDest->pTrigger ){
 | 
|  |   1429 |     return 0;   /* tab1 must not have triggers */
 | 
|  |   1430 |   }
 | 
|  |   1431 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   1432 |   if( pDest->isVirtual ){
 | 
|  |   1433 |     return 0;   /* tab1 must not be a virtual table */
 | 
|  |   1434 |   }
 | 
|  |   1435 | #endif
 | 
|  |   1436 |   if( onError==OE_Default ){
 | 
|  |   1437 |     onError = OE_Abort;
 | 
|  |   1438 |   }
 | 
|  |   1439 |   if( onError!=OE_Abort && onError!=OE_Rollback ){
 | 
|  |   1440 |     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
 | 
|  |   1441 |   }
 | 
|  |   1442 |   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
 | 
|  |   1443 |   if( pSelect->pSrc->nSrc!=1 ){
 | 
|  |   1444 |     return 0;   /* FROM clause must have exactly one term */
 | 
|  |   1445 |   }
 | 
|  |   1446 |   if( pSelect->pSrc->a[0].pSelect ){
 | 
|  |   1447 |     return 0;   /* FROM clause cannot contain a subquery */
 | 
|  |   1448 |   }
 | 
|  |   1449 |   if( pSelect->pWhere ){
 | 
|  |   1450 |     return 0;   /* SELECT may not have a WHERE clause */
 | 
|  |   1451 |   }
 | 
|  |   1452 |   if( pSelect->pOrderBy ){
 | 
|  |   1453 |     return 0;   /* SELECT may not have an ORDER BY clause */
 | 
|  |   1454 |   }
 | 
|  |   1455 |   /* Do not need to test for a HAVING clause.  If HAVING is present but
 | 
|  |   1456 |   ** there is no ORDER BY, we will get an error. */
 | 
|  |   1457 |   if( pSelect->pGroupBy ){
 | 
|  |   1458 |     return 0;   /* SELECT may not have a GROUP BY clause */
 | 
|  |   1459 |   }
 | 
|  |   1460 |   if( pSelect->pLimit ){
 | 
|  |   1461 |     return 0;   /* SELECT may not have a LIMIT clause */
 | 
|  |   1462 |   }
 | 
|  |   1463 |   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
 | 
|  |   1464 |   if( pSelect->pPrior ){
 | 
|  |   1465 |     return 0;   /* SELECT may not be a compound query */
 | 
|  |   1466 |   }
 | 
|  |   1467 |   if( pSelect->isDistinct ){
 | 
|  |   1468 |     return 0;   /* SELECT may not be DISTINCT */
 | 
|  |   1469 |   }
 | 
|  |   1470 |   pEList = pSelect->pEList;
 | 
|  |   1471 |   assert( pEList!=0 );
 | 
|  |   1472 |   if( pEList->nExpr!=1 ){
 | 
|  |   1473 |     return 0;   /* The result set must have exactly one column */
 | 
|  |   1474 |   }
 | 
|  |   1475 |   assert( pEList->a[0].pExpr );
 | 
|  |   1476 |   if( pEList->a[0].pExpr->op!=TK_ALL ){
 | 
|  |   1477 |     return 0;   /* The result set must be the special operator "*" */
 | 
|  |   1478 |   }
 | 
|  |   1479 | 
 | 
|  |   1480 |   /* At this point we have established that the statement is of the
 | 
|  |   1481 |   ** correct syntactic form to participate in this optimization.  Now
 | 
|  |   1482 |   ** we have to check the semantics.
