diff -r c2ef9095503a -r 067180f57b12 hostsupport/hostopenvg/src/src/sfDynamicPixelPipe.cpp --- a/hostsupport/hostopenvg/src/src/sfDynamicPixelPipe.cpp Wed Oct 06 17:59:01 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1533 +0,0 @@ -/* Copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies). - * - * Permission is hereby granted, free of charge, to any person obtaining a - * copy of this software and /or associated documentation files - * (the "Materials "), to deal in the Materials without restriction, - * including without limitation the rights to use, copy, modify, merge, - * publish, distribute, sublicense, and/or sell copies of the Materials, - * and to permit persons to whom the Materials are furnished to do so, - * subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included - * in all copies or substantial portions of the Materials. - * - * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. - * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, - * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR - * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR - * THE USE OR OTHER DEALINGS IN THE MATERIALS. - */ - -// This file contains the generated pixel-pipeline code and provides -// interface to compile and run them. - -#ifndef __RIRASTERIZER_H -# include "riRasterizer.h" -#endif - -#ifndef __RIPIXELPIPE_H -# include "riPixelPipe.h" -#endif - -#ifndef __SFDYNAMICPIXELPIPE_H -# include "sfDynamicPixelPipe.h" -#endif - -#ifndef __RIUTILS_H -# include "riUtils.h" -#endif - -#ifndef __SFMASK_H -# include "sfMask.h" -#endif - -#ifndef __RIIMAGE_H -# include "riImage.h" -#endif - -#if defined(RI_DEBUG) -# include -#endif - -namespace OpenVGRI { - -RI_INLINE static bool alwaysLoadDst(const PixelPipe::SignatureState& state) -{ - if (!state.isRenderToMask) - { - if (state.hasImage) - return true; - - VGBlendMode bm = state.blendMode; - - if (bm == VG_BLEND_SRC_IN || - bm == VG_BLEND_DST_OVER || - bm == VG_BLEND_DST_IN || - bm == VG_BLEND_ADDITIVE || - bm == VG_BLEND_MULTIPLY || - bm == VG_BLEND_SCREEN || - bm == VG_BLEND_DARKEN || - bm == VG_BLEND_LIGHTEN) - { - return true; - } else - { - return false; - } - } - else - { - switch (state.maskOperation) - { - case VG_SET_MASK: - return false; - default: - return true; - } - } -} - -RI_INLINE static bool canSolidFill(const PixelPipe::SignatureState& state) -{ - if (state.isRenderToMask) - { - if (state.maskOperation == VG_SET_MASK || - state.maskOperation == VG_UNION_MASK) - return true; - // \note SUBTRACT is also possible. - return false; - } - - if (state.paintType != VG_PAINT_TYPE_COLOR) - return false; - - if (state.hasImage) - return false; - - // Some blendmodes can use dst color even if coverage == 1.0 - if (state.blendMode != VG_BLEND_SRC && state.blendMode != VG_BLEND_SRC_OVER) - return false; - - if (state.hasMasking) - return false; - - if (state.fillColorTransparent) - return false; - - if (state.hasColorTransform) - return false; // \todo Trace solid color alpha -> 1.0 - - return true; -} - -RI_INLINE static int intReflectRepeat(int n, int bits) -{ - const int mask = (1<> 31)) & mask; -} - -RI_INLINE static void applyGradientRepeat(int& sx0, int& sx1, PixelPipe::TilingMode sm) -{ - switch (sm) - { - case PixelPipe::TILING_MODE_PAD: - sx0 = RI_INT_CLAMP(sx0, 0, PixelPipe::SAMPLE_MASK); - sx1 = RI_INT_CLAMP(sx1, 0, PixelPipe::SAMPLE_MASK); - break; - case PixelPipe::TILING_MODE_REFLECT: - sx0 = intReflectRepeat(sx0, PixelPipe::SAMPLE_BITS); - sx1 = intReflectRepeat(sx1, PixelPipe::SAMPLE_BITS); - break; - default: - RI_ASSERT(sm == PixelPipe::TILING_MODE_REPEAT); - - sx0 = sx0 & PixelPipe::SAMPLE_MASK; - sx1 = sx1 & PixelPipe::SAMPLE_MASK; - break; - } - - RI_ASSERT(sx0 >= 0 && sx0 < (1<= 0 && sx1 < (1<= 0 && i <= Paint::GRADIENT_LUT_MASK); - return uniforms.gradientLookup[i]; -} - - -/** - * \brief Sample linear gradient using integer-arithmetic. - * \note The actual gradient computation is done piecewise within the - * pixel-pipeline. - */ -RI_INLINE static IntegerColor intLinearGradient(const PixelPipe::SignatureState& state, const PixelPipe::PPUniforms& u, const PixelPipe::PPVariants& v) -{ - RIint32 sx0 = v.sx >> (PixelPipe::GRADIENT_BITS - PixelPipe::SAMPLE_BITS); - RIint32 sx1 = sx0 + 1; - - applyGradientRepeat(sx0, sx1, state.paintTilingMode); - - IntegerColor ic0 = readLUTColor(u, sx0 >> (PixelPipe::SAMPLE_BITS - Paint::GRADIENT_LUT_BITS)); - - if (true) - { - return ic0; - } else - { - // bilinear interpolation - //RIint32 f1 = sx0; - readLUTColor(u, sx1 >> (PixelPipe::SAMPLE_BITS - Paint::GRADIENT_LUT_BITS)); - RI_ASSERT(false); - return IntegerColor(0,0,0,0); - } -} - -/** - * \brief Radial gradient implementation for the integer-pipeline. Will use float at least - * for the square-root. Will return integer-color always. - */ -RI_INLINE static IntegerColor intRadialGradient(const PixelPipe::SignatureState& state, const PixelPipe::PPUniforms& u, const PixelPipe::PPVariants& v) -{ - RGScalar a = (v.rx * u.rfxp) + (v.ry * u.rfyp); - RGScalar b = u.rsqrp * (RI_SQR(v.rx) + RI_SQR(v.ry)); - RGScalar c = RI_SQR((v.rx * u.rfyp) - (v.ry * u.rfxp)); - RGScalar d = b - c; - RI_ASSERT(!RI_ISNAN(d) ? d >= 0.0f : true); - RGScalar g = (a + sqrtf(d)); - - int sx0 = RI_FLOAT_TO_FX(g, PixelPipe::SAMPLE_BITS); - int sx1 = sx0 + 1; - - applyGradientRepeat(sx0, sx1, state.paintTilingMode); - - IntegerColor ic0 = readLUTColor(u, sx0 >> (PixelPipe::SAMPLE_BITS - Paint::GRADIENT_LUT_BITS)); - RI_ASSERT(ic0.r <= 255); - RI_ASSERT(ic0.g <= 255); - RI_ASSERT(ic0.b <= 255); - RI_ASSERT(ic0.a <= 255); - - if (false) - { - // Linear interpolation of 2 gradient samples. - IntegerColor ic1 = readLUTColor(u, sx1 >> (PixelPipe::SAMPLE_BITS - Paint::GRADIENT_LUT_BITS)); - //int fx0 = sx0 & PixelPipe::SAMPLE_MASK; - //int fx1 = PixelPipe::SAMPLE_MASK - fx0; - - } - - return ic0; -} - -RI_INLINE static bool applyPatternRepeat(int &x, int &y, PixelPipe::TilingMode tilingMode) -{ - switch (tilingMode) - { - case PixelPipe::TILING_MODE_PAD: - x = RI_INT_CLAMP(x, 0, PixelPipe::GRADIENT_MASK); - y = RI_INT_CLAMP(y, 0, PixelPipe::GRADIENT_MASK); - break; - case PixelPipe::TILING_MODE_REPEAT: - x = x & PixelPipe::GRADIENT_MASK; - y = y & PixelPipe::GRADIENT_MASK; - break; - case PixelPipe::TILING_MODE_REFLECT: - x = intReflectRepeat(x, PixelPipe::GRADIENT_BITS); - y = intReflectRepeat(y, PixelPipe::GRADIENT_BITS); - break; - default: - RI_ASSERT(tilingMode == PixelPipe::TILING_MODE_FILL); - // Do nothing -> Fill is checked on integer coordinates. - break; - } - return false; -} - -/** - * \brief Same as applyPatternRepeat, but with pattern-space integer coordinates without - * fractional part. - * \note Assumes that the coordinate is in range [0,width or height]. - */ -RI_INLINE static bool applyPatternSampleRepeat(int &x, int &y, int w, int h, PixelPipe::TilingMode tilingMode) -{ - - switch (tilingMode) - { - case PixelPipe::TILING_MODE_PAD: - RI_ASSERT(x >= 0 && x <= w); - RI_ASSERT(y >= 0 && y <= h); - if (x >= w) x = w-1; - if (y >= h) y = h-1; - break; - case PixelPipe::TILING_MODE_REPEAT: - RI_ASSERT(x >= 0 && x <= w); - RI_ASSERT(y >= 0 && y <= h); - if (x >= w) x = 0; - if (y >= h) y = 0; - break; - case PixelPipe::TILING_MODE_REFLECT: - RI_ASSERT(x >= 0 && x <= w); - RI_ASSERT(y >= 0 && y <= h); - if (x >= w) x = w-1; // w-2? - if (y >= h) y = h-1; // h-2? - break; - default: - RI_ASSERT(tilingMode == PixelPipe::TILING_MODE_FILL); - if (x < 0 || x >= w) return true; - if (y < 0 || y >= h) return true; - break; - } - - return false; -} - -RI_INLINE IntegerColor readPattern(const void* basePtr, int stride, const Color::Descriptor& desc, int ix, int iy, const IntegerColor* fillColor, bool fill) -{ - const void* ptr = Image::calculateAddress(basePtr, desc.bitsPerPixel, ix, iy, stride); - - if (!fill) - return IntegerColor(Image::readPackedPixelFromAddress(ptr, desc.bitsPerPixel, ix), desc); - else - { - RI_ASSERT(fillColor); - return *fillColor; - } - -} - -/** - * \brief Rescale the result of bilinear interpolation. - * \todo See if this or individual shifts and rounds are faster on x86 - */ -RI_INLINE static RIuint32 bilinearDiv(unsigned int c) -{ - RIuint32 rcp = 33026; - - RIuint64 m = (RIuint64)c * rcp; - RIuint32 d = (RIuint32)(m >> 30); - return (d >> 1) + (d & 1); -} - -/** - * \brief Read an optionally filtered sample from an image. For multiple samples, apply repeat - * for all the generated sampling points. This only implements a simple sampling: nearest - * or Linear filtering and is much simpler than the original RI. - * \param image Image to sample from - * \param sx0 Sample x in .8 fixed point. MUST be within the image except for FILL. - * \param sy0 Sample y in .8 fixed point. MUST be within the image except for FILL. - * \param samplerType Type of the sampler used. - * \param tilingMode Tiling mode for generated sample points, if required. - * \param fillColor Color to use for TILING_MODE_FILL - * \todo Where should we determine if a NN-sample needs to be unpacked? - * -> It is also easy to just read that sample separately. - */ -RI_INLINE static IntegerColor intSampleImage( - const void* ptr, - int stride, - int w, - int h, - const Color::Descriptor& desc, - RIint32 sx0, - RIint32 sy0, - PixelPipe::SamplerType samplerType, - PixelPipe::TilingMode tilingMode, - const IntegerColor* fillColor) -{ - RI_ASSERT(fillColor || (tilingMode != PixelPipe::TILING_MODE_FILL)); - - // \todo The following code is between low- and high-level representation of sampling. - // It should probably be modified to appear fully as low-level, since we want as many - // optimizations as possible. - - const bool bilinear = samplerType == PixelPipe::SAMPLER_TYPE_LINEAR; - - IntegerColor retColor; - bool maybeFill = tilingMode == PixelPipe::TILING_MODE_FILL; - bool fillSample = false; - - RIint32 ix, iy; - - IntegerColor ic00; - - RIint32 fx = sx0 & 0xff; - RIint32 fy = sy0 & 0xff; - - ix = sx0 >> PixelPipe::SAMPLE_BITS; - iy = sy0 >> PixelPipe::SAMPLE_BITS; - - if (maybeFill) - { - if (ix < 0 || ix >= w) - fillSample = true; - if (iy < 0 || iy >= h) - fillSample = true; - } - - ic00 = readPattern(ptr, stride, desc, ix, iy, fillColor, fillSample); - - if (!bilinear) - { - retColor = ic00; - retColor.expandColor(desc); // \todo Handling of bilinear? - } - else - { - // Bilinear filtering. - - IntegerColor ic01, ic10, ic11; - IntegerColor t0, t1; - - int xs = ix + 1; - int ys = iy; - - fillSample = applyPatternSampleRepeat(xs, ys, w, h, tilingMode); - ic01 = readPattern(ptr, stride, desc, xs, ys, fillColor, fillSample); - - t0 = IntegerColor::linearBlendNS(ic00, ic01, fx); - - xs = ix; - ys = iy+1; - fillSample = applyPatternSampleRepeat(xs, ys, w, h, tilingMode); - ic10 = readPattern(ptr, stride, desc, xs, ys, fillColor, fillSample); - - xs = ix+1; - ys = iy+1; - fillSample = applyPatternSampleRepeat(xs, ys, w, h, tilingMode); - ic11 = readPattern(ptr, stride, desc, xs, ys, fillColor, fillSample); - - t1 = IntegerColor::linearBlendNS(ic10, ic11, fx); - - retColor = IntegerColor::linearBlendNS(t0, t1, fy); - - retColor.r = bilinearDiv(retColor.r); - retColor.g = bilinearDiv(retColor.g); - retColor.b = bilinearDiv(retColor.b); - retColor.a = bilinearDiv(retColor.a); - - return retColor; - } - - return retColor; -} - -RI_INLINE static RIint32 gradientToFixedCoords(RIint32 gradCoord, RIint32 dim) -{ - return (RIint32)(((RIint64)dim * gradCoord) >> (PixelPipe::GRADIENT_BITS - PixelPipe::SAMPLE_BITS)); -} - - -RI_INLINE static IntegerColor intPattern(const PixelPipe::SignatureState &state, const PixelPipe::PPUniforms& u, const PixelPipe::PPVariants& v) -{ - // \todo The following code is between low- and high-level representation of sampling. - // It should probably be modified to appear fully as low-level, since we want as many - // optimizations as possible. - - // "External" variables - const PixelPipe::TilingMode tilingMode = state.paintTilingMode; - const IntegerColor fillColor = u.tileFillColor; - const int w = u.paint_width; - const int h = u.paint_height; - - IntegerColor retColor; - - RIint32 sx0 = v.sx; - RIint32 sy0 = v.sy; - - IntegerColor ic00; - - applyPatternRepeat(sx0, sy0, tilingMode); - sx0 = gradientToFixedCoords(sx0, w); - sy0 = gradientToFixedCoords(sy0, h); - //sx0 = (RIint32)(((RIint64)w * sx0) >> (PixelPipe::GRADIENT_BITS - PixelPipe::SAMPLE_BITS)); - //sy0 = (RIint32)(((RIint64)h * sy0) >> (PixelPipe::GRADIENT_BITS - PixelPipe::SAMPLE_BITS)); - - const void* ptr = u.patternPtr; - const int stride = u.patternStride; - const Color::Descriptor& desc = state.patternDesc; - - return intSampleImage(ptr, stride, w, h, desc, sx0, sy0, state.paintSampler, tilingMode, &fillColor); -} - -RI_INLINE static bool formatPremultipliedAfterSampling(const Color::Descriptor& desc, PixelPipe::SamplerType samplerType, PixelPipe::ImageGradientType gradientType) -{ - // Sampled at pixel centers -> no processing of colors -> does not get premultiplied - if (gradientType == PixelPipe::GRADIENT_TYPE_INTEGER) - return desc.isPremultiplied(); - - if (samplerType != PixelPipe::SAMPLER_TYPE_NEAREST) - return true; - - return desc.isPremultiplied(); -} - -RI_INLINE static bool imagePremultipliedAfterSampling(const PixelPipe::SignatureState& state) -{ - RI_ASSERT(state.hasImage); - - return formatPremultipliedAfterSampling(state.imageDesc, state.imageSampler, state.imageGradientType); -} - -RI_INLINE static bool gradientPremultipliedAfterSampling(const PixelPipe::SignatureState& state) -{ - if (state.paintSampler != PixelPipe::SAMPLER_TYPE_NEAREST) - return true; - - return true; - - // Otherwise, the gradient value is a single sample, and should be in the destination - // color-space: - //return state.dstDesc.isPremultiplied(); -} - -RI_INLINE static bool patternPremultipliedAfterSampling(const PixelPipe::SignatureState& state) -{ - RI_ASSERT(state.paintType == VG_PAINT_TYPE_PATTERN); - - return formatPremultipliedAfterSampling(state.patternDesc, state.paintSampler, PixelPipe::GRADIENT_TYPE_FIXED); -} - -/** - * \brief Returns true if generated paint will be in RGB, false if luminance. - */ -RI_INLINE static bool paintInRGB(const PixelPipe::SignatureState& state) -{ - if (state.paintType != VG_PAINT_TYPE_PATTERN) - return true; - - return !state.patternDesc.isLuminance(); -} - - -/** - * \brief Applies color transform to input color - * \param isNonlinear "true" if input is nonlinear. This only affects luminance -> RGB conversion, - * other conversions happen in the input color-space. - * \note Leaves the color unpremultiplied, in source color-space and converts luminance to RGB - * \todo isNonlinear is not needed. It can be deduced from the state information! - */ -RI_INLINE static IntegerColor maybeColorTransform(const PixelPipe::SignatureState& state, const IntegerColor& c, const RIint32* colorTransformValues, bool isNonlinear) -{ - if (!state.hasColorTransform) - return c; - - RI_ASSERT(state.hasImage || state.paintType == VG_PAINT_TYPE_PATTERN); - - IntegerColor r = c; - - if (state.imageMode == VG_DRAW_IMAGE_MULTIPLY) - { - r.unpremultiply(); - } - else if (state.imageMode == VG_DRAW_IMAGE_STENCIL || state.paintType == VG_PAINT_TYPE_PATTERN) - { - // -> Check pattern - if (patternPremultipliedAfterSampling(state)) - r.unpremultiply(); - } - else - { - // -> Check image - if (imagePremultipliedAfterSampling(state)) - r.unpremultiply(); - } - - // Check if it is necessary to convert to RGB: - if (state.imageMode == VG_DRAW_IMAGE_MULTIPLY) - { - if (state.imageDesc.isLuminance() && !paintInRGB(state)) - { - r.fullLuminanceToRGB(false, isNonlinear, false, isNonlinear); - } - } - else if (state.imageMode == VG_DRAW_IMAGE_STENCIL) - { - if (state.patternDesc.isLuminance()) - r.fullLuminanceToRGB(false, isNonlinear, false, isNonlinear); - } - - // \todo Use lookup-tables in some cases? - r.r = (((RIint32)r.r * colorTransformValues[0]) >> PixelPipe::COLOR_TRANSFORM_BITS) + colorTransformValues[4]; - r.g = (((RIint32)r.g * colorTransformValues[1]) >> PixelPipe::COLOR_TRANSFORM_BITS) + colorTransformValues[5]; - r.b = (((RIint32)r.b * colorTransformValues[2]) >> PixelPipe::COLOR_TRANSFORM_BITS) + colorTransformValues[6]; - r.a = (((RIint32)r.a * colorTransformValues[3]) >> PixelPipe::COLOR_TRANSFORM_BITS) + colorTransformValues[7]; - - // Clamp (integerColor?) - r.r = (RIuint32)RI_INT_CLAMP((int)r.r, 0, 255); - r.g = (RIuint32)RI_INT_CLAMP((int)r.g, 0, 255); - r.b = (RIuint32)RI_INT_CLAMP((int)r.b, 0, 255); - r.a = (RIuint32)RI_INT_CLAMP((int)r.a, 0, 255); - - - return r; -} - -/// Some rounding multiplications for blends: - -/** - * \brief Multiply with rounding. - */ -RI_INLINE static RIuint32 rMul2(RIuint32 c0, RIuint32 c1, RIuint32 k0, RIuint32 k1) -{ - RIuint32 t = c0 * k0 + c1 * k1; - //RIuint32 r = (t + (t>>9)) >> 8; - RIuint32 r = (t + (1>>7))>>8; - RI_ASSERT(r <= 255); - return r; -} - -/** - * \brief Returns rounding color-multiplication: c0 + c1 * k - */ -RI_INLINE static RIuint32 rMul1(RIuint32 c0, RIuint32 c1, RIuint32 k) -{ - RIuint32 t = c1 * k; - RIuint32 r = c0 + ((t + (t >> 7)) >> 8); - RI_ASSERT(r <= 255); - return r; -} - -/** - * \brief Fixed-point multiplication - */ -RI_INLINE static RIuint32 rMul(RIuint32 c0, RIuint32 f) -{ - RIuint32 t = c0 * f; - return (t + (1<<7))>>8; -} - -/** - * \brief Multiply two colors [0, 255] - */ -RI_INLINE static RIuint32 cMul(RIuint32 c0, RIuint32 c1) -{ - RIuint32 t = c0 * c1; - RIuint32 r = (t + (t >> 9)) >> 8; - //RIuint32 t = c0 * c1; - //RIuint32 r = (t + (t >> 7))>>8; - RI_ASSERT(r <= 255); - return r; -} - -// \todo Are signed versions required? -RI_INLINE static RIuint32 cMin(RIuint32 c0, RIuint32 c1) -{ - return c0 <= c1 ? c0 : c1; -} - -RI_INLINE static RIuint32 cMax(RIuint32 c0, RIuint32 c1) -{ - return c0 >= c1 ? c0 : c1; -} - -/** - * \brief Blends two integer colors. Only considers the alpha-channels within - * the colors themselves. There should be a separate function to do - * blending with individual channel-alphas. - * \note It is also possible that LLVM is able to detect, whether individual alpha- - * channels contain a single/multi alpha - * \todo Overall, check how much and how fast LLVM is able to optimize out unused - * expressions. - */ -RI_INLINE static IntegerColor blendIntegerColors(const IntegerColor& s, const IntegerColor& d, VGBlendMode blendMode) -{ - IntegerColor r; - - switch(blendMode) - { - case VG_BLEND_SRC: - r = s; - break; - - case VG_BLEND_SRC_OVER: - { - RIuint32 ia = 255 - s.a; - r.r = rMul1(s.r, d.r, ia); - r.g = rMul1(s.g, d.g, ia); - r.b = rMul1(s.b, d.b, ia); - r.a = rMul1(s.a, d.a, ia); - break; - } - case VG_BLEND_DST_OVER: - { - RIuint32 ia = 255 - d.a; - r.r = rMul1(d.r, s.r, ia); - r.g = rMul1(d.g, s.g, ia); - r.b = rMul1(d.b, s.b, ia); - r.a = rMul1(d.a, s.a, ia); - break; - } - case VG_BLEND_SRC_IN: - { - r.r = cMul(s.r, d.a); - r.g = cMul(s.g, d.a); - r.b = cMul(s.b, d.a); - r.a = cMul(s.a, d.a); - break; - } - case VG_BLEND_DST_IN: - { - r.r = cMul(d.r, s.a); - r.g = cMul(d.g, s.a); - r.b = cMul(d.b, s.a); - r.a = cMul(d.a, s.a); - break; - } - case VG_BLEND_MULTIPLY: - { - RIuint32 iasrc, iadst; - iasrc = 255 - s.a; - iadst = 255 - d.a; - r.r = rMul2(s.r, d.r, iadst + d.r, iasrc); - r.g = rMul2(s.g, d.g, iadst + d.g, iasrc); - r.b = rMul2(s.b, d.b, iadst + d.b, iasrc); - r.a = rMul1(s.a, d.a, iasrc); - break; - } - case VG_BLEND_SCREEN: - { - r.r = rMul1(s.r, d.r, 255 - s.r); - r.g = rMul1(s.g, d.g, 255 - s.g); - r.b = rMul1(s.b, d.b, 255 - s.b); - r.a = rMul1(s.a, d.a, 255 - s.a); - break; - } - case VG_BLEND_DARKEN: - { - RIuint32 iasrc = 255 - s.a; - RIuint32 iadst = 255 - d.a; - r.r = cMin(rMul1(s.r, d.r, iasrc), rMul1(d.r, s.r, iadst)); - r.g = cMin(rMul1(s.g, d.g, iasrc), rMul1(d.g, s.g, iadst)); - r.b = cMin(rMul1(s.b, d.b, iasrc), rMul1(d.b, s.b, iadst)); - r.a = rMul1(s.a, d.a, iasrc); - break; - } - case VG_BLEND_LIGHTEN: - { - // \todo Compact darken w/r lighten? - RIuint32 iasrc = 255 - s.a; - RIuint32 iadst = 255 - d.a; - r.r = cMax(rMul1(s.r, d.r, iasrc), rMul1(d.r, s.r, iadst)); - r.g = cMax(rMul1(s.g, d.g, iasrc), rMul1(d.g, s.g, iadst)); - r.b = cMax(rMul1(s.b, d.b, iasrc), rMul1(d.b, s.b, iadst)); - //although the statement below is equivalent to r.a = s.a + d.a * (1.0f - s.a) - //in practice there can be a very slight difference because - //of the max operation in the blending formula that may cause color to exceed alpha. - //Because of this, we compute the result both ways and return the maximum. - r.a = cMax(rMul1(s.a, d.a, iasrc), rMul1(d.a, s.a, iadst)); - break; - } - default: - { - RI_ASSERT(blendMode == VG_BLEND_ADDITIVE); - r.r = cMin(s.r + d.r, 255); - r.g = cMin(s.g + d.g, 255); - r.b = cMin(s.b + d.b, 255); - r.a = cMin(s.a + d.a, 255); - break; - } - } - return r; - -} - -RI_INLINE static IntegerColor blendIntegerStencil(const IntegerColor& s, const IntegerColor& im, const IntegerColor& d, VGBlendMode blendMode) -{ - IntegerColor r; - - switch(blendMode) - { - case VG_BLEND_SRC: - r = s; - break; - - case VG_BLEND_SRC_OVER: - { - r.r = rMul1(s.r, d.r, 255 - im.r); - r.g = rMul1(s.g, d.g, 255 - im.g); - r.b = rMul1(s.b, d.b, 255 - im.b); - r.a = rMul1(s.a, d.a, 255 - s.a); - break; - } - case VG_BLEND_DST_OVER: - { - r = blendIntegerColors(s, d, blendMode); - break; - } - case VG_BLEND_SRC_IN: - { - r = blendIntegerColors(s, d, blendMode); - break; - } - case VG_BLEND_DST_IN: - { - r.r = cMul(d.r, im.r); - r.g = cMul(d.g, im.g); - r.b = cMul(d.b, im.b); - r.a = cMul(d.a, s.a); - break; - } - case VG_BLEND_MULTIPLY: - { - RIuint32 iadst; - iadst = 255 - d.a; - r.r = rMul2(s.r, d.r, iadst + d.r, 255 - im.r); - r.g = rMul2(s.g, d.g, iadst + d.g, 255 - im.g); - r.b = rMul2(s.b, d.b, iadst + d.b, 255 - im.b); - r.a = rMul1(s.a, d.a, 255 - s.a); - break; - } - case VG_BLEND_SCREEN: - { - r = blendIntegerColors(s, d, blendMode); - break; - } - case VG_BLEND_DARKEN: - { - RIuint32 iadst = 255 - d.a; - r.r = cMin(rMul1(s.r, d.r, 255 - im.r), rMul1(d.r, s.r, iadst)); - r.g = cMin(rMul1(s.g, d.g, 255 - im.g), rMul1(d.g, s.g, iadst)); - r.b = cMin(rMul1(s.b, d.b, 255 - im.b), rMul1(d.b, s.b, iadst)); - r.a = rMul1(s.a, d.a, 255 - s.a); - break; - } - case VG_BLEND_LIGHTEN: - { - // \todo Compact darken w/r lighten? - RIuint32 iadst = 255 - d.a; - r.r = cMax(rMul1(s.r, d.r, 255 - im.r), rMul1(d.r, s.r, iadst)); - r.g = cMax(rMul1(s.g, d.g, 255 - im.g), rMul1(d.g, s.g, iadst)); - r.b = cMax(rMul1(s.b, d.b, 255 - im.b), rMul1(d.b, s.b, iadst)); - //although the statement below is equivalent to r.a = s.a + d.a * (1.0f - s.a) - //in practice there can be a very slight difference because - //of the max operation in the blending formula that may cause color to exceed alpha. - //Because of this, we compute the result both ways and return the maximum. - r.a = cMax(rMul1(s.a, d.a, 255 - s.a), rMul1(d.a, s.a, iadst)); - break; - } - default: - { - RI_ASSERT(blendMode == VG_BLEND_ADDITIVE); - return blendIntegerColors(s, d, blendMode); - break; - } - } - return r; - -} - -/** - * \brief Perform SRC_OVER and apply coverage in a single operation. - * \note It is possible to do optimizations like this for other blending operations, - * but they are not as widely used -> optimize if there is a requirement. - * \note Prints are included because GDB is confused about the value of r. - */ -static RI_INLINE IntegerColor srcOverCoverage(const IntegerColor& s, const IntegerColor& d, RIuint32 cov) -{ - IntegerColor r; - RIuint32 ac = ((s.a + (s.a>>7)) * cov); - ac = (ac + (1<<7))>>8; - RIuint32 ia = 256 - ac; - - r.r = rMul2(s.r, d.r, cov, ia); - r.g = rMul2(s.g, d.g, cov, ia); - r.b = rMul2(s.b, d.b, cov, ia); - r.a = rMul2(s.a, d.a, cov, ia); - //r.r = (s.r * cov + d.r * ia) >> 8; - //r.g = (s.g * cov + d.g * ia) >> 8; - //r.b = (s.b * cov + d.b * ia) >> 8; - //r.a = (s.a * cov + d.a * ia) >> 8; - -#if defined(RI_DEBUG) - if (!(r.r <= r.a && r.g <= r.a && r.b <= r.a && r.a <= 255)) - { - printf("r: %d, g: %d, b: %d, a: %d\n",r.r,r.g,r.b,r.a); - RI_ASSERT(false); - } - //RI_ASSERT(r.r <= 255 && r.g <= 255 && r.b <= 255 && r.a <= 255); -#endif - - return r; -} - -/** - * \brief Check if converting between two color formats requires a gamma-conversion. - * \todo Move this to descriptor class. - */ -static RI_INLINE bool needGammaConvert(const Color::Descriptor& srcDesc, const Color::Descriptor& dstDesc) -{ - //if ((!srcDesc.isAlphaOnly()) && (srcDesc.isNonlinear() != dstDesc.isNonlinear())) - //return true; - if ((srcDesc.isNonlinear() != dstDesc.isNonlinear())) - return true; - - return false; -} - - -RI_INLINE static bool preBlendPremultiplication(const PixelPipe::SignatureState& state) -{ - // \todo Simplify the rules (see the corresponding places in the pixelpipe - const bool colorTransform = state.hasColorTransform; - - if (PixelPipe::isImageOnly(state)) - { - if (colorTransform) - return true; - - // Gamma conversion will leave the result premultiplied - if (needGammaConvert(state.imageDesc, state.dstDesc)) - return true; - //if (state.imageDesc.isAlphaOnly()) - //return false; - - return !imagePremultipliedAfterSampling(state); - } - - if (state.hasImage) - { - if (state.imageMode == VG_DRAW_IMAGE_NORMAL) - return !imagePremultipliedAfterSampling(state); - // Image color has been combined with the paint color and that requires premultiplication - if (state.imageMode == VG_DRAW_IMAGE_MULTIPLY) - return false; // Always results in a premultiplied output color - - return false; // ? - } - - if (state.paintType == VG_PAINT_TYPE_COLOR) - return false; - - if (state.paintType != VG_PAINT_TYPE_PATTERN) - return !gradientPremultipliedAfterSampling(state); - - // Must be pattern - RI_ASSERT(state.paintType == VG_PAINT_TYPE_PATTERN); - - if (state.hasColorTransform) - return true; - - if (needGammaConvert(state.patternDesc, state.dstDesc)) - return true; - - return !patternPremultipliedAfterSampling(state); -} - -/** - * \brief Apply coverage [0 .. 256] on color - * \note This is actually "just coverage". - */ -RI_INLINE static IntegerColor srcCoverage(const IntegerColor& s, const IntegerColor& d, RIuint32 cov) -{ - IntegerColor r; - RIuint32 icov = 256-cov; - // Make function for multiplication between fixed point values (coverage is - // a proper [0 .. 