symbian-qemu-0.9.1-12/python-2.6.1/Demo/turtle/tdemo_planet_and_moon.py
changeset 1 2fb8b9db1c86
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/symbian-qemu-0.9.1-12/python-2.6.1/Demo/turtle/tdemo_planet_and_moon.py	Fri Jul 31 15:01:17 2009 +0100
@@ -0,0 +1,113 @@
+#!/usr/bin/python
+"""       turtle-example-suite:
+
+        tdemo_planets_and_moon.py
+
+Gravitational system simulation using the
+approximation method from Feynman-lectures,
+p.9-8, using turtlegraphics.
+
+Example: heavy central body, light planet,
+very light moon!
+Planet has a circular orbit, moon a stable
+orbit around the planet.
+
+You can hold the movement temporarily by pressing
+the left mouse button with mouse over the
+scrollbar of the canvas.
+
+"""
+from turtle import Shape, Turtle, mainloop, Vec2D as Vec
+from time import sleep
+
+G = 8
+
+class GravSys(object):
+    def __init__(self):
+        self.planets = []
+        self.t = 0
+        self.dt = 0.01
+    def init(self):
+        for p in self.planets:
+            p.init()
+    def start(self):
+        for i in range(10000):
+            self.t += self.dt
+            for p in self.planets:
+                p.step()
+
+class Star(Turtle):
+    def __init__(self, m, x, v, gravSys, shape):
+        Turtle.__init__(self, shape=shape)
+        self.penup()
+        self.m = m
+        self.setpos(x)
+        self.v = v
+        gravSys.planets.append(self)
+        self.gravSys = gravSys
+        self.resizemode("user")
+        self.pendown()
+    def init(self):
+        dt = self.gravSys.dt
+        self.a = self.acc()
+        self.v = self.v + 0.5*dt*self.a
+    def acc(self):
+        a = Vec(0,0)
+        for planet in self.gravSys.planets:
+            if planet != self:
+                v = planet.pos()-self.pos()
+                a += (G*planet.m/abs(v)**3)*v
+        return a
+    def step(self):
+        dt = self.gravSys.dt
+        self.setpos(self.pos() + dt*self.v)
+        if self.gravSys.planets.index(self) != 0:
+            self.setheading(self.towards(self.gravSys.planets[0]))
+        self.a = self.acc()
+        self.v = self.v + dt*self.a
+
+## create compound yellow/blue turtleshape for planets
+
+def main():
+    s = Turtle()
+    s.reset()
+    s.tracer(0,0)
+    s.ht()
+    s.pu()
+    s.fd(6)
+    s.lt(90)
+    s.begin_poly()
+    s.circle(6, 180)
+    s.end_poly()
+    m1 = s.get_poly()
+    s.begin_poly()
+    s.circle(6,180)
+    s.end_poly()
+    m2 = s.get_poly()
+
+    planetshape = Shape("compound")
+    planetshape.addcomponent(m1,"orange")
+    planetshape.addcomponent(m2,"blue")
+    s.getscreen().register_shape("planet", planetshape)
+    s.tracer(1,0)
+
+    ## setup gravitational system
+    gs = GravSys()
+    sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
+    sun.color("yellow")
+    sun.shapesize(1.8)
+    sun.pu()
+    earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
+    earth.pencolor("green")
+    earth.shapesize(0.8)
+    moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
+    moon.pencolor("blue")
+    moon.shapesize(0.5)
+    gs.init()
+    gs.start()
+    return "Done!"
+
+if __name__ == '__main__':
+    msg = main()
+    print msg
+    mainloop()