 | 
|  |   1483 |   */
 | 
|  |   1484 |   pItem = pSelect->pSrc->a;
 | 
|  |   1485 |   pSrc = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
 | 
|  |   1486 |   if( pSrc==0 ){
 | 
|  |   1487 |     return 0;   /* FROM clause does not contain a real table */
 | 
|  |   1488 |   }
 | 
|  |   1489 |   if( pSrc==pDest ){
 | 
|  |   1490 |     return 0;   /* tab1 and tab2 may not be the same table */
 | 
|  |   1491 |   }
 | 
|  |   1492 | #ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
|  |   1493 |   if( pSrc->isVirtual ){
 | 
|  |   1494 |     return 0;   /* tab2 must not be a virtual table */
 | 
|  |   1495 |   }
 | 
|  |   1496 | #endif
 | 
|  |   1497 |   if( pSrc->pSelect ){
 | 
|  |   1498 |     return 0;   /* tab2 may not be a view */
 | 
|  |   1499 |   }
 | 
|  |   1500 |   if( pDest->nCol!=pSrc->nCol ){
 | 
|  |   1501 |     return 0;   /* Number of columns must be the same in tab1 and tab2 */
 | 
|  |   1502 |   }
 | 
|  |   1503 |   if( pDest->iPKey!=pSrc->iPKey ){
 | 
|  |   1504 |     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
 | 
|  |   1505 |   }
 | 
|  |   1506 |   for(i=0; i<pDest->nCol; i++){
 | 
|  |   1507 |     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
 | 
|  |   1508 |       return 0;    /* Affinity must be the same on all columns */
 | 
|  |   1509 |     }
 | 
|  |   1510 |     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
 | 
|  |   1511 |       return 0;    /* Collating sequence must be the same on all columns */
 | 
|  |   1512 |     }
 | 
|  |   1513 |     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
 | 
|  |   1514 |       return 0;    /* tab2 must be NOT NULL if tab1 is */
 | 
|  |   1515 |     }
 | 
|  |   1516 |   }
 | 
|  |   1517 |   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
 | 
|  |   1518 |     if( pDestIdx->onError!=OE_None ){
 | 
|  |   1519 |       destHasUniqueIdx = 1;
 | 
|  |   1520 |     }
 | 
|  |   1521 |     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
 | 
|  |   1522 |       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
 | 
|  |   1523 |     }
 | 
|  |   1524 |     if( pSrcIdx==0 ){
 | 
|  |   1525 |       return 0;    /* pDestIdx has no corresponding index in pSrc */
 | 
|  |   1526 |     }
 | 
|  |   1527 |   }
 | 
|  |   1528 | #ifndef SQLITE_OMIT_CHECK
 | 
|  |   1529 |   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
 | 
|  |   1530 |     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
 | 
|  |   1531 |   }
 | 
|  |   1532 | #endif
 | 
|  |   1533 | 
 | 
|  |   1534 |   /* If we get this far, it means either:
 | 
|  |   1535 |   **
 | 
|  |   1536 |   **    *   We can always do the transfer if the table contains an
 | 
|  |   1537 |   **        an integer primary key
 | 
|  |   1538 |   **
 | 
|  |   1539 |   **    *   We can conditionally do the transfer if the destination
 | 
|  |   1540 |   **        table is empty.
 | 
|  |   1541 |   */
 | 
|  |   1542 | #ifdef SQLITE_TEST
 | 
|  |   1543 |   sqlite3_xferopt_count++;
 | 
|  |   1544 | #endif
 | 
|  |   1545 |   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
 | 
|  |   1546 |   v = sqlite3GetVdbe(pParse);
 | 
|  |   1547 |   sqlite3CodeVerifySchema(pParse, iDbSrc);
 | 
|  |   1548 |   iSrc = pParse->nTab++;
 | 
|  |   1549 |   iDest = pParse->nTab++;
 | 
|  |   1550 |   counterMem = autoIncBegin(pParse, iDbDest, pDest);
 | 
|  |   1551 |   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
 | 
|  |   1552 |   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
 | 
|  |   1553 |     /* If tables do not have an INTEGER PRIMARY KEY and there
 | 
|  |   1554 |     ** are indices to be copied and the destination is not empty,
 | 
|  |   1555 |     ** we have to disallow the transfer optimization because the
 | 
|  |   1556 |     ** the rowids might change which will mess up indexing.
 | 
|  |   1557 |     **
 | 
|  |   1558 |     ** Or if the destination has a UNIQUE index and is not empty,
 | 
|  |   1559 |     ** we also disallow the transfer optimization because we cannot
 | 
|  |   1560 |     ** insure that all entries in the union of DEST and SRC will be
 | 
|  |   1561 |     ** unique.
