symbian-qemu-0.9.1-12/python-2.6.1/Doc/library/collections.rst
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Doc/library/collections.rst	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,692 @@
+
+:mod:`collections` --- High-performance container datatypes
+===========================================================
+
+.. module:: collections
+   :synopsis: High-performance datatypes
+.. moduleauthor:: Raymond Hettinger <python@rcn.com>
+.. sectionauthor:: Raymond Hettinger <python@rcn.com>
+
+.. versionadded:: 2.4
+
+.. testsetup:: *
+
+   from collections import *
+   import itertools
+   __name__ = '<doctest>'
+
+This module implements high-performance container datatypes.  Currently,
+there are two datatypes, :class:`deque` and :class:`defaultdict`, and
+one datatype factory function, :func:`namedtuple`.
+
+.. versionchanged:: 2.5
+   Added :class:`defaultdict`.
+
+.. versionchanged:: 2.6
+   Added :func:`namedtuple`.
+
+The specialized containers provided in this module provide alternatives
+to Python's general purpose built-in containers, :class:`dict`,
+:class:`list`, :class:`set`, and :class:`tuple`.
+
+Besides the containers provided here, the optional :mod:`bsddb`
+module offers the ability to create in-memory or file based ordered
+dictionaries with string keys using the :meth:`bsddb.btopen` method.
+
+In addition to containers, the collections module provides some ABCs
+(abstract base classes) that can be used to test whether a class
+provides a particular interface, for example, is it hashable or
+a mapping.
+
+.. versionchanged:: 2.6
+   Added abstract base classes.
+
+ABCs - abstract base classes
+----------------------------
+
+The collections module offers the following ABCs:
+
+=========================  =====================  ======================  ====================================================
+ABC                        Inherits               Abstract Methods        Mixin Methods
+=========================  =====================  ======================  ====================================================
+:class:`Container`                                ``__contains__``
+:class:`Hashable`                                 ``__hash__``
+:class:`Iterable`                                 ``__iter__``
+:class:`Iterator`          :class:`Iterable`      ``__next__``            ``__iter__``
+:class:`Sized`          			  ``__len__``
+:class:`Callable`                                 ``__call__``
+                                                  
+:class:`Sequence`          :class:`Sized`,        ``__getitem__``         ``__contains__``. ``__iter__``, ``__reversed__``.
+                           :class:`Iterable`,     and ``__len__``         ``index``, and ``count``
+                           :class:`Container`     
+                                                  
+:class:`MutableSequnce`    :class:`Sequence`      ``__getitem__``         Inherited Sequence methods and
+                                                  ``__delitem__``,        ``append``, ``reverse``, ``extend``, ``pop``,
+                                                  ``insert``,             ``remove``, and ``__iadd__``
+                                                  and ``__len__``
+                                                  
+:class:`Set`               :class:`Sized`,        ``__len__``,            ``__le__``, ``__lt__``, ``__eq__``, ``__ne__``,
+                           :class:`Iterable`,     ``__iter__``, and       ``__gt__``, ``__ge__``, ``__and__``, ``__or__``
+                           :class:`Container`     ``__contains__``        ``__sub__``, ``__xor__``, and ``isdisjoint``
+                                                  
+:class:`MutableSet`        :class:`Set`           ``add`` and             Inherited Set methods and
+                                                  ``discard``             ``clear``, ``pop``, ``remove``, ``__ior__``,
+                                                                          ``__iand__``, ``__ixor__``, and ``__isub__``
+                                                  
+:class:`Mapping`           :class:`Sized`,        ``__getitem__``,        ``__contains__``, ``keys``, ``items``, ``values``,
+                           :class:`Iterable`,     ``__len__``. and        ``get``, ``__eq__``, and ``__ne__``
+                           :class:`Container`     ``__iter__``
+                                                  
+:class:`MutableMapping`    :class:`Mapping`       ``__getitem__``         Inherited Mapping methods and
+                                                  ``__setitem__``,        ``pop``, ``popitem``, ``clear``, ``update``,
+                                                  ``__delitem__``,        and ``setdefault``
+						  ``__iter__``, and
+                                                  ``__len__``
+                                                  
+:class:`MappingView`       :class:`Sized`                                 ``__len__``
+:class:`KeysView`          :class:`MappingView`,                          ``__contains__``,
+                           :class:`Set`                                   ``__iter__``
+:class:`ItemsView`         :class:`MappingView`,                          ``__contains__``,
+                           :class:`Set`                                   ``__iter__``
+:class:`ValuesView`        :class:`MappingView`                           ``__contains__``, ``__iter__``
+=========================  =====================  ======================  ====================================================
+
+These ABCs allow us to ask classes or instances if they provide
+particular functionality, for example::
+
+    size = None
+    if isinstance(myvar, collections.Sized):
+	size = len(myvar)
+
+Several of the ABCs are also useful as mixins that make it easier to develop
+classes supporting container APIs.  For example, to write a class supporting
+the full :class:`Set` API, it only necessary to supply the three underlying
+abstract methods: :meth:`__contains__`, :meth:`__iter__`, and :meth:`__len__`.
