symbian-qemu-0.9.1-12/python-2.6.1/Lib/test/test_cmath.py
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 from test.test_support import run_unittest
       
     2 from test.test_math import parse_testfile, test_file
       
     3 import unittest
       
     4 import os, sys
       
     5 import cmath, math
       
     6 from cmath import phase, polar, rect, pi
       
     7 
       
     8 INF = float('inf')
       
     9 NAN = float('nan')
       
    10 
       
    11 complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
       
    12 complex_infinities = [complex(x, y) for x, y in [
       
    13         (INF, 0.0),  # 1st quadrant
       
    14         (INF, 2.3),
       
    15         (INF, INF),
       
    16         (2.3, INF),
       
    17         (0.0, INF),
       
    18         (-0.0, INF), # 2nd quadrant
       
    19         (-2.3, INF),
       
    20         (-INF, INF),
       
    21         (-INF, 2.3),
       
    22         (-INF, 0.0),
       
    23         (-INF, -0.0), # 3rd quadrant
       
    24         (-INF, -2.3),
       
    25         (-INF, -INF),
       
    26         (-2.3, -INF),
       
    27         (-0.0, -INF),
       
    28         (0.0, -INF), # 4th quadrant
       
    29         (2.3, -INF),
       
    30         (INF, -INF),
       
    31         (INF, -2.3),
       
    32         (INF, -0.0)
       
    33         ]]
       
    34 complex_nans = [complex(x, y) for x, y in [
       
    35         (NAN, -INF),
       
    36         (NAN, -2.3),
       
    37         (NAN, -0.0),
       
    38         (NAN, 0.0),
       
    39         (NAN, 2.3),
       
    40         (NAN, INF),
       
    41         (-INF, NAN),
       
    42         (-2.3, NAN),
       
    43         (-0.0, NAN),
       
    44         (0.0, NAN),
       
    45         (2.3, NAN),
       
    46         (INF, NAN)
       
    47         ]]
       
    48 
       
    49 def almostEqualF(a, b, rel_err=2e-15, abs_err = 5e-323):
       
    50     """Determine whether floating-point values a and b are equal to within
       
    51     a (small) rounding error.  The default values for rel_err and
       
    52     abs_err are chosen to be suitable for platforms where a float is
       
    53     represented by an IEEE 754 double.  They allow an error of between
       
    54     9 and 19 ulps."""
       
    55 
       
    56     # special values testing
       
    57     if math.isnan(a):
       
    58         return math.isnan(b)
       
    59     if math.isinf(a):
       
    60         return a == b
       
    61 
       
    62     # if both a and b are zero, check whether they have the same sign
       
    63     # (in theory there are examples where it would be legitimate for a
       
    64     # and b to have opposite signs; in practice these hardly ever
       
    65     # occur).
       
    66     if not a and not b:
       
    67         return math.copysign(1., a) == math.copysign(1., b)
       
    68 
       
    69     # if a-b overflows, or b is infinite, return False.  Again, in
       
    70     # theory there are examples where a is within a few ulps of the
       
    71     # max representable float, and then b could legitimately be
       
    72     # infinite.  In practice these examples are rare.
       
    73     try:
       
    74         absolute_error = abs(b-a)
       
    75     except OverflowError:
       
    76         return False
       
    77     else:
       
    78         return absolute_error <= max(abs_err, rel_err * abs(a))
       
    79 
       
    80 class CMathTests(unittest.TestCase):
       
    81     # list of all functions in cmath
       
    82     test_functions = [getattr(cmath, fname) for fname in [
       
    83             'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
       
    84             'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
       
    85             'sqrt', 'tan', 'tanh']]
       
    86     # test first and second arguments independently for 2-argument log
       
    87     test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
       
    88     test_functions.append(lambda x : cmath.log(14.-27j, x))
       
    89 
       
    90     def setUp(self):
       
    91         self.test_values = open(test_file)
       
    92 
       
    93     def tearDown(self):
       
    94         self.test_values.close()
       
    95 
       
    96     def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323):
       
    97         """Check that two floating-point numbers are almost equal."""
       