1] value. - r.r = (s.r * cov + d.r * icov) >> 8; - r.g = (s.g * cov + d.g * icov) >> 8; - r.b = (s.b * cov + d.b * icov) >> 8; - r.a = (s.a * cov + d.a * icov) >> 8; - - RI_ASSERT(r.r <= 255 && r.g <= 255 && r.b <= 255 && r.a <= 255); - - return r; -} - -/** - * \brief Converts color gamma only. Care must be taken concerning luminance color formats. - * \return Converted color in "color". This will always be unpremultiplied if gamma conversion - * takes place, i.e, tries to minimize the amount of further conversions. - */ -RI_INLINE static void maybeGammaConvert(const Color::Descriptor& srcDesc, const Color::Descriptor& dstDesc, IntegerColor& color, bool inputPremultiplied) -{ - if (needGammaConvert(srcDesc, dstDesc)) - { - if (inputPremultiplied) - color.unpremultiply(); - //color.unpremultiply(srcDesc.isLuminance()); - - if (dstDesc.isNonlinear()) - color.linearToGamma(); - else - color.gammaToLinear(); - } - // Output always unpremultiplied if gamma conversion takes place -} - -/** - * \brief Integer pixel-pipeline. - * \note See internal_formats.txt for info on how the data is passed within the pipeline - */ -RI_INLINE static void intPixelPipe(const PixelPipe::SignatureState& signatureState, const PixelPipe::PPUniforms &uniforms, PixelPipe::PPVariants& variants) -{ - const RIuint32 ppMaxCoverage = Rasterizer::MAX_COVERAGE << (8 - Rasterizer::SAMPLE_BITS); - RIuint32 coverage = variants.coverage << (8 - Rasterizer::SAMPLE_BITS); - IntegerColor out; - IntegerColor imageColor; // imagemode != normal - const Color::Descriptor& dstDesc = signatureState.dstDesc; - const Color::Descriptor& patternDesc = signatureState.patternDesc; - const Color::Descriptor& imageDesc = signatureState.imageDesc; - - if (!PixelPipe::isImageOnly(signatureState)) - { - switch(signatureState.paintType) - { - case VG_PAINT_TYPE_COLOR: - out = uniforms.solidColor; - break; - case VG_PAINT_TYPE_LINEAR_GRADIENT: - out = intLinearGradient(signatureState, uniforms, variants); - variants.sx += uniforms.dgdx; - // \todo Optimize this so that the lookup is in premultiplied dst format! - // How about image-operations? - if ((signatureState.imageMode != VG_DRAW_IMAGE_MULTIPLY) && dstDesc.isLuminance()) - { - out.fullRGBToLuminance(true, dstDesc.isNonlinear(), true, dstDesc.isNonlinear()); - } - break; - case VG_PAINT_TYPE_RADIAL_GRADIENT: - out = intRadialGradient(signatureState, uniforms, variants); - variants.rx += uniforms.rdxdx; - variants.ry += uniforms.rdydx; - - // \todo Optimize this so that the lookup is in premultiplied dst format! - if ((signatureState.imageMode != VG_DRAW_IMAGE_MULTIPLY) && dstDesc.isLuminance()) - { - out.fullRGBToLuminance(true, dstDesc.isNonlinear(), true, dstDesc.isNonlinear()); - } - break; - default: - RI_ASSERT(signatureState.paintType == VG_PAINT_TYPE_PATTERN); - out = intPattern(signatureState, uniforms, variants); - // color-space == pattern color-space, not always premultiplied, expanded - // - // \todo Only increment the proper pixel-counters. This requires detecting the - // transform type before generating the pixel-pipeline. - // \note Implement fastpaths for at least identity transform with image edges coinciding - // with the pixel edges. <- This has been done for images. - variants.sx += uniforms.paint_dxdx; - variants.sy += uniforms.paint_dydx; - - if (!patternDesc.hasAlpha()) - out.a = 255; - - if (!signatureState.hasImage) - { - out = maybeColorTransform(signatureState, out, uniforms.colorTransformValues, patternDesc.isNonlinear()); - const bool tmpPre = patternPremultipliedAfterSampling(signatureState) && !signatureState.hasColorTransform; - const bool outLuminance = !signatureState.hasColorTransform && imageDesc.isLuminance(); - - if (outLuminance != dstDesc.isLuminance()) - { - if (outLuminance) - out.fullLuminanceToRGB(tmpPre, patternDesc.isNonlinear(), tmpPre, patternDesc.isNonlinear()); - else - out.fullRGBToLuminance(tmpPre, patternDesc.isNonlinear(), tmpPre, patternDesc.isNonlinear()); - } - maybeGammaConvert(patternDesc, dstDesc, out, tmpPre); - } - - break; - } - } - - if (signatureState.hasImage) - { - switch (signatureState.imageGradientType) - { - case PixelPipe::GRADIENT_TYPE_INTEGER: - { - void* addr = Image::calculateAddress(uniforms.imagePtr, imageDesc.bitsPerPixel, variants.iImageX, variants.iImageY, uniforms.imageStride); - RIuint32 packedImageColor = Image::readPackedPixelFromAddress(addr, imageDesc.bitsPerPixel, variants.iImageX); - imageColor.fromPackedColor(packedImageColor, imageDesc); - imageColor.expandColor(imageDesc); - // color-space == image color-space, not always premultiplied, expanded - - // Only integer image-gradient can have unsafe image data as an input at the moment. - if (signatureState.unsafeImageInput) - { - if (imageDesc.hasAlpha() && imageDesc.isPremultiplied()) - imageColor.clampToAlpha(); - } - - variants.iImageX += uniforms.image_idxdx; - variants.iImageY += uniforms.image_idydx; - break; - } - case PixelPipe::GRADIENT_TYPE_FIXED: - { - RI_ASSERT(!signatureState.unsafeImageInput); - - RIint32 sx, sy; - sx = variants.iImageX; - sy = variants.iImageY; - applyPatternRepeat(sx, sy, PixelPipe::TILING_MODE_PAD); - sx = gradientToFixedCoords(sx, uniforms.image_iWidth); - sy = gradientToFixedCoords(sy, uniforms.image_iHeight); - imageColor = intSampleImage( - uniforms.imagePtr, - uniforms.imageStride, - uniforms.image_iWidth, - uniforms.image_iHeight, - imageDesc, - sx, sy, signatureState.imageSampler, PixelPipe::TILING_MODE_PAD, NULL); - - variants.iImageX += uniforms.image_idxdx; - variants.iImageY += uniforms.image_idydx; - break; - } - default: - { - RI_ASSERT(signatureState.imageGradientType == PixelPipe::GRADIENT_TYPE_FLOAT); - RI_ASSERT(!signatureState.unsafeImageInput); - - RIfloat fx, fy, fw, rw; - fx = variants.fImageX; - fy = variants.fImageY; - fw = variants.fImageW; - rw = 1.0f / fw; - RIint32 sx0, sy0; - fx = RI_CLAMP(fx * rw, 0.0f, uniforms.image_fWidth - 1.0f); // \todo fImageMaxX - fy = RI_CLAMP(fy * rw, 0.0f, uniforms.image_fHeight - 1.0f); - sx0 = RI_ROUND_TO_INT(fx * (1<> 7); - coverage = (coverage * maskCoverage) >> 8; - - variants.maskPtr = (void*)Image::incrementPointer(variants.maskPtr, maskBpp, variants.dstX); - } - -#if defined(RI_DEBUG) - IntegerColor preblend = out; -#endif - // \todo Coverage check for pixelpipes != solid color with solid output colors? - - IntegerColor d(0,0,0,0); - - // All operations that depend on DST are done next. Keep it organized like that. - if ((coverage < ppMaxCoverage) || (out.a < 255) || alwaysLoadDst(signatureState)) - { - d = IntegerColor(Image::readPackedPixelFromAddress( - variants.dst, dstDesc.bitsPerPixel, variants.dstX), dstDesc); - d.expandColor(dstDesc); - - if (!dstDesc.isPremultiplied()) - { - d.premultiply(); - } - - // Premultiply output -#if 0 - if (!PixelPipe::isImageOnly(signatureState)) - { - if (signatureState.paintType == VG_PAINT_TYPE_PATTERN && !patternPremultipliedAfterSampling(signatureState)) - out.premultiply(); - else if (signatureState.hasImage && !imagePremultipliedAfterSampling(signatureState)) - out.premultiply(); - } -#endif - - if (!signatureState.isRenderToMask) - { - VGBlendMode bm = signatureState.blendMode; - - // Currently SRC requires premultiplication even when only applying coverage. - //if (bm != VG_BLEND_SRC) - { - // If the src color has not been premultiplied before, now's the time. - // \todo Fast path for src alpha == 255 and SRC_OVER? Others? - if (preBlendPremultiplication(signatureState)) - out.premultiply(); - } - - if (signatureState.hasImage && signatureState.imageMode == VG_DRAW_IMAGE_STENCIL) - { - out = blendIntegerStencil(out, imageColor, d, bm); - } - else - { - switch(bm) - { - case VG_BLEND_SRC_OVER: - out = srcOverCoverage(out, d, coverage); - break; - case VG_BLEND_SRC: - out = srcCoverage(out, d, coverage); - break; - default: - out = blendIntegerColors(out, d, bm); - out = srcCoverage(out, d, coverage); - break; - } - } - -#if defined(RI_DEBUG) - if (dstDesc.isPremultiplied()) - { - RI_ASSERT(out.r <= out.a); - RI_ASSERT(out.g <= out.a); - RI_ASSERT(out.b <= out.a); - } -#endif - - } - else - { - // Mask operation - out = intMaskOperation(coverage, d, signatureState.maskOperation); - } - - // out is always premultiplied at this point. Must be in destination color-space - if (!dstDesc.isPremultiplied()) - { - // Unpremultiply if output is not premultiplied - out.unpremultiply(); - } - } - else - { - // Unpremultiply, ... - if (!dstDesc.isPremultiplied()) - out.unpremultiply(); - } - - // VG_SET_MASK does not require dst load: - if (signatureState.isRenderToMask && signatureState.maskOperation == VG_SET_MASK) - out = intMaskOperation(coverage, d, VG_SET_MASK); - - out.truncateColor(dstDesc); - Image::writePackedPixelToAddress( - variants.dst, dstDesc.bitsPerPixel, variants.dstX, out.getPackedColor(dstDesc)); - - // \todo X for bpp < 8 - variants.dst = (void*)Image::incrementPointer(variants.dst, dstDesc.bitsPerPixel, variants.dstX); - //variants.dst = colorBuffer->advancePointer(variants.dst); - variants.dstX++; -} - -RI_INLINE static void fillSolidSpan(const PixelPipe::SignatureState& state, const PixelPipe::PPUniforms& uniforms, int startX, int y, int nPixels, RIuint32 packedColor) -{ - Image::fillPackedPixels((void*)uniforms.dstPtr, state.dstDesc.bitsPerPixel, startX, y, uniforms.dstStride, nPixels, packedColor); -} - -/** - * \brief This will calculate all the pixel-pipeline variants that need to be updated per-pixel. - * \note There may be a need for a different, faster function for image rendering, where - * there are faster methods of updating the variants. - */ -RI_INLINE static void prepareSpanVariants(const PixelPipe::SignatureState& state, const PixelPipe::PPUniforms& uniforms, const Span& span, PixelPipe::PPVariants& variants) -{ - //variants.dst = uniforms.dst->calculateAddress(span.x0, span.y); - variants.dst = Image::calculateAddress(uniforms.dstPtr, state.dstDesc.bitsPerPixel, span.x0, span.y, uniforms.dstStride); - variants.dstX = span.x0; - variants.coverage = span.coverage; - - if (state.paintType != VG_PAINT_TYPE_COLOR) - { - if (state.paintType == VG_PAINT_TYPE_LINEAR_GRADIENT) - { - // \todo Adjust pixel-center. - int x = uniforms.dgdx * span.x0 + uniforms.dgdy * span.y + uniforms.lgc; - variants.sx = x; - } - else if (state.paintType == VG_PAINT_TYPE_RADIAL_GRADIENT) - { - RGScalar x = uniforms.rdxdx * (RGScalar)span.x0 + uniforms.rdxdy * (RGScalar)span.y; - RGScalar y = uniforms.rdydy * (RGScalar)span.y + uniforms.rdydx * (RGScalar)span.x0; - - variants.rx = x + uniforms.rx0; - variants.ry = y + uniforms.ry0; - } - else - { - RI_ASSERT(state.paintType == VG_PAINT_TYPE_PATTERN); - variants.sx = uniforms.paint_dxdx * span.x0 + uniforms.paint_dxdy * span.y + uniforms.paint_x0; - variants.sy = uniforms.paint_dydy * span.y + uniforms.paint_dydx * span.x0 + uniforms.paint_y0; - } - } - - if (state.hasMasking) - { - variants.maskPtr = Image::calculateAddress(uniforms.maskPtr, state.maskDesc.bitsPerPixel, span.x0, span.y, uniforms.maskStride); - } - - if (state.hasImage) - { - switch (state.imageGradientType) - { - case PixelPipe::GRADIENT_TYPE_INTEGER: - case PixelPipe::GRADIENT_TYPE_FIXED: - variants.iImageX = uniforms.image_ix0 + span.x0 * uniforms.image_idxdx + span.y * uniforms.image_idxdy; - variants.iImageY = uniforms.image_iy0 + span.y * uniforms.image_idydy + span.x0 * uniforms.image_idydx; - break; - default: - RI_ASSERT(state.imageGradientType == PixelPipe::GRADIENT_TYPE_FLOAT); - variants.fImageX = uniforms.image_fx0 + span.x0 * uniforms.image_fdxdx + span.y * uniforms.image_fdxdy; - variants.fImageY = uniforms.image_fy0 + span.y * uniforms.image_fdydy + span.x0 * uniforms.image_fdydx; - variants.fImageW = uniforms.image_fw0 + span.x0 * uniforms.image_fdwdx + span.y * uniforms.image_fdwdy; - break; - } - } -} - -void executePixelPipeline(const PixelPipe::SignatureState& state, const PixelPipe::PPUniforms& uniforms, PixelPipe::PPVariants& variants, const Span* spans, int nSpans) -{ - RI_ASSERT(nSpans > 0); - for (int i = 0; i < nSpans; i++) - { - const Span& s = spans[i]; - - if (s.coverage != Rasterizer::MAX_COVERAGE || !canSolidFill(state)) - { - int n = s.len; - RI_ASSERT(n); - prepareSpanVariants(state, uniforms, s, variants); - - do { - intPixelPipe(state, uniforms, variants); - } while (--n); - } else - { - fillSolidSpan(state, uniforms, s.x0, s.y, s.len, uniforms.packedSolidColor); - } - } - -} - -void calculatePPHash(PixelPipeHash& hash, const PixelPipe::SignatureState& derivedState) -{ - const RIuint32 blendModeBits = 4; - const RIuint32 imageModeBits = 2; - const RIuint32 paintTypeBits = 2; - const RIuint32 tilingModeBits = 2; - const RIuint32 samplerBits = 1; - const RIuint32 imageGradientTypeBits = 2; - const RIuint32 boolBits = 1; - const RIuint32 descBits = 10; - const RIuint32 maskOperationBits = 3; - - RIuint32 blendMode = ((RIuint32)derivedState.blendMode) - ((RIuint32)VG_BLEND_SRC); - RIuint32 imageMode = ((RIuint32)derivedState.imageMode) - ((RIuint32)VG_DRAW_IMAGE_NORMAL); - RIuint32 paintType = ((RIuint32)derivedState.paintType) - ((RIuint32)VG_PAINT_TYPE_COLOR); - RIuint32 maskOperation = ((RIuint32)derivedState.maskOperation) - ((RIuint32)VG_CLEAR_MASK); - RIuint32 paintTilingMode = ((RIuint32)derivedState.paintTilingMode); - RIuint32 paintSampler = ((RIuint32)derivedState.paintSampler); - RIuint32 imageSampler = ((RIuint32)derivedState.imageSampler); - - RIuint32 imageGradientType = ((RIuint32)derivedState.imageGradientType); - - RIuint32 dstFormat = (RIuint32)(derivedState.dstDesc.toIndex()); - RIuint32 maskFormat = (RIuint32)(derivedState.maskDesc.toIndex()); - RIuint32 imageFormat = (RIuint32)(derivedState.imageDesc.toIndex()); - RIuint32 patternFormat = (RIuint32)(derivedState.patternDesc.toIndex()); - - RIuint32 hasMasking = derivedState.hasMasking ? 1 : 0; - RIuint32 hasImage = derivedState.hasImage ? 1 : 0; - RIuint32 hasColorTransform = derivedState.hasColorTransform ? 1 : 0; - RIuint32 isMaskOperation = derivedState.isRenderToMask ? 1 : 0; - RIuint32 fillColorTransparent = derivedState.fillColorTransparent ? 1 : 0; - RIuint32 unsafeImageInput = derivedState.unsafeImageInput ? 1 : 0; - - // Modify hashes according to relevant state: - int b = 0; - b = riInsertBits32(hash.value, sizeof(hash.value), blendMode, blendModeBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), imageMode, imageModeBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), paintType, paintTypeBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), maskOperation, maskOperationBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), paintTilingMode, tilingModeBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), paintSampler, samplerBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), imageSampler, samplerBits, b); - - b = riInsertBits32(hash.value, sizeof(hash.value), imageGradientType, imageGradientTypeBits, b); - - b = riInsertBits32(hash.value, sizeof(hash.value), dstFormat, descBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), maskFormat, descBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), imageFormat, descBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), patternFormat, descBits, b); - - b = riInsertBits32(hash.value, sizeof(hash.value), hasMasking, boolBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), hasImage, boolBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), hasColorTransform, boolBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), isMaskOperation, boolBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), fillColorTransparent, boolBits, b); - b = riInsertBits32(hash.value, sizeof(hash.value), unsafeImageInput, boolBits, b); -} - -} -