symbian-qemu-0.9.1-12/python-2.6.1/Lib/test/test_complex.py
author Gareth Stockwell <gareth.stockwell@accenture.com>
Wed, 22 Sep 2010 15:40:40 +0100
branchgraphics-phase-3
changeset 111 345f1c88c950
parent 1 2fb8b9db1c86
permissions -rw-r--r--
Fixes to syborg-graphicswrapper.vcproj These changes allow syborg-graphicswrapper to link against the hostthreadadapter and khronosapiwrapper libraries built by the graphics.simulator component. The .vcproj file uses relative paths, which requires that the following three packages are laid out as follows: os/ graphics adapt/ graphics.simulator qemu

import unittest, os
from test import test_support

import warnings
warnings.filterwarnings(
    "ignore",
    category=DeprecationWarning,
    message=".*complex divmod.*are deprecated"
)

from random import random
from math import atan2

INF = float("inf")
NAN = float("nan")
# These tests ensure that complex math does the right thing

class ComplexTest(unittest.TestCase):

    def assertAlmostEqual(self, a, b):
        if isinstance(a, complex):
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
                unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a.real, b)
                unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
        else:
            if isinstance(b, complex):
                unittest.TestCase.assertAlmostEqual(self, a, b.real)
                unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
            else:
                unittest.TestCase.assertAlmostEqual(self, a, b)

    def assertCloseAbs(self, x, y, eps=1e-9):
        """Return true iff floats x and y "are close\""""
        # put the one with larger magnitude second
        if abs(x) > abs(y):
            x, y = y, x
        if y == 0:
            return abs(x) < eps
        if x == 0:
            return abs(y) < eps
        # check that relative difference < eps
        self.assert_(abs((x-y)/y) < eps)

    def assertClose(self, x, y, eps=1e-9):
        """Return true iff complexes x and y "are close\""""
        self.assertCloseAbs(x.real, y.real, eps)
        self.assertCloseAbs(x.imag, y.imag, eps)

    def assertIs(self, a, b):
        self.assert_(a is b)

    def check_div(self, x, y):
        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
        z = x * y
        if x != 0:
            q = z / x
            self.assertClose(q, y)
            q = z.__div__(x)
            self.assertClose(q, y)
            q = z.__truediv__(x)
            self.assertClose(q, y)
        if y != 0:
            q = z / y
            self.assertClose(q, x)
            q = z.__div__(y)
            self.assertClose(q, x)
            q = z.__truediv__(y)
            self.assertClose(q, x)

    def test_div(self):
        simple_real = [float(i) for i in xrange(-5, 6)]
        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
        for x in simple_complex:
            for y in simple_complex:
                self.check_div(x, y)

        # A naive complex division algorithm (such as in 2.0) is very prone to
        # nonsense errors for these (overflows and underflows).
        self.check_div(complex(1e200, 1e200), 1+0j)
        self.check_div(complex(1e-200, 1e-200), 1+0j)

        # Just for fun.
        for i in xrange(100):
            self.check_div(complex(random(), random()),
                           complex(random(), random()))

        self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
        # FIXME: The following currently crashes on Alpha
        # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)

    def test_truediv(self):
        self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
        self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)

    def test_floordiv(self):
        self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
        self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)

    def test_coerce(self):
        self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)

    def test_richcompare(self):
        self.assertRaises(OverflowError, complex.__eq__, 1+1j, 1L<<10000)
        self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
        self.assertIs(complex.__eq__(1+1j, 1+1j), True)
        self.assertIs(complex.__eq__(1+1j, 2+2j), False)
        self.assertIs(complex.__ne__(1+1j, 1+1j), False)
        self.assertIs(complex.__ne__(1+1j, 2+2j), True)
        self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
        self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)

    def test_mod(self):
        self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)

        a = 3.33+4.43j
        try:
            a % 0
        except ZeroDivisionError:
            pass
        else:
            self.fail("modulo parama can't be 0")

    def test_divmod(self):
        self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)

    def test_pow(self):
        self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
        self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
        self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
        self.assertAlmostEqual(pow(1j, -1), 1/1j)
        self.assertAlmostEqual(pow(1j, 200), 1)
        self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)

        a = 3.33+4.43j
        self.assertEqual(a ** 0j, 1)
        self.assertEqual(a ** 0.+0.j, 1)

        self.assertEqual(3j ** 0j, 1)
        self.assertEqual(3j ** 0, 1)

        try:
            0j ** a
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        try:
            0j ** (3-2j)
        except ZeroDivisionError:
            pass
        else:
            self.fail("should fail 0.0 to negative or complex power")

