|
1 from test.test_support import run_unittest |
|
2 from test.test_math import parse_testfile, test_file |
|
3 import unittest |
|
4 import os, sys |
|
5 import cmath, math |
|
6 from cmath import phase, polar, rect, pi |
|
7 |
|
8 INF = float('inf') |
|
9 NAN = float('nan') |
|
10 |
|
11 complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]] |
|
12 complex_infinities = [complex(x, y) for x, y in [ |
|
13 (INF, 0.0), # 1st quadrant |
|
14 (INF, 2.3), |
|
15 (INF, INF), |
|
16 (2.3, INF), |
|
17 (0.0, INF), |
|
18 (-0.0, INF), # 2nd quadrant |
|
19 (-2.3, INF), |
|
20 (-INF, INF), |
|
21 (-INF, 2.3), |
|
22 (-INF, 0.0), |
|
23 (-INF, -0.0), # 3rd quadrant |
|
24 (-INF, -2.3), |
|
25 (-INF, -INF), |
|
26 (-2.3, -INF), |
|
27 (-0.0, -INF), |
|
28 (0.0, -INF), # 4th quadrant |
|
29 (2.3, -INF), |
|
30 (INF, -INF), |
|
31 (INF, -2.3), |
|
32 (INF, -0.0) |
|
33 ]] |
|
34 complex_nans = [complex(x, y) for x, y in [ |
|
35 (NAN, -INF), |
|
36 (NAN, -2.3), |
|
37 (NAN, -0.0), |
|
38 (NAN, 0.0), |
|
39 (NAN, 2.3), |
|
40 (NAN, INF), |
|
41 (-INF, NAN), |
|
42 (-2.3, NAN), |
|
43 (-0.0, NAN), |
|
44 (0.0, NAN), |
|
45 (2.3, NAN), |
|
46 (INF, NAN) |
|
47 ]] |
|
48 |
|
49 def almostEqualF(a, b, rel_err=2e-15, abs_err = 5e-323): |
|
50 """Determine whether floating-point values a and b are equal to within |
|
51 a (small) rounding error. The default values for rel_err and |
|
52 abs_err are chosen to be suitable for platforms where a float is |
|
53 represented by an IEEE 754 double. They allow an error of between |
|
54 9 and 19 ulps.""" |
|
55 |
|
56 # special values testing |
|
57 if math.isnan(a): |
|
58 return math.isnan(b) |
|
59 if math.isinf(a): |
|
60 return a == b |
|
61 |
|
62 # if both a and b are zero, check whether they have the same sign |
|
63 # (in theory there are examples where it would be legitimate for a |
|
64 # and b to have opposite signs; in practice these hardly ever |
|
65 # occur). |
|
66 if not a and not b: |
|
67 return math.copysign(1., a) == math.copysign(1., b) |
|
68 |
|
69 # if a-b overflows, or b is infinite, return False. Again, in |
|
70 # theory there are examples where a is within a few ulps of the |
|
71 # max representable float, and then b could legitimately be |
|
72 # infinite. In practice these examples are rare. |
|
73 try: |
|
74 absolute_error = abs(b-a) |
|
75 except OverflowError: |
|
76 return False |
|
77 else: |
|
78 return absolute_error <= max(abs_err, rel_err * abs(a)) |
|
79 |
|
80 class CMathTests(unittest.TestCase): |
|
81 # list of all functions in cmath |
|
82 test_functions = [getattr(cmath, fname) for fname in [ |
|
83 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', |
|
84 'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh', |
|
85 'sqrt', 'tan', 'tanh']] |
|
86 # test first and second arguments independently for 2-argument log |
|
87 test_functions.append(lambda x : cmath.log(x, 1729. + 0j)) |
|
88 test_functions.append(lambda x : cmath.log(14.-27j, x)) |
|
89 |
|
90 def setUp(self): |
|
91 self.test_values = open(test_file) |
|
92 |
|
93 def tearDown(self): |
|
94 self.test_values.close() |
|
95 |
|
96 def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323): |
|
97 """Check that two floating-point numbers are almost equal.""" |
|
98 |
|
99 # special values testing |
|
100 if math.isnan(a): |
|
101 if math.isnan(b): |
|
102 return |
|
103 self.fail("%s should be nan" % repr(b)) |
|
104 |
|
105 if math.isinf(a): |
|
106 if a == b: |
|
107 return |
|
108 self.fail("finite result where infinity excpected: " |
|
109 "expected %s, got %s" % (repr(a), repr(b))) |
|
110 |
|
111 if not a and not b: |
|
112 if math.atan2(a, -1.) != math.atan2(b, -1.): |