    98 
       
    99         # special values testing
       
   100         if math.isnan(a):
       
   101             if math.isnan(b):
       
   102                 return
       
   103             self.fail("%s should be nan" % repr(b))
       
   104 
       
   105         if math.isinf(a):
       
   106             if a == b:
       
   107                 return
       
   108             self.fail("finite result where infinity excpected: "
       
   109                       "expected %s, got %s" % (repr(a), repr(b)))
       
   110 
       
   111         if not a and not b:
       
   112             if math.atan2(a, -1.) != math.atan2(b, -1.):
       
   113                 self.fail("zero has wrong sign: expected %s, got %s" %
       
   114                           (repr(a), repr(b)))
       
   115 
       
   116         # test passes if either the absolute error or the relative
       
   117         # error is sufficiently small.  The defaults amount to an
       
   118         # error of between 9 ulps and 19 ulps on an IEEE-754 compliant
       
   119         # machine.
       
   120 
       
   121         try:
       
   122             absolute_error = abs(b-a)
       
   123         except OverflowError:
       
   124             pass
       
   125         else:
       
   126             if absolute_error <= max(abs_err, rel_err * abs(a)):
       
   127                 return
       
   128         self.fail("%s and %s are not sufficiently close" % (repr(a), repr(b)))
       
   129 
       
   130     def test_constants(self):
       
   131         e_expected = 2.71828182845904523536
       
   132         pi_expected = 3.14159265358979323846
       
   133         self.rAssertAlmostEqual(cmath.pi, pi_expected, 9,
       
   134             "cmath.pi is %s; should be %s" % (cmath.pi, pi_expected))
       
   135         self.rAssertAlmostEqual(cmath.e,  e_expected, 9,
       
   136             "cmath.e is %s; should be %s" % (cmath.e, e_expected))
       
   137 
       
   138     def test_user_object(self):
       
   139         # Test automatic calling of __complex__ and __float__ by cmath
       
   140         # functions
       
   141 
       
   142         # some random values to use as test values; we avoid values
       
   143         # for which any of the functions in cmath is undefined
       
   144         # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
       
   145         cx_arg = 4.419414439 + 1.497100113j
       
   146         flt_arg = -6.131677725
       
   147 
       
   148         # a variety of non-complex numbers, used to check that
       
   149         # non-complex return values from __complex__ give an error
       
   150         non_complexes = ["not complex", 1, 5L, 2., None,
       
   151                          object(), NotImplemented]
       
   152 
       
   153         # Now we introduce a variety of classes whose instances might
       
   154         # end up being passed to the cmath functions
       
   155 
       
   156         # usual case: new-style class implementing __complex__
       
   157         class MyComplex(object):
       
   158             def __init__(self, value):
       
   159                 self.value = value
       
   160             def __complex__(self):
       
   161                 return self.value
       
   162 
       
   163         # old-style class implementing __complex__
       
   164         class MyComplexOS:
       
   165             def __init__(self, value):
       
   166                 self.value = value
       
   167             def __complex__(self):
       
   168                 return self.value
       
   169 
       
   170         # classes for which __complex__ raises an exception
       
   171         class SomeException(Exception):
       
   172             pass
       
   173         class MyComplexException(object):
       
   174             def __complex__(self):
       
   175                 raise SomeException
       
   176         class MyComplexExceptionOS:
       
   177             def __complex__(self):
       
   178                 raise SomeException
       
   179 
       
   180         # some classes not providing __float__ or __complex__
       
   181         class NeitherComplexNorFloat(object):
       
   182             pass
       
   183         class NeitherComplexNorFloatOS:
       
   184             pass
       
   185         class MyInt(object):
       
   186             def __int__(self): return 2
       
   187             def __long__(self): return 2L
       
   188             def __index__(self): return 2
       
   189         class MyIntOS:
       
   190             def __int__(self): return 2
       
   191             def __long__(self): return 2L
       
   192             def __index__(self): return 2
       
   193 
       
   194         # other possible combinations of __float__ and __complex__
       
   195         # that should work
       
   196         class FloatAndComplex(object):
       
   197             def __float__(self):
       
   198                 return flt_arg
       
   199             def __complex__(self):
       
   200                 return cx_arg
       
   201         class FloatAndComplexOS:
       
   202             def __float__(self):
       
   203                 return flt_arg
       
   204             def __complex__(self):
       
   205                 return cx_arg
       
   206         class JustFloat(object):
       
   207             def __float__(self):
       
   208                 return flt_arg
       
   209         class JustFloatOS:
       
   210             def __float__(self):
       
