symbian-qemu-0.9.1-12/python-2.6.1/Python/pymath.c
author Gareth Stockwell <gareth.stockwell@accenture.com>
Wed, 22 Sep 2010 15:40:40 +0100
branchgraphics-phase-3
changeset 111 345f1c88c950
parent 1 2fb8b9db1c86
permissions -rw-r--r--
Fixes to syborg-graphicswrapper.vcproj These changes allow syborg-graphicswrapper to link against the hostthreadadapter and khronosapiwrapper libraries built by the graphics.simulator component. The .vcproj file uses relative paths, which requires that the following three packages are laid out as follows: os/ graphics adapt/ graphics.simulator qemu

#include "Python.h"

#ifndef HAVE_HYPOT
double hypot(double x, double y)
{
	double yx;

	x = fabs(x);
	y = fabs(y);
	if (x < y) {
		double temp = x;
		x = y;
		y = temp;
	}
	if (x == 0.)
		return 0.;
	else {
		yx = y/x;
		return x*sqrt(1.+yx*yx);
	}
}
#endif /* HAVE_HYPOT */

#ifndef HAVE_COPYSIGN
static double
copysign(double x, double y)
{
	/* use atan2 to distinguish -0. from 0. */
	if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
		return fabs(x);
	} else {
		return -fabs(x);
	}
}
#endif /* HAVE_COPYSIGN */

#ifndef HAVE_LOG1P
#include <float.h>

double
log1p(double x)
{
	/* For x small, we use the following approach.  Let y be the nearest
	   float to 1+x, then

	     1+x = y * (1 - (y-1-x)/y)

	   so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny,
	   the second term is well approximated by (y-1-x)/y.  If abs(x) >=
	   DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
	   then y-1-x will be exactly representable, and is computed exactly
	   by (y-1)-x.

	   If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
	   round-to-nearest then this method is slightly dangerous: 1+x could
	   be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
	   case y-1-x will not be exactly representable any more and the
	   result can be off by many ulps.  But this is easily fixed: for a
	   floating-point number |x| < DBL_EPSILON/2., the closest
	   floating-point number to log(1+x) is exactly x.
	*/

	double y;
	if (fabs(x) < DBL_EPSILON/2.) {
		return x;
	} else if (-0.5 <= x && x <= 1.) {
		/* WARNING: it's possible than an overeager compiler
		   will incorrectly optimize the following two lines
		   to the equivalent of "return log(1.+x)". If this
		   happens, then results from log1p will be inaccurate
		   for small x. */
		y = 1.+x;
		return log(y)-((y-1.)-x)/y;
	} else {
		/* NaNs and infinities should end up here */
		return log(1.+x);
	}
}
#endif /* HAVE_LOG1P */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

static const double ln2 = 6.93147180559945286227E-01;
static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
static const double two_pow_p28 = 268435456.0; /* 2**28 */
static const double zero = 0.0;

/* asinh(x)
 * Method :
 *	Based on 
 *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 *	we have
 *	asinh(x) := x  if  1+x*x=1,
 *		 := sign(x)*(log(x)+ln2)) for large |x|, else
 *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))  
 */

#ifndef HAVE_ASINH
double
asinh(double x)
{	
	double w;
	double absx = fabs(x);

	if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
		return x+x;
	}
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
		return x;	/* return x inexact except 0 */
	} 
	if (absx > two_pow_p28) {	/* |x| > 2**28 */
		w = log(absx)+ln2;
	}
	else if (absx > 2.0) {		/* 2 < |x| < 2**28 */
		w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
	}
	else {				/* 2**-28 <= |x| < 2= */
		double t = x*x;
		w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
	}
	return copysign(w, x);
	
}
#endif /* HAVE_ASINH */

/* acosh(x)
 * Method :
 *      Based on
 *	      acosh(x) = log [ x + sqrt(x*x-1) ]
 *      we have
 *	      acosh(x) := log(x)+ln2, if x is large; else
 *	      acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 *	      acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 *
 * Special cases:
 *      acosh(x) is NaN with signal if x<1.
 *      acosh(NaN) is NaN without signal.
 */

#ifndef HAVE_ACOSH
double
acosh(double x)
{
	if (Py_IS_NAN(x)) {
		return x+x;
	}
	if (x < 1.) {			/* x < 1;  return a signaling NaN */
		errno = EDOM;
#ifdef Py_NAN
		return Py_NAN;
#else
		return (x-x)/(x-x);
#endif
	}
	else if (x >= two_pow_p28) {	/* x > 2**28 */
		if (Py_IS_INFINITY(x)) {
			return x+x;
		} else {
			return log(x)+ln2;	/* acosh(huge)=log(2x) */
		}
	}
	else if (x == 1.) {
		return 0.0;			/* acosh(1) = 0 */
	}
	else if (x > 2.) {			/* 2 < x < 2**28 */
		double t = x*x;
		return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
	}
	else {				/* 1 < x <= 2 */
		double t = x - 1.0;
		return log1p(t + sqrt(2.0*t + t*t));
	}
}
#endif /* HAVE_ACOSH */

/* atanh(x)
 * Method :
 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 *    2.For x>=0.5
 *		  1	      2x			  x
 *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 *		  2	     1 - x		      1 - x
 *
 *      For x<0.5
 *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 *
 * Special cases:
 *      atanh(x) is NaN if |x| >= 1 with signal;
 *      atanh(NaN) is that NaN with no signal;
 *
 */

#ifndef HAVE_ATANH
double
atanh(double x)
{
	double absx;
	double t;

	if (Py_IS_NAN(x)) {
		return x+x;
	}
	absx = fabs(x);
	if (absx >= 1.) {		/* |x| >= 1 */
		errno = EDOM;
#ifdef Py_NAN
		return Py_NAN;
#else
		return x/zero;
#endif
	}
	if (absx < two_pow_m28) {	/* |x| < 2**-28 */
		return x;
	}
	if (absx < 0.5) {		/* |x| < 0.5 */
		t = absx+absx;
		t = 0.5 * log1p(t + t*absx / (1.0 - absx));
	} 
	else {				/* 0.5 <= |x| <= 1.0 */
		t = 0.5 * log1p((absx + absx) / (1.0 - absx));
	}
	return copysign(t, x);
}
#endif /* HAVE_ATANH */