epoc32/include/stdapis/boost/math/complex/atanh.hpp
branchSymbian2
changeset 3 e1b950c65cb4
parent 2 2fe1408b6811
child 4 837f303aceeb
equal deleted inserted replaced
2:2fe1408b6811 3:e1b950c65cb4
       
     1 //    boost atanh.hpp header file
       
     2 
       
     3 //  (C) Copyright Hubert Holin 2001.
       
     4 //  Distributed under the Boost Software License, Version 1.0. (See
       
     5 //  accompanying file LICENSE_1_0.txt or copy at
       
     6 //  http://www.boost.org/LICENSE_1_0.txt)
       
     7 
       
     8 // See http://www.boost.org for updates, documentation, and revision history.
       
     9 
       
    10 #ifndef BOOST_ATANH_HPP
       
    11 #define BOOST_ATANH_HPP
       
    12 
       
    13 
       
    14 #include <cmath>
       
    15 #include <limits>
       
    16 #include <string>
       
    17 #include <stdexcept>
       
    18 
       
    19 
       
    20 #include <boost/config.hpp>
       
    21 
       
    22 
       
    23 // This is the inverse of the hyperbolic tangent function.
       
    24 
       
    25 namespace boost
       
    26 {
       
    27     namespace math
       
    28     {
       
    29 #if defined(__GNUC__) && (__GNUC__ < 3)
       
    30         // gcc 2.x ignores function scope using declarations,
       
    31         // put them in the scope of the enclosing namespace instead:
       
    32         
       
    33         using    ::std::abs;
       
    34         using    ::std::sqrt;
       
    35         using    ::std::log;
       
    36         
       
    37         using    ::std::numeric_limits;
       
    38 #endif
       
    39         
       
    40 #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
       
    41         // This is the main fare
       
    42         
       
    43         template<typename T>
       
    44         inline T    atanh(const T x)
       
    45         {
       
    46             using    ::std::abs;
       
    47             using    ::std::sqrt;
       
    48             using    ::std::log;
       
    49             
       
    50             using    ::std::numeric_limits;
       
    51             
       
    52             T const            one = static_cast<T>(1);
       
    53             T const            two = static_cast<T>(2);
       
    54             
       
    55             static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
       
    56             static T const    taylor_n_bound = sqrt(taylor_2_bound);
       
    57             
       
    58             if        (x < -one)
       
    59             {
       
    60                 if    (numeric_limits<T>::has_quiet_NaN)
       
    61                 {
       
    62                     return(numeric_limits<T>::quiet_NaN());
       
    63                 }
       
    64                 else
       
    65                 {
       
    66                     ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
       
    67                     ::std::domain_error  bad_argument(error_reporting);
       
    68                     
       
    69                     throw(bad_argument);
       
    70                 }
       
    71             }
       
    72             else if    (x < -one+numeric_limits<T>::epsilon())
       
    73             {
       
    74                 if    (numeric_limits<T>::has_infinity)
       
    75                 {
       
    76                     return(-numeric_limits<T>::infinity());
       
    77                 }
       
    78                 else
       
    79                 {
       
    80                     ::std::string        error_reporting("Argument to atanh is -1 (result: -Infinity)!");
       
    81                     ::std::out_of_range  bad_argument(error_reporting);
       
    82                     
       
    83                     throw(bad_argument);
       
    84                 }
       
    85             }
       
    86             else if    (x > +one-numeric_limits<T>::epsilon())
       
    87             {
       
    88                 if    (numeric_limits<T>::has_infinity)
       
    89                 {
       
    90                     return(+numeric_limits<T>::infinity());
       
    91                 }
       
    92                 else
       
    93                 {
       
    94                     ::std::string        error_reporting("Argument to atanh is +1 (result: +Infinity)!");
       
    95                     ::std::out_of_range  bad_argument(error_reporting);
       
    96                     
       
    97                     throw(bad_argument);
       
    98                 }
       
    99             }
       
   100             else if    (x > +one)
       
   101             {
       
   102                 if    (numeric_limits<T>::has_quiet_NaN)
       
   103                 {
       
   104                     return(numeric_limits<T>::quiet_NaN());
       
   105                 }
       
   106                 else
       
   107                 {
       
   108                     ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
       
   109                     ::std::domain_error  bad_argument(error_reporting);
       
   110                     
       
   111                     throw(bad_argument);
       
   112                 }
       
   113             }
       
   114             else if    (abs(x) >= taylor_n_bound)
       
   115             {
       
   116                 return(log( (one + x) / (one - x) ) / two);
       
   117             }
       
   118             else
       
   119             {
       
   120                 // approximation by taylor series in x at 0 up to order 2
       
   121                 T    result = x;
       
   122                 
       
   123                 if    (abs(x) >= taylor_2_bound)
       
   124                 {
       
   125                     T    x3 = x*x*x;
       
   126                     
       
   127                     // approximation by taylor series in x at 0 up to order 4
       