        # The following is used to exercise certain code paths
        self.assertEqual(a ** 105, a ** 105)
        self.assertEqual(a ** -105, a ** -105)
        self.assertEqual(a ** -30, a ** -30)

        self.assertEqual(0.0j ** 0, 1)

        b = 5.1+2.3j
        self.assertRaises(ValueError, pow, a, b, 0)

    def test_boolcontext(self):
        for i in xrange(100):
            self.assert_(complex(random() + 1e-6, random() + 1e-6))
        self.assert_(not complex(0.0, 0.0))

    def test_conjugate(self):
        self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)

    def test_constructor(self):
        class OS:
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        class NS(object):
            def __init__(self, value): self.value = value
            def __complex__(self): return self.value
        self.assertEqual(complex(OS(1+10j)), 1+10j)
        self.assertEqual(complex(NS(1+10j)), 1+10j)
        self.assertRaises(TypeError, complex, OS(None))
        self.assertRaises(TypeError, complex, NS(None))

        self.assertAlmostEqual(complex("1+10j"), 1+10j)
        self.assertAlmostEqual(complex(10), 10+0j)
        self.assertAlmostEqual(complex(10.0), 10+0j)
        self.assertAlmostEqual(complex(10L), 10+0j)
        self.assertAlmostEqual(complex(10+0j), 10+0j)
        self.assertAlmostEqual(complex(1,10), 1+10j)
        self.assertAlmostEqual(complex(1,10L), 1+10j)
        self.assertAlmostEqual(complex(1,10.0), 1+10j)
        self.assertAlmostEqual(complex(1L,10), 1+10j)
        self.assertAlmostEqual(complex(1L,10L), 1+10j)
        self.assertAlmostEqual(complex(1L,10.0), 1+10j)
        self.assertAlmostEqual(complex(1.0,10), 1+10j)
        self.assertAlmostEqual(complex(1.0,10L), 1+10j)
        self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
        self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14), 3.14+0j)
        self.assertAlmostEqual(complex(314), 314.0+0j)
        self.assertAlmostEqual(complex(314L), 314.0+0j)
        self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
        self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
        self.assertAlmostEqual(complex(314, 0), 314.0+0j)
        self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
        self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
        self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
        self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
        self.assertAlmostEqual(complex("1"), 1+0j)
        self.assertAlmostEqual(complex("1j"), 1j)
        self.assertAlmostEqual(complex(),  0)
        self.assertAlmostEqual(complex("-1"), -1)
        self.assertAlmostEqual(complex("+1"), +1)
        self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
        self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)

        class complex2(complex): pass
        self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
        self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j), 17+23j)
        self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
        self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)

        # check that the sign of a zero in the real or imaginary part
        # is preserved when constructing from two floats.  (These checks
        # are harmless on systems without support for signed zeros.)
        def split_zeros(x):
            """Function that produces different results for 0. and -0."""
            return atan2(x, -1.)

        self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
        self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
        self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
        self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))

        c = 3.14 + 1j
        self.assert_(complex(c) is c)
        del c

        self.assertRaises(TypeError, complex, "1", "1")
        self.assertRaises(TypeError, complex, 1, "1")

        self.assertEqual(complex("  3.14+J  "), 3.14+1j)
        if test_support.have_unicode:
            self.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j)

        # SF bug 543840:  complex(string) accepts strings with \0
        # Fixed in 2.3.
        self.assertRaises(ValueError, complex, '1+1j\0j')