|
113 self.fail("zero has wrong sign: expected %s, got %s" % |
|
114 (repr(a), repr(b))) |
|
115 |
|
116 # test passes if either the absolute error or the relative |
|
117 # error is sufficiently small. The defaults amount to an |
|
118 # error of between 9 ulps and 19 ulps on an IEEE-754 compliant |
|
119 # machine. |
|
120 |
|
121 try: |
|
122 absolute_error = abs(b-a) |
|
123 except OverflowError: |
|
124 pass |
|
125 else: |
|
126 if absolute_error <= max(abs_err, rel_err * abs(a)): |
|
127 return |
|
128 self.fail("%s and %s are not sufficiently close" % (repr(a), repr(b))) |
|
129 |
|
130 def test_constants(self): |
|
131 e_expected = 2.71828182845904523536 |
|
132 pi_expected = 3.14159265358979323846 |
|
133 self.rAssertAlmostEqual(cmath.pi, pi_expected, 9, |
|
134 "cmath.pi is %s; should be %s" % (cmath.pi, pi_expected)) |
|
135 self.rAssertAlmostEqual(cmath.e, e_expected, 9, |
|
136 "cmath.e is %s; should be %s" % (cmath.e, e_expected)) |
|
137 |
|
138 def test_user_object(self): |
|
139 # Test automatic calling of __complex__ and __float__ by cmath |
|
140 # functions |
|
141 |
|
142 # some random values to use as test values; we avoid values |
|
143 # for which any of the functions in cmath is undefined |
|
144 # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow |
|
145 cx_arg = 4.419414439 + 1.497100113j |
|
146 flt_arg = -6.131677725 |
|
147 |
|
148 # a variety of non-complex numbers, used to check that |
|
149 # non-complex return values from __complex__ give an error |
|
150 non_complexes = ["not complex", 1, 5L, 2., None, |
|
151 object(), NotImplemented] |
|
152 |
|
153 # Now we introduce a variety of classes whose instances might |
|
154 # end up being passed to the cmath functions |
|
155 |
|
156 # usual case: new-style class implementing __complex__ |
|
157 class MyComplex(object): |
|
158 def __init__(self, value): |
|
159 self.value = value |
|
160 def __complex__(self): |
|
161 return self.value |
|
162 |
|
163 # old-style class implementing __complex__ |
|
164 class MyComplexOS: |
|
165 def __init__(self, value): |
|
166 self.value = value |
|
167 def __complex__(self): |
|
168 return self.value |
|
169 |
|
170 # classes for which __complex__ raises an exception |
|
171 class SomeException(Exception): |
|
172 pass |
|
173 class MyComplexException(object): |
|
174 def __complex__(self): |
|
175 raise SomeException |
|
176 class MyComplexExceptionOS: |
|
177 def __complex__(self): |
|
178 raise SomeException |
|
179 |
|
180 # some classes not providing __float__ or __complex__ |
|
181 class NeitherComplexNorFloat(object): |
|
182 pass |
|
183 class NeitherComplexNorFloatOS: |
|
184 pass |
|
185 class MyInt(object): |
|
186 def __int__(self): return 2 |
|
187 def __long__(self): return 2L |
|
188 def __index__(self): return 2 |
|
189 class MyIntOS: |
|
190 def __int__(self): return 2 |
|
191 def __long__(self): return 2L |
|
192 def __index__(self): return 2 |
|
193 |
|
194 # other possible combinations of __float__ and __complex__ |
|
195 # that should work |
|
196 class FloatAndComplex(object): |
|
197 def __float__(self): |
|
198 return flt_arg |
|
199 def __complex__(self): |
|
200 return cx_arg |
|
201 class FloatAndComplexOS: |
|
202 def __float__(self): |
|
203 return flt_arg |
|
204 def __complex__(self): |
|
205 return cx_arg |
|
206 class JustFloat(object): |
|
207 def __float__(self): |
|
208 return flt_arg |
|
209 class JustFloatOS: |
|
210 def __float__(self): |
|
211 return flt_arg |
|
212 |
|
213 for f in self.test_functions: |
|
214 # usual usage |
|
215 self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg)) |
|
216 self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) |