+The ABC supplies the remaining methods such as :meth:`__and__` and
+:meth:`isdisjoint` ::
+
+    class ListBasedSet(collections.Set):
+         ''' Alternate set implementation favoring space over speed
+             and not requiring the set elements to be hashable. '''
+         def __init__(self, iterable):
+             self.elements = lst = []
+             for value in iterable:
+                 if value not in lst:
+                     lst.append(value)
+         def __iter__(self):
+             return iter(self.elements)
+         def __contains__(self, value):
+             return value in self.elements
+         def __len__(self):
+             return len(self.elements)
+
+    s1 = ListBasedSet('abcdef')
+    s2 = ListBasedSet('defghi')
+    overlap = s1 & s2            # The __and__() method is supported automatically
+
+Notes on using :class:`Set` and :class:`MutableSet` as a mixin:
+
+(1)
+   Since some set operations create new sets, the default mixin methods need
+   a way to create new instances from an iterable. The class constructor is
+   assumed to have a signature in the form ``ClassName(iterable)``.
+   That assumption is factored-out to an internal classmethod called
+   :meth:`_from_iterable` which calls ``cls(iterable)`` to produce a new set.
+   If the :class:`Set` mixin is being used in a class with a different
+   constructor signature, you will need to override :meth:`from_iterable`
+   with a classmethod that can construct new instances from
+   an iterable argument.
+
+(2)
+   To override the comparisons (presumably for speed, as the
+   semantics are fixed), redefine :meth:`__le__` and
+   then the other operations will automatically follow suit.
+
+(3)
+   The :class:`Set` mixin provides a :meth:`_hash` method to compute a hash value
+   for the set; however, :meth:`__hash__` is not defined because not all sets
+   are hashable or immutable.  To add set hashabilty using mixins,
+   inherit from both :meth:`Set` and :meth:`Hashable`, then define
+   ``__hash__ = Set._hash``.
+
+(For more about ABCs, see the :mod:`abc` module and :pep:`3119`.)
+
+
+
+.. _deque-objects:
+
+:class:`deque` objects
+----------------------
+
+
+.. class:: deque([iterable[, maxlen]])
+
+   Returns a new deque object initialized left-to-right (using :meth:`append`) with
+   data from *iterable*.  If *iterable* is not specified, the new deque is empty.
+
+   Deques are a generalization of stacks and queues (the name is pronounced "deck"
+   and is short for "double-ended queue").  Deques support thread-safe, memory
+   efficient appends and pops from either side of the deque with approximately the
+   same O(1) performance in either direction.
+
+   Though :class:`list` objects support similar operations, they are optimized for
+   fast fixed-length operations and incur O(n) memory movement costs for
+   ``pop(0)`` and ``insert(0, v)`` operations which change both the size and
+   position of the underlying data representation.
+
+   .. versionadded:: 2.4
+
+   If *maxlen* is not specified or is *None*, deques may grow to an
+   arbitrary length.  Otherwise, the deque is bounded to the specified maximum
+   length.  Once a bounded length deque is full, when new items are added, a
+   corresponding number of items are discarded from the opposite end.  Bounded
+   length deques provide functionality similar to the ``tail`` filter in
+   Unix. They are also useful for tracking transactions and other pools of data
+   where only the most recent activity is of interest.
+
+   .. versionchanged:: 2.6
+      Added *maxlen* parameter.
+
+   Deque objects support the following methods:
+
+
+   .. method:: append(x)
+
+      Add *x* to the right side of the deque.