   128                     result += x3/static_cast<T>(3);
       
   129                 }
       
   130                 
       
   131                 return(result);
       
   132             }
       
   133         }
       
   134 #else
       
   135         // These are implementation details (for main fare see below)
       
   136         
       
   137         namespace detail
       
   138         {
       
   139             template    <
       
   140                             typename T,
       
   141                             bool InfinitySupported
       
   142                         >
       
   143             struct    atanh_helper1_t
       
   144             {
       
   145                 static T    get_pos_infinity()
       
   146                 {
       
   147                     return(+::std::numeric_limits<T>::infinity());
       
   148                 }
       
   149                 
       
   150                 static T    get_neg_infinity()
       
   151                 {
       
   152                     return(-::std::numeric_limits<T>::infinity());
       
   153                 }
       
   154             };    // boost::math::detail::atanh_helper1_t
       
   155             
       
   156             
       
   157             template<typename T>
       
   158             struct    atanh_helper1_t<T, false>
       
   159             {
       
   160                 static T    get_pos_infinity()
       
   161                 {
       
   162                     ::std::string        error_reporting("Argument to atanh is +1 (result: +Infinity)!");
       
   163                     ::std::out_of_range  bad_argument(error_reporting);
       
   164                     
       
   165                     throw(bad_argument);
       
   166                 }
       
   167                 
       
   168                 static T    get_neg_infinity()
       
   169                 {
       
   170                     ::std::string        error_reporting("Argument to atanh is -1 (result: -Infinity)!");
       
   171                     ::std::out_of_range  bad_argument(error_reporting);
       
   172                     
       
   173                     throw(bad_argument);
       
   174                 }
       
   175             };    // boost::math::detail::atanh_helper1_t
       
   176             
       
   177             
       
   178             template    <
       
   179                             typename T,
       
   180                             bool QuietNanSupported
       
   181                         >
       
   182             struct    atanh_helper2_t
       
   183             {
       
   184                 static T    get_NaN()
       
   185                 {
       
   186                     return(::std::numeric_limits<T>::quiet_NaN());
       
   187                 }
       
   188             };    // boost::detail::atanh_helper2_t
       
   189             
       
   190             
       
   191             template<typename T>
       
   192             struct    atanh_helper2_t<T, false>
       
   193             {
       
   194                 static T    get_NaN()
       
   195                 {
       
   196                     ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
       
   197                     ::std::domain_error  bad_argument(error_reporting);
       
   198                     
       
   199                     throw(bad_argument);
       
   200                 }
       
   201             };    // boost::detail::atanh_helper2_t
       
   202         }    // boost::detail
       
   203         
       
   204         
       
   205         // This is the main fare
       
   206         
       
   207         template<typename T>
       
   208         inline T    atanh(const T x)
       
   209         {
       
   210             using    ::std::abs;
       
   211             using    ::std::sqrt;
       
   212             using    ::std::log;
       
   213             
       
   214             using    ::std::numeric_limits;
       
   215             
       
   216             typedef  detail::atanh_helper1_t<T, ::std::numeric_limits<T>::has_infinity>    helper1_type;
       
   217             typedef  detail::atanh_helper2_t<T, ::std::numeric_limits<T>::has_quiet_NaN>    helper2_type;
       
   218             
       
   219             
       
   220             T const           one = static_cast<T>(1);
       
   221             T const           two = static_cast<T>(2);
       
   222             
       
   223             static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
       
   224             static T const    taylor_n_bound = sqrt(taylor_2_bound);
       
   225             
       
   226             if        (x < -one)
       
   227             {
       
   228                 return(helper2_type::get_NaN());
       
   229             }
       
   230             else if    (x < -one+numeric_limits<T>::epsilon())
       
   231             {
       
   232                 return(helper1_type::get_neg_infinity());
       
   233             }
       
   234             else if    (x > +one-numeric_limits<T>::epsilon())
       
   235             {
       
   236                 return(helper1_type::get_pos_infinity());
       
   237             }
       
   238             else if    (x > +one)
       
   239             {
       
   240                 return(helper2_type::get_NaN());
       
   241             }
       
   242             else if    (abs(x) >= taylor_n_bound)
       
   243             {
       
   244                 return(log( (one + x) / (one - x) ) / two);
       
   245             }
       
   246             else
       
   247             {
       
   248                 // approximation by taylor series in x at 0 up to order 2
       
   249                 T    result = x;
       
   250                 
       
   251                 if    (abs(x) >= taylor_2_bound)
       
   252                 {
       
   253                     T    x3 = x*x*x;
       
   254                     
       
   255                     // approximation by taylor series in x at 0 up to order 4
       
   256                     result += x3/static_cast<T>(3);
       
   257                 }
       
   258                 
       
   259                 return(result);
       
   260             }
       
   261         }
       
   262 #endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
       
   263     }
       
   264 }
       
   265 
       
   266 #endif /* BOOST_ATANH_HPP */
       
   267