--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/epoc32/include/stdapis/boost/graph/transitive_closure.hpp Tue Mar 16 16:12:26 2010 +0000
@@ -0,0 +1,370 @@
+// Copyright (C) 2001 Vladimir Prus <ghost@cs.msu.su>
+// Copyright (C) 2001 Jeremy Siek <jsiek@cs.indiana.edu>
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// NOTE: this final is generated by libs/graph/doc/transitive_closure.w
+
+#ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
+#define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
+
+#include <vector>
+#include <algorithm> // for std::min and std::max
+#include <functional>
+#include <boost/config.hpp>
+#include <boost/bind.hpp>
+#include <boost/graph/vector_as_graph.hpp>
+#include <boost/graph/strong_components.hpp>
+#include <boost/graph/topological_sort.hpp>
+#include <boost/graph/graph_concepts.hpp>
+#include <boost/graph/named_function_params.hpp>
+
+namespace boost
+{
+
+ namespace detail
+ {
+ inline void
+ union_successor_sets(const std::vector < std::size_t > &s1,
+ const std::vector < std::size_t > &s2,
+ std::vector < std::size_t > &s3)
+ {
+ BOOST_USING_STD_MIN();
+ for (std::size_t k = 0; k < s1.size(); ++k)
+ s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]);
+ }
+ } // namespace detail
+
+ namespace detail
+ {
+ template < typename Container, typename ST = std::size_t,
+ typename VT = typename Container::value_type >
+ struct subscript_t:public std::unary_function < ST, VT >
+ {
+ typedef VT& result_type;
+
+ subscript_t(Container & c):container(&c)
+ {
+ }
+ VT & operator() (const ST & i) const
+ {
+ return (*container)[i];
+ }
+ protected:
+ Container * container;
+ };
+ template < typename Container >
+ subscript_t < Container > subscript(Container & c) {
+ return subscript_t < Container > (c);
+ }
+ } // namespace detail
+
+ template < typename Graph, typename GraphTC,
+ typename G_to_TC_VertexMap,
+ typename VertexIndexMap >
+ void transitive_closure(const Graph & g, GraphTC & tc,
+ G_to_TC_VertexMap g_to_tc_map,
+ VertexIndexMap index_map)
+ {
+ if (num_vertices(g) == 0)
+ return;
+ typedef typename graph_traits < Graph >::vertex_descriptor vertex;
+ typedef typename graph_traits < Graph >::edge_descriptor edge;
+ typedef typename graph_traits < Graph >::vertex_iterator vertex_iterator;
+ typedef typename property_traits < VertexIndexMap >::value_type size_type;
+ typedef typename graph_traits <
+ Graph >::adjacency_iterator adjacency_iterator;
+
+ function_requires < VertexListGraphConcept < Graph > >();
+ function_requires < AdjacencyGraphConcept < Graph > >();
+ function_requires < VertexMutableGraphConcept < GraphTC > >();
+ function_requires < EdgeMutableGraphConcept < GraphTC > >();
+ function_requires < ReadablePropertyMapConcept < VertexIndexMap,
+ vertex > >();
+
+ typedef size_type cg_vertex;
+ std::vector < cg_vertex > component_number_vec(num_vertices(g));
+ iterator_property_map < cg_vertex *, VertexIndexMap, cg_vertex, cg_vertex& >
+ component_number(&component_number_vec[0], index_map);
+
+ int num_scc = strong_components(g, component_number,
+ vertex_index_map(index_map));
+
+ std::vector < std::vector < vertex > >components;
+ build_component_lists(g, num_scc, component_number, components);
+
+ typedef std::vector<std::vector<cg_vertex> > CG_t;
+ CG_t CG(num_scc);
+ for (cg_vertex s = 0; s < components.size(); ++s) {
+ std::vector < cg_vertex > adj;
+ for (size_type i = 0; i < components[s].size(); ++i) {
+ vertex u = components[s][i];
+ adjacency_iterator v, v_end;
+ for (tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) {
+ cg_vertex t = component_number[*v];
+ if (s != t) // Avoid loops in the condensation graph
+ adj.push_back(t);
+ }
+ }
+ std::sort(adj.begin(), adj.end());
+ typename std::vector<cg_vertex>::iterator di =
+ std::unique(adj.begin(), adj.end());
+ if (di != adj.end())
+ adj.erase(di, adj.end());
+ CG[s] = adj;
+ }
+
+ std::vector<cg_vertex> topo_order;