+
+
+   .. method:: appendleft(x)
+
+      Add *x* to the left side of the deque.
+
+
+   .. method:: clear()
+
+      Remove all elements from the deque leaving it with length 0.
+
+
+   .. method:: extend(iterable)
+
+      Extend the right side of the deque by appending elements from the iterable
+      argument.
+
+
+   .. method:: extendleft(iterable)
+
+      Extend the left side of the deque by appending elements from *iterable*.
+      Note, the series of left appends results in reversing the order of
+      elements in the iterable argument.
+
+
+   .. method:: pop()
+
+      Remove and return an element from the right side of the deque. If no
+      elements are present, raises an :exc:`IndexError`.
+
+
+   .. method:: popleft()
+
+      Remove and return an element from the left side of the deque. If no
+      elements are present, raises an :exc:`IndexError`.
+
+
+   .. method:: remove(value)
+
+      Removed the first occurrence of *value*.  If not found, raises a
+      :exc:`ValueError`.
+
+      .. versionadded:: 2.5
+
+
+   .. method:: rotate(n)
+
+      Rotate the deque *n* steps to the right.  If *n* is negative, rotate to
+      the left.  Rotating one step to the right is equivalent to:
+      ``d.appendleft(d.pop())``.
+
+
+In addition to the above, deques support iteration, pickling, ``len(d)``,
+``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with
+the :keyword:`in` operator, and subscript references such as ``d[-1]``.  Indexed
+access is O(1) at both ends but slows to O(n) in the middle.  For fast random
+access, use lists instead.
+
+Example:
+
+.. doctest::
+
+   >>> from collections import deque
+   >>> d = deque('ghi')                 # make a new deque with three items
+   >>> for elem in d:                   # iterate over the deque's elements
+   ...     print elem.upper()
+   G
+   H
+   I
+
+   >>> d.append('j')                    # add a new entry to the right side
+   >>> d.appendleft('f')                # add a new entry to the left side
+   >>> d                                # show the representation of the deque
+   deque(['f', 'g', 'h', 'i', 'j'])
+
+   >>> d.pop()                          # return and remove the rightmost item
+   'j'
+   >>> d.popleft()                      # return and remove the leftmost item
+   'f'
+   >>> list(d)                          # list the contents of the deque
+   ['g', 'h', 'i']
+   >>> d[0]                             # peek at leftmost item
+   'g'
+   >>> d[-1]                            # peek at rightmost item
+   'i'
+
+   >>> list(reversed(d))                # list the contents of a deque in reverse
+   ['i', 'h', 'g']
+   >>> 'h' in d                         # search the deque
+   True
+   >>> d.extend('jkl')                  # add multiple elements at once
+   >>> d
+   deque(['g', 'h', 'i', 'j', 'k', 'l'])
+   >>> d.rotate(1)                      # right rotation
+   >>> d
+   deque(['l', 'g', 'h', 'i', 'j', 'k'])
+   >>> d.rotate(-1)                     # left rotation
+   >>> d
+   deque(['g', 'h', 'i', 'j', 'k', 'l'])
+
+   >>> deque(reversed(d))               # make a new deque in reverse order
+   deque(['l', 'k', 'j', 'i', 'h', 'g'])
+   >>> d.clear()                        # empty the deque
+   >>> d.pop()                          # cannot pop from an empty deque
+   Traceback (most recent call last):
+     File "<pyshell#6>", line 1, in -toplevel-
+       d.pop()
+   IndexError: pop from an empty deque
+
+   >>> d.extendleft('abc')              # extendleft() reverses the input order
+   >>> d
+   deque(['c', 'b', 'a'])
+
+
+.. _deque-recipes:
+
+:class:`deque` Recipes
+^^^^^^^^^^^^^^^^^^^^^^
+
+This section shows various approaches to working with deques.
+
+The :meth:`rotate` method provides a way to implement :class:`deque` slicing and
+deletion.  For example, a pure python implementation of ``del d[n]`` relies on
+the :meth:`rotate` method to position elements to be popped::
+
+   def delete_nth(d, n):
+       d.rotate(-n)
+       d.popleft()
+       d.rotate(n)
+
+To implement :class:`deque` slicing, use a similar approach applying
+:meth:`rotate` to bring a target element to the left side of the deque. Remove
+old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then
+reverse the rotation.
