Fixes to syborg-graphicswrapper.vcproj
These changes allow syborg-graphicswrapper to link against the hostthreadadapter and khronosapiwrapper libraries built by the graphics.simulator component.
The .vcproj file uses relative paths, which requires that the following three packages are laid out as follows:
os/
graphics
adapt/
graphics.simulator
qemu
#!/usr/bin/python
""" turtle-example-suite:
tdemo_fractalCurves.py
This program draws two fractal-curve-designs:
(1) A hilbert curve (in a box)
(2) A combination of Koch-curves.
The CurvesTurtle class and the fractal-curve-
methods are taken from the PythonCard example
scripts for turtle-graphics.
"""
from turtle import *
from time import sleep, clock
class CurvesTurtle(Pen):
# example derived from
# Turtle Geometry: The Computer as a Medium for Exploring Mathematics
# by Harold Abelson and Andrea diSessa
# p. 96-98
def hilbert(self, size, level, parity):
if level == 0:
return
# rotate and draw first subcurve with opposite parity to big curve
self.left(parity * 90)
self.hilbert(size, level - 1, -parity)
# interface to and draw second subcurve with same parity as big curve
self.forward(size)
self.right(parity * 90)
self.hilbert(size, level - 1, parity)
# third subcurve
self.forward(size)
self.hilbert(size, level - 1, parity)
# fourth subcurve
self.right(parity * 90)
self.forward(size)
self.hilbert(size, level - 1, -parity)
# a final turn is needed to make the turtle
# end up facing outward from the large square
self.left(parity * 90)
# Visual Modeling with Logo: A Structural Approach to Seeing
# by James Clayson
# Koch curve, after Helge von Koch who introduced this geometric figure in 1904
# p. 146
def fractalgon(self, n, rad, lev, dir):
import math
# if dir = 1 turn outward
# if dir = -1 turn inward
edge = 2 * rad * math.sin(math.pi / n)
self.pu()
self.fd(rad)
self.pd()
self.rt(180 - (90 * (n - 2) / n))
for i in range(n):
self.fractal(edge, lev, dir)
self.rt(360 / n)
self.lt(180 - (90 * (n - 2) / n))
self.pu()
self.bk(rad)
self.pd()
# p. 146
def fractal(self, dist, depth, dir):
if depth < 1:
self.fd(dist)
return
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.rt(120 * dir)
self.fractal(dist / 3, depth - 1, dir)
self.lt(60 * dir)
self.fractal(dist / 3, depth - 1, dir)
def main():
ft = CurvesTurtle()
ft.reset()
ft.speed(0)
ft.ht()
ft.tracer(1,0)
ft.pu()
size = 6
ft.setpos(-33*size, -32*size)
ft.pd()
ta=clock()
ft.fillcolor("red")
ft.fill(True)
ft.fd(size)
ft.hilbert(size, 6, 1)
# frame
ft.fd(size)
for i in range(3):
ft.lt(90)
ft.fd(size*(64+i%2))
ft.pu()
for i in range(2):
ft.fd(size)
ft.rt(90)
ft.pd()
for i in range(4):
ft.fd(size*(66+i%2))
ft.rt(90)
ft.fill(False)
tb=clock()
res = "Hilbert: %.2fsec. " % (tb-ta)
sleep(3)
ft.reset()
ft.speed(0)
ft.ht()
ft.tracer(1,0)
ta=clock()
ft.color("black", "blue")
ft.fill(True)
ft.fractalgon(3, 250, 4, 1)
ft.fill(True)
ft.color("red")
ft.fractalgon(3, 200, 4, -1)
ft.fill(False)
tb=clock()
res += "Koch: %.2fsec." % (tb-ta)
return res
if __name__ == '__main__':
msg = main()
print msg
mainloop()