 | 
|  |   1562 |     */
 | 
|  |   1563 |     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iDest, 0);
 | 
|  |   1564 |     emptyDestTest = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
 | 
|  |   1565 |     sqlite3VdbeJumpHere(v, addr1);
 | 
|  |   1566 |   }else{
 | 
|  |   1567 |     emptyDestTest = 0;
 | 
|  |   1568 |   }
 | 
|  |   1569 |   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
 | 
|  |   1570 |   emptySrcTest = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
 | 
|  |   1571 |   if( pDest->iPKey>=0 ){
 | 
|  |   1572 |     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
 | 
|  |   1573 |     sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
 | 
|  |   1574 |     addr2 = sqlite3VdbeAddOp(v, OP_NotExists, iDest, 0);
 | 
|  |   1575 |     sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, 
 | 
|  |   1576 |                       "PRIMARY KEY must be unique", P3_STATIC);
 | 
|  |   1577 |     sqlite3VdbeJumpHere(v, addr2);
 | 
|  |   1578 |     autoIncStep(pParse, counterMem);
 | 
|  |   1579 |   }else if( pDest->pIndex==0 ){
 | 
|  |   1580 |     addr1 = sqlite3VdbeAddOp(v, OP_NewRowid, iDest, 0);
 | 
|  |   1581 |   }else{
 | 
|  |   1582 |     addr1 = sqlite3VdbeAddOp(v, OP_Rowid, iSrc, 0);
 | 
|  |   1583 |     assert( pDest->autoInc==0 );
 | 
|  |   1584 |   }
 | 
|  |   1585 |   sqlite3VdbeAddOp(v, OP_RowData, iSrc, 0);
 | 
|  |   1586 |   sqlite3VdbeOp3(v, OP_Insert, iDest,
 | 
|  |   1587 |                     OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND,
 | 
|  |   1588 |                     pDest->zName, 0);
 | 
|  |   1589 |   sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1);
 | 
|  |   1590 |   autoIncEnd(pParse, iDbDest, pDest, counterMem);
 | 
|  |   1591 |   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
 | 
|  |   1592 |     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
 | 
|  |   1593 |       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
 | 
|  |   1594 |     }
 | 
|  |   1595 |     assert( pSrcIdx );
 | 
|  |   1596 |     sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
 | 
|  |   1597 |     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
 | 
|  |   1598 |     sqlite3VdbeAddOp(v, OP_Integer, iDbSrc, 0);
 | 
|  |   1599 |     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
 | 
|  |   1600 |     VdbeComment((v, "# %s", pSrcIdx->zName));
 | 
|  |   1601 |     sqlite3VdbeOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, 
 | 
|  |   1602 |                    (char*)pKey, P3_KEYINFO_HANDOFF);
 | 
|  |   1603 |     sqlite3VdbeAddOp(v, OP_Integer, iDbDest, 0);
 | 
|  |   1604 |     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
 | 
|  |   1605 |     VdbeComment((v, "# %s", pDestIdx->zName));
 | 
|  |   1606 |     sqlite3VdbeOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, 
 | 
|  |   1607 |                    (char*)pKey, P3_KEYINFO_HANDOFF);
 | 
|  |   1608 |     addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iSrc, 0);
 | 
|  |   1609 |     sqlite3VdbeAddOp(v, OP_RowKey, iSrc, 0);
 | 
|  |   1610 |     sqlite3VdbeAddOp(v, OP_IdxInsert, iDest, 1);
 | 
|  |   1611 |     sqlite3VdbeAddOp(v, OP_Next, iSrc, addr1+1);
 | 
|  |   1612 |     sqlite3VdbeJumpHere(v, addr1);
 | 
|  |   1613 |   }
 | 
|  |   1614 |   sqlite3VdbeJumpHere(v, emptySrcTest);
 | 
|  |   1615 |   sqlite3VdbeAddOp(v, OP_Close, iSrc, 0);
 | 
|  |   1616 |   sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
 | 
|  |   1617 |   if( emptyDestTest ){
 | 
|  |   1618 |     sqlite3VdbeAddOp(v, OP_Halt, SQLITE_OK, 0);
 | 
|  |   1619 |     sqlite3VdbeJumpHere(v, emptyDestTest);
 | 
|  |   1620 |     sqlite3VdbeAddOp(v, OP_Close, iDest, 0);
 | 
|  |   1621 |     return 0;
 | 
|  |   1622 |   }else{
 | 
|  |   1623 |     return 1;
 | 
|  |   1624 |   }
 | 
|  |   1625 | }
 | 
|  |   1626 | #endif /* SQLITE_OMIT_XFER_OPT */
 |