+With minor variations on that approach, it is easy to implement Forth style
+stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``,
+``rot``, and ``roll``.
+
+Multi-pass data reduction algorithms can be succinctly expressed and efficiently
+coded by extracting elements with multiple calls to :meth:`popleft`, applying
+a reduction function, and calling :meth:`append` to add the result back to the
+deque.
+
+For example, building a balanced binary tree of nested lists entails reducing
+two adjacent nodes into one by grouping them in a list:
+
+   >>> def maketree(iterable):
+   ...     d = deque(iterable)
+   ...     while len(d) > 1:
+   ...         pair = [d.popleft(), d.popleft()]
+   ...         d.append(pair)
+   ...     return list(d)
+   ...
+   >>> print maketree('abcdefgh')
+   [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]]
+
+Bounded length deques provide functionality similar to the ``tail`` filter
+in Unix::
+
+   def tail(filename, n=10):
+       'Return the last n lines of a file'
+       return deque(open(filename), n)
+
+.. _defaultdict-objects:
+
+:class:`defaultdict` objects
+----------------------------
+
+
+.. class:: defaultdict([default_factory[, ...]])
+
+   Returns a new dictionary-like object.  :class:`defaultdict` is a subclass of the
+   builtin :class:`dict` class.  It overrides one method and adds one writable
+   instance variable.  The remaining functionality is the same as for the
+   :class:`dict` class and is not documented here.
+
+   The first argument provides the initial value for the :attr:`default_factory`
+   attribute; it defaults to ``None``. All remaining arguments are treated the same
+   as if they were passed to the :class:`dict` constructor, including keyword
+   arguments.
+
+   .. versionadded:: 2.5
+
+   :class:`defaultdict` objects support the following method in addition to the
+   standard :class:`dict` operations:
+
+
+   .. method:: defaultdict.__missing__(key)
+
+      If the :attr:`default_factory` attribute is ``None``, this raises a
+      :exc:`KeyError` exception with the *key* as argument.
+
+      If :attr:`default_factory` is not ``None``, it is called without arguments
+      to provide a default value for the given *key*, this value is inserted in
+      the dictionary for the *key*, and returned.
+
+      If calling :attr:`default_factory` raises an exception this exception is
+      propagated unchanged.
+
+      This method is called by the :meth:`__getitem__` method of the
+      :class:`dict` class when the requested key is not found; whatever it
+      returns or raises is then returned or raised by :meth:`__getitem__`.
+
+
+   :class:`defaultdict` objects support the following instance variable:
+
+
+   .. attribute:: defaultdict.default_factory
+
+      This attribute is used by the :meth:`__missing__` method; it is
+      initialized from the first argument to the constructor, if present, or to
+      ``None``, if absent.
+
+
+.. _defaultdict-examples:
+
+:class:`defaultdict` Examples
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Using :class:`list` as the :attr:`default_factory`, it is easy to group a
+sequence of key-value pairs into a dictionary of lists:
+
+   >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
+   >>> d = defaultdict(list)
+   >>> for k, v in s:
+   ...     d[k].append(v)
+   ...
+   >>> d.items()
+   [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
+
+When each key is encountered for the first time, it is not already in the
+mapping; so an entry is automatically created using the :attr:`default_factory`
+function which returns an empty :class:`list`.  The :meth:`list.append`
+operation then attaches the value to the new list.  When keys are encountered
+again, the look-up proceeds normally (returning the list for that key) and the
+:meth:`list.append` operation adds another value to the list. This technique is
+simpler and faster than an equivalent technique using :meth:`dict.setdefault`:
+
+   >>> d = {}
+   >>> for k, v in s:
+   ...     d.setdefault(k, []).append(v)
+   ...
+   >>> d.items()
+   [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
+
+Setting the :attr:`default_factory` to :class:`int` makes the
+:class:`defaultdict` useful for counting (like a bag or multiset in other
+languages):
+
+   >>> s = 'mississippi'
+   >>> d = defaultdict(int)
+   >>> for k in s:
+   ...     d[k] += 1
+   ...
+   >>> d.items()
+   [('i', 4), ('p', 2), ('s', 4), ('m', 1)]
+
+When a letter is first encountered, it is missing from the mapping, so the
+:attr:`default_factory` function calls :func:`int` to supply a default count of
+zero.  The increment operation then builds up the count for each letter.