        self.assertRaises(TypeError, int, 5+3j)
        self.assertRaises(TypeError, long, 5+3j)
        self.assertRaises(TypeError, float, 5+3j)
        self.assertRaises(ValueError, complex, "")
        self.assertRaises(TypeError, complex, None)
        self.assertRaises(ValueError, complex, "\0")
        self.assertRaises(ValueError, complex, "3\09")
        self.assertRaises(TypeError, complex, "1", "2")
        self.assertRaises(TypeError, complex, "1", 42)
        self.assertRaises(TypeError, complex, 1, "2")
        self.assertRaises(ValueError, complex, "1+")
        self.assertRaises(ValueError, complex, "1+1j+1j")
        self.assertRaises(ValueError, complex, "--")
        self.assertRaises(ValueError, complex, "(1+2j")
        self.assertRaises(ValueError, complex, "1+2j)")
        self.assertRaises(ValueError, complex, "1+(2j)")
        self.assertRaises(ValueError, complex, "(1+2j)123")
        if test_support.have_unicode:
            self.assertRaises(ValueError, complex, unicode("1"*500))
            self.assertRaises(ValueError, complex, unicode("x"))

        class EvilExc(Exception):
            pass

        class evilcomplex:
            def __complex__(self):
                raise EvilExc

        self.assertRaises(EvilExc, complex, evilcomplex())

        class float2:
            def __init__(self, value):
                self.value = value
            def __float__(self):
                return self.value

        self.assertAlmostEqual(complex(float2(42.)), 42)
        self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
        self.assertRaises(TypeError, complex, float2(None))

        class complex0(complex):
            """Test usage of __complex__() when inheriting from 'complex'"""
            def __complex__(self):
                return 42j

        class complex1(complex):
            """Test usage of __complex__() with a __new__() method"""
            def __new__(self, value=0j):
                return complex.__new__(self, 2*value)
            def __complex__(self):
                return self

        class complex2(complex):
            """Make sure that __complex__() calls fail if anything other than a
            complex is returned"""
            def __complex__(self):
                return None

        self.assertAlmostEqual(complex(complex0(1j)), 42j)
        self.assertAlmostEqual(complex(complex1(1j)), 2j)
        self.assertRaises(TypeError, complex, complex2(1j))

    def test_hash(self):
        for x in xrange(-30, 30):
            self.assertEqual(hash(x), hash(complex(x, 0)))
            x /= 3.0    # now check against floating point
            self.assertEqual(hash(x), hash(complex(x, 0.)))

    def test_abs(self):
        nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
        for num in nums:
            self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))

    def test_repr(self):
        self.assertEqual(repr(1+6j), '(1+6j)')
        self.assertEqual(repr(1-6j), '(1-6j)')

        self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)')

        self.assertEqual(1-6j,complex(repr(1-6j)))
        self.assertEqual(1+6j,complex(repr(1+6j)))
        self.assertEqual(-6j,complex(repr(-6j)))
        self.assertEqual(6j,complex(repr(6j)))

        self.assertEqual(repr(complex(1., INF)), "(1+inf*j)")
        self.assertEqual(repr(complex(1., -INF)), "(1-inf*j)")
        self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")
        self.assertEqual(repr(complex(-INF, INF)), "(-inf+inf*j)")
        self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")
        self.assertEqual(repr(complex(1, NAN)), "(1+nan*j)")
        self.assertEqual(repr(complex(NAN, NAN)), "(nan+nan*j)")

        self.assertEqual(repr(complex(0, INF)), "inf*j")
        self.assertEqual(repr(complex(0, -INF)), "-inf*j")
        self.assertEqual(repr(complex(0, NAN)), "nan*j")

    def test_neg(self):
        self.assertEqual(-(1+6j), -1-6j)

    def test_file(self):
        a = 3.33+4.43j
        b = 5.1+2.3j

        fo = None
        try:
            fo = open(test_support.TESTFN, "wb")
            print >>fo, a, b
            fo.close()
            fo = open(test_support.TESTFN, "rb")
            self.assertEqual(fo.read(), "%s %s\n" % (a, b))
        finally:
            if (fo is not None) and (not fo.closed):
                fo.close()
            try:
                os.remove(test_support.TESTFN)
            except (OSError, IOError):
                pass

    def test_getnewargs(self):
        self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
        self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
        self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
        self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
        self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
        self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))

    if float.__getformat__("double").startswith("IEEE"):
        def test_plus_minus_0j(self):
            # test that -0j and 0j literals are not identified
            z1, z2 = 0j, -0j
            self.assertEquals(atan2(z1.imag, -1.), atan2(0., -1.))
            self.assertEquals(atan2(z2.imag, -1.), atan2(-0., -1.))

def test_main():
    test_support.run_unittest(ComplexTest)

if __name__ == "__main__":
    test_main()