   211                 return flt_arg
       
   212 
       
   213         for f in self.test_functions:
       
   214             # usual usage
       
   215             self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
       
   216             self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg))
       
   217             # other combinations of __float__ and __complex__
       
   218             self.assertEqual(f(FloatAndComplex()), f(cx_arg))
       
   219             self.assertEqual(f(FloatAndComplexOS()), f(cx_arg))
       
   220             self.assertEqual(f(JustFloat()), f(flt_arg))
       
   221             self.assertEqual(f(JustFloatOS()), f(flt_arg))
       
   222             # TypeError should be raised for classes not providing
       
   223             # either __complex__ or __float__, even if they provide
       
   224             # __int__, __long__ or __index__.  An old-style class
       
   225             # currently raises AttributeError instead of a TypeError;
       
   226             # this could be considered a bug.
       
   227             self.assertRaises(TypeError, f, NeitherComplexNorFloat())
       
   228             self.assertRaises(TypeError, f, MyInt())
       
   229             self.assertRaises(Exception, f, NeitherComplexNorFloatOS())
       
   230             self.assertRaises(Exception, f, MyIntOS())
       
   231             # non-complex return value from __complex__ -> TypeError
       
   232             for bad_complex in non_complexes:
       
   233                 self.assertRaises(TypeError, f, MyComplex(bad_complex))
       
   234                 self.assertRaises(TypeError, f, MyComplexOS(bad_complex))
       
   235             # exceptions in __complex__ should be propagated correctly
       
   236             self.assertRaises(SomeException, f, MyComplexException())
       
   237             self.assertRaises(SomeException, f, MyComplexExceptionOS())
       
   238 
       
   239     def test_input_type(self):
       
   240         # ints and longs should be acceptable inputs to all cmath
       
   241         # functions, by virtue of providing a __float__ method
       
   242         for f in self.test_functions:
       
   243             for arg in [2, 2L, 2.]:
       
   244                 self.assertEqual(f(arg), f(arg.__float__()))
       
   245 
       
   246         # but strings should give a TypeError
       
   247         for f in self.test_functions:
       
   248             for arg in ["a", "long_string", "0", "1j", ""]:
       
   249                 self.assertRaises(TypeError, f, arg)
       
   250 
       
   251     def test_cmath_matches_math(self):
       
   252         # check that corresponding cmath and math functions are equal
       
   253         # for floats in the appropriate range
       
   254 
       
   255         # test_values in (0, 1)
       
   256         test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
       
   257 
       
   258         # test_values for functions defined on [-1., 1.]
       
   259         unit_interval = test_values + [-x for x in test_values] + \
       
   260             [0., 1., -1.]
       
   261 
       
   262         # test_values for log, log10, sqrt
       
   263         positive = test_values + [1.] + [1./x for x in test_values]
       
   264         nonnegative = [0.] + positive
       
   265 
       
   266         # test_values for functions defined on the whole real line
       
   267         real_line = [0.] + positive + [-x for x in positive]
       
   268 
       
   269         test_functions = {
       
   270             'acos' : unit_interval,
       
   271             'asin' : unit_interval,
       
   272             'atan' : real_line,
       
   273             'cos' : real_line,
       
   274             'cosh' : real_line,
       
   275             'exp' : real_line,
       
   276             'log' : positive,
       
   277             'log10' : positive,
       
   278             'sin' : real_line,
       
   279             'sinh' : real_line,
       
   280             'sqrt' : nonnegative,
       
   281             'tan' : real_line,
       
   282             'tanh' : real_line}
       
   283 
       
   284         for fn, values in test_functions.items():
       
   285             float_fn = getattr(math, fn)
       
   286             complex_fn = getattr(cmath, fn)
       
   287             for v in values:
       
   288                 z = complex_fn(v)
       
   289                 self.rAssertAlmostEqual(float_fn(v), z.real)
       
   290                 self.assertEqual(0., z.imag)
       
   291 
       
   292         # test two-argument version of log with various bases
       
   293         for base in [0.5, 2., 10.]:
       
   294             for v in positive:
       
   295                 z = cmath.log(v, base)
       
   296                 self.rAssertAlmostEqual(math.log(v, base), z.real)
       
   297                 self.assertEqual(0., z.imag)
       
   298 
       
   299     def test_specific_values(self):
       
   300         if not float.__getformat__("double").startswith("IEEE"):
       
   301             return
       
   302 
       
   303         def rect_complex(z):
       
   304             """Wrapped version of rect that accepts a complex number instead of
       
   305             two float arguments."""
       
   306             return cmath.rect(z.real, z.imag)
       
   307 
       
   308         def polar_complex(z):
       
   309             """Wrapped version of polar that returns a complex number instead of
       
   310             two floats."""
       
   311             return complex(*polar(z))
       
   312 
       
   313         for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
       
   314             arg = complex(ar, ai)
       
   315             expected = complex(er, ei)
       
   316             if fn == 'rect':
       
   317                 function = rect_complex
       
   318             elif fn == 'polar':
       
   319                 function = polar_complex
       
   320             else:
       
   321                 function = getattr(cmath, fn)
       
   322             if 'divide-by-zero' in flags or 'invalid' in flags:
       
   323                 try:
       
   324                     actual = function(arg)
       
   325                 except ValueError:
       
   326                     continue
       
   327                 else:
       
   328                     test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
       
   329                     self.fail('ValueError not raised in test %s' % test_str)
       
   330 
       
   331             if 'overflow' in flags:
       
   332                 try:
       
   333                     actual = function(arg)
       
   334                 except OverflowError:
       
   335                     continue
       
   336                 else:
       
   337                     test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai)
       
   338                     self.fail('OverflowError not raised in test %s' % test_str)
       
   339 
       
   340             actual = function(arg)
       
   341 
       
   342             if 'ignore-real-sign' in flags:
       
   343                 actual = complex(abs(actual.real), actual.imag)
       
   344                 expected = complex(abs(expected.real), expected.imag)
       
   345             if 'ignore-imag-sign' in flags:
       
   346                 actual = complex(actual.real, abs(actual.imag))
       
   347                 expected = complex(expected.real, abs(expected.imag))
       
   348 
       
   349             # for the real part of the log function, we allow an
       
   350             # absolute error of up to 2e-15.
       
   351             if fn in ('log', 'log10'):
       
   352                 real_abs_err = 2e-15
       
   353             else:
       
   354                 real_abs_err = 5e-323
       
   355 
       
   356             if not (almostEqualF(expected.real, actual.real,
       
   357                                  abs_err = real_abs_err) and
       
   358                     almostEqualF(expected.imag, actual.imag)):
       
   359                 error_message = (
       
   360                     "%s: %s(complex(%r, %r))\n" % (id, fn, ar, ai) +
       
   361                     "Expected: complex(%r, %r)\n" %
       
   362                                     (expected.real, expected.imag) +
       
   363                     "Received: complex(%r, %r)\n" %
       
   364                                     (actual.real, actual.imag) +
       
   365                     "Received value insufficiently close to expected value.")
       
   366                 self.fail(error_message)
       
   367 
       
   368     def assertCISEqual(self, a, b):
       
   369         eps = 1E-7
       
   370         if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps:
       
   371             self.fail((a ,b))
       
   372 
       
   373     def test_polar(self):
       
   374         self.assertCISEqual(polar(0), (0., 0.))
       
   375         self.assertCISEqual(polar(1.), (1., 0.))
       
   376         self.assertCISEqual(polar(-1.), (1., pi))
       
   377         self.assertCISEqual(polar(1j), (1., pi/2))
       
   378         self.assertCISEqual(polar(-1j), (1., -pi/2))
       
   379 
       
   380     def test_phase(self):
       
   381         self.assertAlmostEqual(phase(0), 0.)
       
   382         self.assertAlmostEqual(phase(1.), 0.)
       
   383         self.assertAlmostEqual(phase(-1.), pi)
       
   384         self.assertAlmostEqual(phase(-1.+1E-300j), pi)
       
   385         self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
       
   386         self.assertAlmostEqual(phase(1j), pi/2)
       
   387         self.assertAlmostEqual(phase(-1j), -pi/2)
       
   388 
       
   389         # zeros
       
   390         self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
       
   391         self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
       
   392         self.assertEqual(phase(complex(-0.0, 0.0)), pi)
       
   393         self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
       
   394 
       
   395         # infinities
       
   396         self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
       
   397         self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
       
   398         self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
       
   399         self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
       
   400         self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
       
   401         self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
       
   402         self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
       
   403         self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
       
   404         self.assertEqual(phase(complex(INF, -2.3)), -0.0)
       
   405         self.assertEqual(phase(complex(INF, -0.0)), -0.0)
       
   406         self.assertEqual(phase(complex(INF, 0.0)), 0.0)
       
   407         self.assertEqual(phase(complex(INF, 2.3)), 0.0)
       
   408         self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
       
   409         self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
       
   410         self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
       
   411         self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
       
   412         self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
       
   413         self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
       
   414         self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
       
   415         self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
       
   416 
       
   417         # real or imaginary part NaN
       
   418         for z in complex_nans:
       
   419             self.assert_(math.isnan(phase(z)))
       
   420 
       
   421     def test_abs(self):
       
   422         # zeros
       
   423         for z in complex_zeros:
       
   424             self.assertEqual(abs(z), 0.0)
       
   425 
       
   426         # infinities
       
   427         for z in complex_infinities:
       
   428             self.assertEqual(abs(z), INF)
       
   429 
       
   430         # real or imaginary part NaN
       
   431         self.assertEqual(abs(complex(NAN, -INF)), INF)
       
   432         self.assert_(math.isnan(abs(complex(NAN, -2.3))))
       
   433         self.assert_(math.isnan(abs(complex(NAN, -0.0))))
       
   434         self.assert_(math.isnan(abs(complex(NAN, 0.0))))
       
   435         self.assert_(math.isnan(abs(complex(NAN, 2.3))))
       
   436         self.assertEqual(abs(complex(NAN, INF)), INF)
       
   437         self.assertEqual(abs(complex(-INF, NAN)), INF)
       
   438         self.assert_(math.isnan(abs(complex(-2.3, NAN))))
       
   439         self.assert_(math.isnan(abs(complex(-0.0, NAN))))
       
   440         self.assert_(math.isnan(abs(complex(0.0, NAN))))
       
   441         self.assert_(math.isnan(abs(complex(2.3, NAN))))
       
   442         self.assertEqual(abs(complex(INF, NAN)), INF)
       
   443         self.assert_(math.isnan(abs(complex(NAN, NAN))))
       
   444 
       
   445         # result overflows
       
   446         if float.__getformat__("double").startswith("IEEE"):
       
   447             self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
       
   448 
       
   449     def assertCEqual(self, a, b):
       
   450         eps = 1E-7
       
   451         if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
       
   452             self.fail((a ,b))
       
   453 
       
   454     def test_rect(self):
       
   455         self.assertCEqual(rect(0, 0), (0, 0))
       
   456         self.assertCEqual(rect(1, 0), (1., 0))
       
   457         self.assertCEqual(rect(1, -pi), (-1., 0))
       
   458         self.assertCEqual(rect(1, pi/2), (0, 1.))
       
   459         self.assertCEqual(rect(1, -pi/2), (0, -1.))
       
   460 
       
   461     def test_isnan(self):
       
   462         self.failIf(cmath.isnan(1))
       
   463         self.failIf(cmath.isnan(1j))
       
   464         self.failIf(cmath.isnan(INF))
       
   465         self.assert_(cmath.isnan(NAN))
       
   466         self.assert_(cmath.isnan(complex(NAN, 0)))
       
   467         self.assert_(cmath.isnan(complex(0, NAN)))
       
   468         self.assert_(cmath.isnan(complex(NAN, NAN)))
       
   469         self.assert_(cmath.isnan(complex(NAN, INF)))
       
   470         self.assert_(cmath.isnan(complex(INF, NAN)))
       
   471 
       
   472     def test_isinf(self):
       
   473         self.failIf(cmath.isinf(1))
       
   474         self.failIf(cmath.isinf(1j))
       
   475         self.failIf(cmath.isinf(NAN))
       
   476         self.assert_(cmath.isinf(INF))
       
   477         self.assert_(cmath.isinf(complex(INF, 0)))
       
   478         self.assert_(cmath.isinf(complex(0, INF)))
       
   479         self.assert_(cmath.isinf(complex(INF, INF)))
       
   480         self.assert_(cmath.isinf(complex(NAN, INF)))
       
   481         self.assert_(cmath.isinf(complex(INF, NAN)))
       
   482 
       
   483 
       
   484 def test_main():
       
   485     run_unittest(CMathTests)
       
   486 
       
   487 if __name__ == "__main__":
       
   488     test_main()