+
+The function :func:`int` which always returns zero is just a special case of
+constant functions.  A faster and more flexible way to create constant functions
+is to use :func:`itertools.repeat` which can supply any constant value (not just
+zero):
+
+   >>> def constant_factory(value):
+   ...     return itertools.repeat(value).next
+   >>> d = defaultdict(constant_factory('<missing>'))
+   >>> d.update(name='John', action='ran')
+   >>> '%(name)s %(action)s to %(object)s' % d
+   'John ran to <missing>'
+
+Setting the :attr:`default_factory` to :class:`set` makes the
+:class:`defaultdict` useful for building a dictionary of sets:
+
+   >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
+   >>> d = defaultdict(set)
+   >>> for k, v in s:
+   ...     d[k].add(v)
+   ...
+   >>> d.items()
+   [('blue', set([2, 4])), ('red', set([1, 3]))]
+
+
+.. _named-tuple-factory:
+
+:func:`namedtuple` Factory Function for Tuples with Named Fields
+----------------------------------------------------------------
+
+Named tuples assign meaning to each position in a tuple and allow for more readable,
+self-documenting code.  They can be used wherever regular tuples are used, and
+they add the ability to access fields by name instead of position index.
+
+.. function:: namedtuple(typename, fieldnames, [verbose])
+
+   Returns a new tuple subclass named *typename*.  The new subclass is used to
+   create tuple-like objects that have fields accessible by attribute lookup as
+   well as being indexable and iterable.  Instances of the subclass also have a
+   helpful docstring (with typename and fieldnames) and a helpful :meth:`__repr__`
+   method which lists the tuple contents in a ``name=value`` format.
+
+   The *fieldnames* are a single string with each fieldname separated by whitespace
+   and/or commas, for example ``'x y'`` or ``'x, y'``.  Alternatively, *fieldnames*
+   can be a sequence of strings such as ``['x', 'y']``.
+
+   Any valid Python identifier may be used for a fieldname except for names
+   starting with an underscore.  Valid identifiers consist of letters, digits,
+   and underscores but do not start with a digit or underscore and cannot be
+   a :mod:`keyword` such as *class*, *for*, *return*, *global*, *pass*, *print*,
+   or *raise*.
+
+   If *verbose* is true, the class definition is printed just before being built.
+
+   Named tuple instances do not have per-instance dictionaries, so they are
+   lightweight and require no more memory than regular tuples.
+
+   .. versionadded:: 2.6
+
+Example:
+
+.. doctest::
+   :options: +NORMALIZE_WHITESPACE
+
+   >>> Point = namedtuple('Point', 'x y', verbose=True)
+   class Point(tuple):
+           'Point(x, y)'
+   <BLANKLINE>
+           __slots__ = ()
+   <BLANKLINE>
+           _fields = ('x', 'y')
+   <BLANKLINE>
+           def __new__(cls, x, y):
+               return tuple.__new__(cls, (x, y))
+   <BLANKLINE>
+           @classmethod
+           def _make(cls, iterable, new=tuple.__new__, len=len):
+               'Make a new Point object from a sequence or iterable'
+               result = new(cls, iterable)
+               if len(result) != 2:
+                   raise TypeError('Expected 2 arguments, got %d' % len(result))
+               return result
+   <BLANKLINE>
+           def __repr__(self):
+               return 'Point(x=%r, y=%r)' % self
+   <BLANKLINE>
+           def _asdict(t):
+               'Return a new dict which maps field names to their values'
+               return {'x': t[0], 'y': t[1]}
+   <BLANKLINE>
+           def _replace(self, **kwds):
+               'Return a new Point object replacing specified fields with new values'
+               result = self._make(map(kwds.pop, ('x', 'y'), self))
+               if kwds:
+                   raise ValueError('Got unexpected field names: %r' % kwds.keys())
+               return result
+   <BLANKLINE>            
+           def __getnewargs__(self): 
+               return tuple(self)
+   <BLANKLINE>
+           x = property(itemgetter(0))
+           y = property(itemgetter(1))
+
+   >>> p = Point(11, y=22)     # instantiate with positional or keyword arguments
+   >>> p[0] + p[1]             # indexable like the plain tuple (11, 22)
+   33
+   >>> x, y = p                # unpack like a regular tuple
+   >>> x, y
+   (11, 22)
+   >>> p.x + p.y               # fields also accessible by name
+   33
+   >>> p                       # readable __repr__ with a name=value style
+   Point(x=11, y=22)
+
+Named tuples are especially useful for assigning field names to result tuples returned
+by the :mod:`csv` or :mod:`sqlite3` modules::
+
+   EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')
+
+   import csv
+   for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
+       print emp.name, emp.title
+
+   import sqlite3
+   conn = sqlite3.connect('/companydata')
+   cursor = conn.cursor()
+   cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
+   for emp in map(EmployeeRecord._make, cursor.fetchall()):
+       print emp.name, emp.title
+
+In addition to the methods inherited from tuples, named tuples support
+three additional methods and one attribute.  To prevent conflicts with
+field names, the method and attribute names start with an underscore.