+ std::vector<cg_vertex> topo_number(num_vertices(CG));
+ topological_sort(CG, std::back_inserter(topo_order),
+ vertex_index_map(identity_property_map()));
+ std::reverse(topo_order.begin(), topo_order.end());
+ size_type n = 0;
+ for (typename std::vector<cg_vertex>::iterator iter = topo_order.begin();
+ iter != topo_order.end(); ++iter)
+ topo_number[*iter] = n++;
+
+ for (size_type i = 0; i < num_vertices(CG); ++i)
+ std::sort(CG[i].begin(), CG[i].end(),
+ boost::bind(std::less<cg_vertex>(),
+ boost::bind(detail::subscript(topo_number), _1),
+ boost::bind(detail::subscript(topo_number), _2)));
+
+ std::vector<std::vector<cg_vertex> > chains;
+ {
+ std::vector<cg_vertex> in_a_chain(num_vertices(CG));
+ for (typename std::vector<cg_vertex>::iterator i = topo_order.begin();
+ i != topo_order.end(); ++i) {
+ cg_vertex v = *i;
+ if (!in_a_chain[v]) {
+ chains.resize(chains.size() + 1);
+ std::vector<cg_vertex>& chain = chains.back();
+ for (;;) {
+ chain.push_back(v);
+ in_a_chain[v] = true;
+ typename graph_traits<CG_t>::adjacency_iterator adj_first, adj_last;
+ tie(adj_first, adj_last) = adjacent_vertices(v, CG);
+ typename graph_traits<CG_t>::adjacency_iterator next
+ = std::find_if(adj_first, adj_last,
+ std::not1(detail::subscript(in_a_chain)));
+ if (next != adj_last)
+ v = *next;
+ else
+ break; // end of chain, dead-end
+
+ }
+ }
+ }
+ }
+ std::vector<size_type> chain_number(num_vertices(CG));
+ std::vector<size_type> pos_in_chain(num_vertices(CG));
+ for (size_type i = 0; i < chains.size(); ++i)
+ for (size_type j = 0; j < chains[i].size(); ++j) {
+ cg_vertex v = chains[i][j];
+ chain_number[v] = i;
+ pos_in_chain[v] = j;
+ }
+
+ cg_vertex inf = (std::numeric_limits< cg_vertex >::max)();
+ std::vector<std::vector<cg_vertex> > successors(num_vertices(CG),
+ std::vector<cg_vertex>
+ (chains.size(), inf));
+ for (typename std::vector<cg_vertex>::reverse_iterator
+ i = topo_order.rbegin(); i != topo_order.rend(); ++i) {
+ cg_vertex u = *i;
+ typename graph_traits<CG_t>::adjacency_iterator adj, adj_last;
+ for (tie(adj, adj_last) = adjacent_vertices(u, CG);
+ adj != adj_last; ++adj) {
+ cg_vertex v = *adj;
+ if (topo_number[v] < successors[u][chain_number[v]]) {
+ // Succ(u) = Succ(u) U Succ(v)
+ detail::union_successor_sets(successors[u], successors[v],
+ successors[u]);
+ // Succ(u) = Succ(u) U {v}
+ successors[u][chain_number[v]] = topo_number[v];
+ }
+ }
+ }
+
+ for (size_type i = 0; i < CG.size(); ++i)
+ CG[i].clear();
+ for (size_type i = 0; i < CG.size(); ++i)
+ for (size_type j = 0; j < chains.size(); ++j) {
+ size_type topo_num = successors[i][j];
+ if (topo_num < inf) {
+ cg_vertex v = topo_order[topo_num];
+ for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k)
+ CG[i].push_back(chains[j][k]);
+ }
+ }
+
+
+ // Add vertices to the transitive closure graph
+ typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
+ {
+ vertex_iterator i, i_end;
+ for (tie(i, i_end) = vertices(g); i != i_end; ++i)
+ g_to_tc_map[*i] = add_vertex(tc);
+ }
+ // Add edges between all the vertices in two adjacent SCCs
+ typename graph_traits<CG_t>::vertex_iterator si, si_end;
+ for (tie(si, si_end) = vertices(CG); si != si_end; ++si) {
+ cg_vertex s = *si;
+ typename graph_traits<CG_t>::adjacency_iterator i, i_end;
+ for (tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) {
+ cg_vertex t = *i;
+ for (size_type k = 0; k < components[s].size(); ++k)
+ for (size_type l = 0; l < components[t].size(); ++l)
+ add_edge(g_to_tc_map[components[s][k]],
+ g_to_tc_map[components[t][l]], tc);
+ }
+ }
+ // Add edges connecting all vertices in a SCC
+ for (size_type i = 0; i < components.size(); ++i)
+ if (components[i].size() > 1)
+ for (size_type k = 0; k < components[i].size(); ++k)
+ for (size_type l = 0; l < components[i].size(); ++l) {
+ vertex u = components[i][k], v = components[i][l];
+ add_edge(g_to_tc_map[u], g_to_tc_map[v], tc);
+ }
+
+ // Find loopbacks in the original graph.