|
217 # other combinations of __float__ and __complex__ |
|
218 self.assertEqual(f(FloatAndComplex()), f(cx_arg)) |
|
219 self.assertEqual(f(FloatAndComplexOS()), f(cx_arg)) |
|
220 self.assertEqual(f(JustFloat()), f(flt_arg)) |
|
221 self.assertEqual(f(JustFloatOS()), f(flt_arg)) |
|
222 # TypeError should be raised for classes not providing |
|
223 # either __complex__ or __float__, even if they provide |
|
224 # __int__, __long__ or __index__. An old-style class |
|
225 # currently raises AttributeError instead of a TypeError; |
|
226 # this could be considered a bug. |
|
227 self.assertRaises(TypeError, f, NeitherComplexNorFloat()) |
|
228 self.assertRaises(TypeError, f, MyInt()) |
|
229 self.assertRaises(Exception, f, NeitherComplexNorFloatOS()) |
|
230 self.assertRaises(Exception, f, MyIntOS()) |
|
231 # non-complex return value from __complex__ -> TypeError |
|
232 for bad_complex in non_complexes: |
|
233 self.assertRaises(TypeError, f, MyComplex(bad_complex)) |
|
234 self.assertRaises(TypeError, f, MyComplexOS(bad_complex)) |
|
235 # exceptions in __complex__ should be propagated correctly |
|
236 self.assertRaises(SomeException, f, MyComplexException()) |
|
237 self.assertRaises(SomeException, f, MyComplexExceptionOS()) |
|
238 |
|
239 def test_input_type(self): |
|
240 # ints and longs should be acceptable inputs to all cmath |
|
241 # functions, by virtue of providing a __float__ method |
|
242 for f in self.test_functions: |
|
243 for arg in [2, 2L, 2.]: |
|
244 self.assertEqual(f(arg), f(arg.__float__())) |
|
245 |
|
246 # but strings should give a TypeError |
|
247 for f in self.test_functions: |
|
248 for arg in ["a", "long_string", "0", "1j", ""]: |
|
249 self.assertRaises(TypeError, f, arg) |
|
250 |
|
251 def test_cmath_matches_math(self): |
|
252 # check that corresponding cmath and math functions are equal |
|
253 # for floats in the appropriate range |
|
254 |
|
255 # test_values in (0, 1) |
|
256 test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99] |
|
257 |
|
258 # test_values for functions defined on [-1., 1.] |
|
259 unit_interval = test_values + [-x for x in test_values] + \ |
|
260 [0., 1., -1.] |
|
261 |
|
262 # test_values for log, log10, sqrt |
|
263 positive = test_values + [1.] + [1./x for x in test_values] |
|
264 nonnegative = [0.] + positive |
|
265 |
|
266 # test_values for functions defined on the whole real line |
|
267 real_line = [0.] + positive + [-x for x in positive] |
|
268 |
|
269 test_functions = { |
|
270 'acos' : unit_interval, |
|
271 'asin' : unit_interval, |
|
272 'atan' : real_line, |
|
273 'cos' : real_line, |
|
274 'cosh' : real_line, |
|
275 'exp' : real_line, |
|
276 'log' : positive, |
|
277 'log10' : positive, |
|
278 'sin' : real_line, |
|
279 'sinh' : real_line, |
|
280 'sqrt' : nonnegative, |
|
281 'tan' : real_line, |
|
282 'tanh' : real_line} |
|
283 |
|
284 for fn, values in test_functions.items(): |
|
285 float_fn = getattr(math, fn) |
|
286 complex_fn = getattr(cmath, fn) |
|
287 for v in values: |
|
288 z = complex_fn(v) |
|
289 self.rAssertAlmostEqual(float_fn(v), z.real) |
|
290 self.assertEqual(0., z.imag) |
|
291 |
|
292 # test two-argument version of log with various bases |
|
293 for base in [0.5, 2., 10.]: |
|
294 for v in positive: |
|
295 z = cmath.log(v, base) |
|
296 self.rAssertAlmostEqual(math.log(v, base), z.real) |
|
297 self.assertEqual(0., z.imag) |
|
298 |
|
299 def test_specific_values(self): |
|
300 if not float.__getformat__("double").startswith("IEEE"): |
|
301 return |
|
302 |
|
303 def rect_complex(z): |
|
304 """Wrapped version of rect that accepts a complex number instead of |
|
305 two float arguments.""" |
|
306 return cmath.rect(z.real, z.imag) |
|
307 |
|
308 def polar_complex(z): |
|
309 """Wrapped version of polar that returns a complex number instead of |
|
310 two floats.""" |
|
311 return complex(*polar(z)) |
|
312 |
|
313 for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): |
|
314 arg = complex(ar, ai) |
|
315 expected = complex(er, ei) |
|
316 if fn == 'rect': |
|
317 function = rect_complex |
|
318 elif fn == 'polar': |
|
319 function = polar_complex |
|
320 else: |
|
321 function = getattr(cmath, fn) |
|
322 if 'divide-by-zero' in flags or 'invalid' in flags: |
|
323 try: |
|
324 actual = function(arg) |
|
325 except ValueError: |
|
326 continue |
|
327 else: |
|
328 test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai) |
|
329 self.fail('ValueError not raised in test %s' % test_str) |
|
330 |
|
331 if 'overflow' in flags: |
|
332 try: |
|
333 actual = function(arg) |
|
334 except OverflowError: |
|
335 continue |
|
336 else: |
|
337 test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai) |
|
338 self.fail('OverflowError not raised in test %s' % test_str) |
|
339 |
|
340 actual = function(arg) |
|
341 |
|
342 if 'ignore-real-sign' in flags: |
|
343 actual = complex(abs(actual.real), actual.imag) |
|
344 expected = complex(abs(expected.real), expected.imag) |
|
345 if 'ignore-imag-sign' in flags: |
|
346 actual = complex(actual.real, abs(actual.imag)) |
|
347 expected = complex(expected.real, abs(expected.imag)) |
|
348 |
|
349 # for the real part of the log function, we allow an |
|
350 # absolute error of up to 2e-15. |
|
351 if fn in ('log', 'log10'): |
|
352 real_abs_err = 2e-15 |
|
353 else: |
|
354 real_abs_err = 5e-323 |
|
355 |
|
356 if not (almostEqualF(expected.real, actual.real, |
|
357 abs_err = real_abs_err) and |
|
358 almostEqualF(expected.imag, actual.imag)): |
|
359 error_message = ( |
|
360 "%s: %s(complex(%r, %r))\n" % (id, fn, ar, ai) + |
|
361 "Expected: complex(%r, %r)\n" % |
|
362 (expected.real, expected.imag) + |
|
363 "Received: complex(%r, %r)\n" % |
|
364 (actual.real, actual.imag) + |
|
365 "Received value insufficiently close to expected value.") |
|
366 self.fail(error_message) |
|
367 |
|
368 def assertCISEqual(self, a, b): |
|
369 eps = 1E-7 |
|
370 if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps: |
|
371 self.fail((a ,b)) |
|
372 |
|
373 def test_polar(self): |
|
374 self.assertCISEqual(polar(0), (0., 0.)) |
|
375 self.assertCISEqual(polar(1.), (1., 0.)) |
|
376 self.assertCISEqual(polar(-1.), (1., pi)) |
|
377 self.assertCISEqual(polar(1j), (1., pi/2)) |
|
378 self.assertCISEqual(polar(-1j), (1., -pi/2)) |
|
379 |
|
380 def test_phase(self): |
|
381 self.assertAlmostEqual(phase(0), 0.) |
|
382 self.assertAlmostEqual(phase(1.), 0.) |
|
383 self.assertAlmostEqual(phase(-1.), pi) |
|
384 self.assertAlmostEqual(phase(-1.+1E-300j), pi) |
|
385 self.assertAlmostEqual(phase(-1.-1E-300j), -pi) |
|
386 self.assertAlmostEqual(phase(1j), pi/2) |
|
387 self.assertAlmostEqual(phase(-1j), -pi/2) |
|
388 |
|
389 # zeros |
|
390 self.assertEqual(phase(complex(0.0, 0.0)), 0.0) |
|
391 self.assertEqual(phase(complex(0.0, -0.0)), -0.0) |
|
392 self.assertEqual(phase(complex(-0.0, 0.0)), pi) |
|
393 self.assertEqual(phase(complex(-0.0, -0.0)), -pi) |
|
394 |
|
395 # infinities |
|
396 self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi) |
|
397 self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi) |
|
398 self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi) |
|
399 self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2) |
|
400 self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2) |
|
401 self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2) |
|
402 self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2) |
|
403 self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4) |
|
404 self.assertEqual(phase(complex(INF, -2.3)), -0.0) |
|
405 self.assertEqual(phase(complex(INF, -0.0)), -0.0) |
|
406 self.assertEqual(phase(complex(INF, 0.0)), 0.0) |
|
407 self.assertEqual(phase(complex(INF, 2.3)), 0.0) |
|
408 self.assertAlmostEqual(phase(complex(INF, INF)), pi/4) |
|
409 self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2) |
|
410 self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2) |
|
411 self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2) |
|
412 self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2) |
|
413 self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi) |
|
414 self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi) |
|
415 self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi) |
|
416 |
|
417 # real or imaginary part NaN |
|
418 for z in complex_nans: |
|
419 self.assert_(math.isnan(phase(z))) |
|
420 |
|
421 def test_abs(self): |
|
422 # zeros |
|
423 for z in complex_zeros: |
|
424 self.assertEqual(abs(z), 0.0) |
|
425 |
|
426 # infinities |
|
427 for z in complex_infinities: |
|
428 self.assertEqual(abs(z), INF) |
|
429 |
|
430 # real or imaginary part NaN |
|
431 self.assertEqual(abs(complex(NAN, -INF)), INF) |
|
432 self.assert_(math.isnan(abs(complex(NAN, -2.3)))) |
|
433 self.assert_(math.isnan(abs(complex(NAN, -0.0)))) |
|
434 self.assert_(math.isnan(abs(complex(NAN, 0.0)))) |
|
435 self.assert_(math.isnan(abs(complex(NAN, 2.3)))) |
|
436 self.assertEqual(abs(complex(NAN, INF)), INF) |
|
437 self.assertEqual(abs(complex(-INF, NAN)), INF) |
|
438 self.assert_(math.isnan(abs(complex(-2.3, NAN)))) |
|
439 self.assert_(math.isnan(abs(complex(-0.0, NAN)))) |
|
440 self.assert_(math.isnan(abs(complex(0.0, NAN)))) |
|
441 self.assert_(math.isnan(abs(complex(2.3, NAN)))) |
|
442 self.assertEqual(abs(complex(INF, NAN)), INF) |
|
443 self.assert_(math.isnan(abs(complex(NAN, NAN)))) |
|
444 |
|
445 # result overflows |
|
446 if float.__getformat__("double").startswith("IEEE"): |
|
447 self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308)) |
|
448 |
|
449 def assertCEqual(self, a, b): |
|
450 eps = 1E-7 |
|
451 if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps: |
|
452 self.fail((a ,b)) |
|
453 |
|
454 def test_rect(self): |
|
455 self.assertCEqual(rect(0, 0), (0, 0)) |
|
456 self.assertCEqual(rect(1, 0), (1., 0)) |
|
457 self.assertCEqual(rect(1, -pi), (-1., 0)) |
|
458 self.assertCEqual(rect(1, pi/2), (0, 1.)) |
|
459 self.assertCEqual(rect(1, -pi/2), (0, -1.)) |
|
460 |
|
461 def test_isnan(self): |
|
462 self.failIf(cmath.isnan(1)) |
|
463 self.failIf(cmath.isnan(1j)) |
|
464 self.failIf(cmath.isnan(INF)) |
|
465 self.assert_(cmath.isnan(NAN)) |
|
466 self.assert_(cmath.isnan(complex(NAN, 0))) |
|
467 self.assert_(cmath.isnan(complex(0, NAN))) |
|
468 self.assert_(cmath.isnan(complex(NAN, NAN))) |
|
469 self.assert_(cmath.isnan(complex(NAN, INF))) |
|
470 self.assert_(cmath.isnan(complex(INF, NAN))) |
|
471 |
|
472 def test_isinf(self): |
|
473 self.failIf(cmath.isinf(1)) |
|
474 self.failIf(cmath.isinf(1j)) |
|
475 self.failIf(cmath.isinf(NAN)) |
|
476 self.assert_(cmath.isinf(INF)) |
|
477 self.assert_(cmath.isinf(complex(INF, 0))) |
|
478 self.assert_(cmath.isinf(complex(0, INF))) |
|
479 self.assert_(cmath.isinf(complex(INF, INF))) |
|
480 self.assert_(cmath.isinf(complex(NAN, INF))) |
|
481 self.assert_(cmath.isinf(complex(INF, NAN))) |
|
482 |
|
483 |
|
484 def test_main(): |
|
485 run_unittest(CMathTests) |
|
486 |
|
487 if __name__ == "__main__": |
|
488 test_main() |