+
+.. method:: somenamedtuple._make(iterable)
+
+   Class method that makes a new instance from an existing sequence or iterable.
+
+.. doctest::
+
+      >>> t = [11, 22]
+      >>> Point._make(t)
+      Point(x=11, y=22)
+
+.. method:: somenamedtuple._asdict()
+
+   Return a new dict which maps field names to their corresponding values::
+
+      >>> p._asdict()
+      {'x': 11, 'y': 22}
+
+.. method:: somenamedtuple._replace(kwargs)
+
+   Return a new instance of the named tuple replacing specified fields with new
+   values:
+
+::
+
+      >>> p = Point(x=11, y=22)
+      >>> p._replace(x=33)
+      Point(x=33, y=22)
+
+      >>> for partnum, record in inventory.items():
+      ...     inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())
+
+.. attribute:: somenamedtuple._fields
+
+   Tuple of strings listing the field names.  Useful for introspection
+   and for creating new named tuple types from existing named tuples.
+
+.. doctest::
+
+      >>> p._fields            # view the field names
+      ('x', 'y')
+
+      >>> Color = namedtuple('Color', 'red green blue')
+      >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
+      >>> Pixel(11, 22, 128, 255, 0)
+      Pixel(x=11, y=22, red=128, green=255, blue=0)
+
+To retrieve a field whose name is stored in a string, use the :func:`getattr`
+function:
+
+    >>> getattr(p, 'x')
+    11
+
+To convert a dictionary to a named tuple, use the double-star-operator [#]_:
+
+   >>> d = {'x': 11, 'y': 22}
+   >>> Point(**d)
+   Point(x=11, y=22)
+
+Since a named tuple is a regular Python class, it is easy to add or change
+functionality with a subclass.  Here is how to add a calculated field and
+a fixed-width print format:
+
+    >>> class Point(namedtuple('Point', 'x y')):
+    ...     __slots__ = ()
+    ...     @property
+    ...     def hypot(self):
+    ...         return (self.x ** 2 + self.y ** 2) ** 0.5
+    ...     def __str__(self):
+    ...         return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)
+
+    >>> for p in Point(3, 4), Point(14, 5/7.):
+    ...     print p
+    Point: x= 3.000  y= 4.000  hypot= 5.000
+    Point: x=14.000  y= 0.714  hypot=14.018
+
+The subclass shown above sets ``__slots__`` to an empty tuple.  This keeps
+keep memory requirements low by preventing the creation of instance dictionaries.
+
+Subclassing is not useful for adding new, stored fields.  Instead, simply
+create a new named tuple type from the :attr:`_fields` attribute:
+
+    >>> Point3D = namedtuple('Point3D', Point._fields + ('z',))
+
+Default values can be implemented by using :meth:`_replace` to
+customize a prototype instance:
+
+    >>> Account = namedtuple('Account', 'owner balance transaction_count')
+    >>> default_account = Account('<owner name>', 0.0, 0)
+    >>> johns_account = default_account._replace(owner='John')
+
+Enumerated constants can be implemented with named tuples, but it is simpler
+and more efficient to use a simple class declaration:
+
+    >>> Status = namedtuple('Status', 'open pending closed')._make(range(3))
+    >>> Status.open, Status.pending, Status.closed
+    (0, 1, 2)
+    >>> class Status:
+    ...     open, pending, closed = range(3)
+
+.. rubric:: Footnotes
+
+.. [#] For information on the double-star-operator see
+   :ref:`tut-unpacking-arguments` and :ref:`calls`.