+ // Need to add it to transitive closure.
+ {
+ vertex_iterator i, i_end;
+ for (tie(i, i_end) = vertices(g); i != i_end; ++i)
+ {
+ adjacency_iterator ab, ae;
+ for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab)
+ {
+ if (*ab == *i)
+ if (components[component_number[*i]].size() == 1)
+ add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc);
+ }
+ }
+ }
+ }
+
+ template <typename Graph, typename GraphTC>
+ void transitive_closure(const Graph & g, GraphTC & tc)
+ {
+ if (num_vertices(g) == 0)
+ return;
+ typedef typename property_map<Graph, vertex_index_t>::const_type
+ VertexIndexMap;
+ VertexIndexMap index_map = get(vertex_index, g);
+
+ typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
+ std::vector<tc_vertex> to_tc_vec(num_vertices(g));
+ iterator_property_map < tc_vertex *, VertexIndexMap, tc_vertex, tc_vertex&>
+ g_to_tc_map(&to_tc_vec[0], index_map);
+
+ transitive_closure(g, tc, g_to_tc_map, index_map);
+ }
+
+ namespace detail
+ {
+ template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap,
+ typename VertexIndexMap>
+ void transitive_closure_dispatch
+ (const Graph & g, GraphTC & tc,
+ G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map)
+ {
+ typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
+ typename std::vector < tc_vertex >::size_type
+ n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1;
+ std::vector < tc_vertex > to_tc_vec(n);
+
+ transitive_closure
+ (g, tc,
+ choose_param(g_to_tc_map, make_iterator_property_map
+ (to_tc_vec.begin(), index_map, to_tc_vec[0])),
+ index_map);
+ }
+ } // namespace detail
+
+ template < typename Graph, typename GraphTC,
+ typename P, typename T, typename R >
+ void transitive_closure(const Graph & g, GraphTC & tc,
+ const bgl_named_params < P, T, R > ¶ms)
+ {
+ if (num_vertices(g) == 0)
+ return;
+ detail::transitive_closure_dispatch
+ (g, tc, get_param(params, orig_to_copy_t()),
+ choose_const_pmap(get_param(params, vertex_index), g, vertex_index) );
+ }
+
+
+ template < typename G > void warshall_transitive_closure(G & g)
+ {
+ typedef typename graph_traits < G >::vertex_descriptor vertex;
+ typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
+
+ function_requires < AdjacencyMatrixConcept < G > >();
+ function_requires < EdgeMutableGraphConcept < G > >();
+
+ // Matrix form:
+ // for k
+ // for i
+ // if A[i,k]
+ // for j
+ // A[i,j] = A[i,j] | A[k,j]
+ vertex_iterator ki, ke, ii, ie, ji, je;
+ for (tie(ki, ke) = vertices(g); ki != ke; ++ki)
+ for (tie(ii, ie) = vertices(g); ii != ie; ++ii)
+ if (edge(*ii, *ki, g).second)
+ for (tie(ji, je) = vertices(g); ji != je; ++ji)
+ if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) {
+ add_edge(*ii, *ji, g);
+ }
+ }
+
+
+ template < typename G > void warren_transitive_closure(G & g)
+ {
+ using namespace boost;
+ typedef typename graph_traits < G >::vertex_descriptor vertex;
+ typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
+
+ function_requires < AdjacencyMatrixConcept < G > >();
+ function_requires < EdgeMutableGraphConcept < G > >();
+
+ // Make sure second loop will work
+ if (num_vertices(g) == 0)
+ return;
+
+ // for i = 2 to n
+ // for k = 1 to i - 1
+ // if A[i,k]
+ // for j = 1 to n
+ // A[i,j] = A[i,j] | A[k,j]
+
+ vertex_iterator ic, ie, jc, je, kc, ke;
+ for (tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic)
+ for (tie(kc, ke) = vertices(g); *kc != *ic; ++kc)
+ if (edge(*ic, *kc, g).second)
+ for (tie(jc, je) = vertices(g); jc != je; ++jc)
+ if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
+ add_edge(*ic, *jc, g);
+ }
+ // for i = 1 to n - 1
+ // for k = i + 1 to n
+ // if A[i,k]
+ // for j = 1 to n
+ // A[i,j] = A[i,j] | A[k,j]
+
+ for (tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic)
+ for (kc = ic, ke = ie, ++kc; kc != ke; ++kc)
+ if (edge(*ic, *kc, g).second)
+ for (tie(jc, je) = vertices(g); jc != je; ++jc)
+ if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
+ add_edge(*ic, *jc, g);
+ }
+ }
+
+
+} // namespace boost
+
+#endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP